не одно и то же). Атомная и водородная бомба относятся к ядерному оружию, но принцип действия у них разный. Чем водородная бомба отличается от атомной? Новость декабря — успешные испытания Северной Кореей водородной бомбы. Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза.
Атомная бомба и водородная бомба
Таким образом, все атомные бомбы, по определению, являются ядерными, но не все ядерные бомбы являются атомными. Практически все ядерное оружие проходит испытания, но только атомные бомбы имеют известное боевое применение. Первыми и пока единственными, кто применил это оружие массового поражения, были Соединенные Штаты Америки во время Второй мировой войны. Были применены только атомные бомбы "Малыш" и "Толстяк", сброшенные на Хиросиму и Нагасаки соответственно. Радиус взрыва этих устройств составлял около 1,6 км, в результате чего погибло в общей сложности около 160-200 тыс. Это остается единственным случаем применения ядерного оружия в боевых условиях.
Водородные бомбы, напротив, применялись только в ходе испытаний. В 1961 году в Советском Союзе было проведено испытание " Царь-бомбы ", которая до сих пор остается самым крупным ядерным оружием, когда-либо взорванным. Однако это мощное термоядерное оружие никогда не применялось в реальных конфликтах. Что такое атомная бомба? Атомная бомба — это ядерное оружие, предназначенное для создания мощного взрыва в результате процесса деления ядер.
Разбираемся, как будет выглядеть взрыв ядерной бомбы и что произойдет после него. Есть разные виды ядерного оружия, но основной принцип заключается в расщеплении ядер атомов для создания мощного взрыва, пишет Livescience. При расщеплении тяжелых атомов, таких, как уран или плутоний, высвобождаются нейтроны, которые могут разбивать другие атомы и вызывать цепную реакцию.
Эта цепная реакция приводит к освобождению большого количества энергии и мощному взрыву. Атомные бомбы, которые уничтожили Хиросиму и Нагасаки в Японии, имели мощность от 15 до 20 тысяч тонн тротилового эквивалента. Современное оружие способно причинить еще больше разрушений.
Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях. Подводный ядерный взрыв бомбы «Бэйкер» в 1946 году.
Эти смерти будут вызваны пожарами и интенсивным облучением радиацией. Кто-то получит травмы от ударной волны, кто-то пострадает из-за разрушенных зданий или летящих осколков.
Получается, фактически неограниченная мощность взрыва. Примером такого взрыва можно считать - Солнце, ведь по сути это самый продолжительный термоядерный взрыв.
Термоядерные реакции бывают трех видов: самоподдерживающиеся проходят в недрах звезд , управляемые и неуправляемые или взрывные — они используются в водородных бомбах. Статья по теме Северная Корея опубликовала видео успешных испытаний баллистической ракеты Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта.
Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам, сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона. Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать».
В октябре 1961 года ее испытали на архипелаге Новая Земля. Из чего делают термоядерные бомбы? Если вы думали, что водородные и термоядерные бомбы — это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород а точнее, его изотопы — дейтерий и тритий требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.
Широко известны две схемы. Первая — сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая — американская схема Теллера — Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу — емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» — плутониевый стержень, а сверху — обычный ядерный заряд, и все это в оболочке из тяжелого металла например, обедненного урана. Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва.
Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера — Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать». Какие еще бомбы бывают? Еще бывают нейтронные, но это вообще страшно.
Содержание
- Технологии создания и разница в производстве
- Литературные дневники / Проза.ру
- «В чем отличие атомной, ядерной и водородной бомб друг от друга?» — Яндекс Кью
- Сборник ответов на ваши вопросы
Разница между водородной бомбой и атомной бомбой
Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека.
Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек.
Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию.
Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли.
Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища.
Идея состояла в разжигании термоядерной реакции в жид- ком дейтерии при помощи тепла от взрыва атомного заряда. Но вскоре выяснилось, что атомный взрыв недостаточно горяч, и не обеспечивает необходимых условий для «горения» дейтерия. Для начала реакций синтеза требовалось введение в смесь трития. Реакция дейтерия с тритием должна была обеспечить повышение температуры до условий дейтериево-дейтериевого синтеза. Но тритий, ввиду своей радиоактивности период полураспада всего 12 лет в природе практически не встречается и его приходится получать искусственным путем в реакторах деления. Это делало его на порядок дороже оружейного плутония.
Кроме того каждые 12 лет половина полученного трития просто исчезала в результате радиоактивного распада. Применение газообразных дейтерия и трития в качестве ядерного топлива было невозможно и приходилось применять сжи- женный газ, что делало взрывные устройства малопригодными для практического приме- нения. Исследования проблем «классического супера» продолжалось в США до конца 1950г. Исследования зашли в тупик. В апреле 1946г. Через какое-то время после совещания он передал материалы, связанные с этими рабо- тами, представителям советской разведки и они попали к нашим физикам. В начале 1950г. Фукс был арестован и этот источник информации «иссяк».
В конце августа 1946г. Теллер выдвинул идею, альтернативную «классическому суперу», которую он назвал «Alarm Clock». Сахаровым под названием «слойка», а в США никогда не реализовывался. Идея заклю- чалась в окружении ядра делящейся атомной бомбы слоем термоядерного горючего из смеси дейтерия с тритием. Излучение от атомного взрыва способно сжать 7-16 слоев горючего, перемежающегося со слоями делящегося материала и нагреть его примерно до такой же температуры, как и само делящиеся ядро. Это опять же требовало исполь- зования очень дорогого и неудобного трития. Термоядерное топливо окружала оболочка из урана-238 которая на первом этапе выполняла роль теплоизолятора, не давая энер- гии выйти за пределы капсулы с топливом. Без нее горючие, состоящие из легких элементов было бы абсолютно прозрачно для теплового излучения, и не прогрелось бы до высоких температур.
Непрозрачный уран, поглощая эту энергию, возвращал часть ее обратно в топливо. Кроме того, они увеличивают сжатие горючего путем сдерживания его теплового расширения. На втором этапе, уран подвергался распаду за счет нейтро- нов, появившихся при синтезе, выделяя дополнительную энергию. В сентябре 1947г. Теллер предложил использовать новое термоядерное горючее - дейтерид лития-6 являющееся при нормальных условиях твердым веществом. Литий поглощая нейтрон делился на гелий и тритий с выделением дополнительной энергии, что еще больше повышало температуру, помогая начаться синтезу. Идею «слойки», использовали и британские физики при создании при создании своей первой бомбы. Но будучи тупиковой ветвью развития термоядерных систем эта схема отмерла.
Перевести разработку термоядерного оружия в практическую плоскость позволила предложенная в 1951г. Для инициирования термоядерного синтеза предполагалось сжимать термоядерное топливо, используя излучение от первичной реакции расщепления, а не ударную волну т. Эта модель американской водородной бомбы получила название Улама-Теллера. На практике все происходит следующим образом. Компоненты бомбы помещаются в цилиндрический корпус с триггером на одном конце. Термоядерное топливо в виде ци- линдра или эллипсоида помещается в корпус из очень плотного материала — урана, свинца или вольфрама. Внутри цилиндра аксиально помещен стержень из Pu-239 или U-235, 2-3 см. Все оставшееся пространство корпуса заполняется пласт- массой.
При подрыве триггера испускаемые рентгеновские лучи нагревают урановый корпус бомбы он начинает расширяться и охлаждаться путем уноса массы абляции. Явление уноса, подобно струе кумулятивного заряда направленного внутрь капсулы, развивает огромное давление на термоядерное горючие. Два других источника давления движение плазмы после срабатывания первичного заряда корпус капсулы как и всё устройство представляет собой ионизированную плазму и давление рентгеновских фотонов не оказывают значительного влияния на обжатие. При обжатии стержня из делящегося материала он переходит в надкритическое состояние. Быстрые нейтроны, образующиеся при делении триггера и замедленные дейтеридом лития до тепловых скоростей начинают цепную реакцию в стержне. Происходит еще один атомный взрыв действующий наподобие «запальной свечи» и вызывающий еще большее увеличивает дав- ления и температуры в центре капсулы, делая их достаточными для разжигания термо- ядерной реакции. Урановый корпус мешает выходу теплового излучения за его пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции многократно превышают образующиеся при цепном делении до 300 млн.
Все это происходит примерно за несколько сотен нано- секунд. Описанная выше последовательность процессов на этом заканчивается, если корпус заряда изготовлен из вольфрама или свинца. Однако если изготовить его из U-238 то образующиеся при синтезе быстрые нейтроны, вызывают деление ядер U-238. Деление одной тонны U-238 дает энергию, эквивалентную 18 Мт. При этом обраэуется много радиоактивных продуктов деления. Все это и составляет радиоактивные осадки, сопровождающие взрыв водородной бомбы. Чисто термоядерные заряды создают значи- тельно меньшее заражение обусловленное только взрывом триггера. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей.
На каждой стадии в таких устройствах возможно усиление мощности в 10-100 раз. Модель требовала большого количества трития, и для его производства американцы построили новые реакторы. Работы шли в большой спешке, ведь Советский Союз к тому времени уже создал атомную бомбу. Штатам оставалось только надеяться, что СССР пошел по украденному Фуксом тупиковому пути который был арестован в Англии в январе 1950г. И эти надежды оправдались. Первые термоядерные устройства были взорваны в ходе операции Greenhouse Оран- жерея на атолле Эниветок Маршалловы острова. Операция включала четыре испытания. В ходе первых двух «Dog» и «Easy» в апреле1951г.
Это был чисто исследовательский эксперимент по изучению термоядерного горения дейтерия. Устройство представляло собой ядерный заряд в виде тора 2,6м. Выход энергии от синтеза в этом устройстве очень невелик по сравнению с выходом энергии от деления ядер урана. В нем в качестве термоядерного топлива использова- лась смесь дейтерия с тритием, охлажденная до жидкого состояния, и находящаяся внутри ядра из обогащенного урана. Устройство создавалось для испытания принципа увеличения мощности атомного заряда за счет дополнительных нейтронов возникающих в реакции синтеза. Эти нейтроны, попадая в зону реакции деления, увеличивали их интенсивность увеличивалась доля ращепившихся ядер урана а следовательно и силу взрыва. Для ускорения разработок в июле 1952г. Лоуренса в Калифорнии.
Это было первое устройство, созданное по принципу Теллера-Улама. Весило оно около 80т. Термоядерное горю- чее дейтерий — тритий находилось в жидком состоянии при температуре, близкой к абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стр- ежень. Сам сосуд окружал корпус-толкатель из природного урана, массой более 5т. Целиком сборка помещалась в огромную стальную оболочку, 2м. Эксперимент стал промежуточным шагом амери- канских физиков на пути к созданию транспортабельного водородного оружия. В этом плане впереди оказались советские ученые, использовавшие дейтерид Li6 уже в первой советской термоядерная бомбе испытанной в августе 1953г. Американский же завод по производ- ству Li6 в Ок-Ридже был пущен в эксплуатацию только к середине 1953г.
После операции «Ivy Mike» оба ядерных центра в Лос- Аламосе и Калифорнии приступили к спешной разработке более компактных зарядов с использованием дейтерида лития, которые возможно было бы применять в боевых усло- виях. В 1954г. Однако для скорейшего оснащения вооруженных сил новым ору- жием три типа устройств, были сразу, без испытаний, изготовлены малой серией по 5 изделий. Одним из них стла бомба EC-16 ее испытание под именем «Jughead» планиро- валось провести в ходе операции «Castle». Это была транспортабельная версия криогенной системы «Mike» масса бомбы 19т. Но после первых успеш- ных испытаний устройств с дейтеридом лития EC-16 моментально устарела и даже не испытывалась. Такое горючие применялось в США впервые поэтому мощность взрыва сильно превысила ожидаемую в 4-8Мт. Причина неожиданно высокой мощности состояла в Li7 который по ожиданиям должен был быть достаточно инертным, но в действительности при поглощении быстрых нейтронов атом Li7 тоже делился на тритий и гелий.
Этот «незапланированный» тритий и обеспечил 2-х крат- ное усиление мощности. Кратер от взрыва получился 2км. Масса устройства составляла 10. Успешный результат первого испытаня привел к отказу от криогенных проектов «Jughead» EC-16 и «Ramrod» криогенного близнеца устройства «Morgenstern». Из-за дефицита обогащенного Li6 в следующем испытани «Castle Romeo» исполь- зовался заряд из природного 7. Термоядерное устройство под именем «Runt I» было взорвано 26 Марта 1954г. Одновременно это было контрольное испытание термоядерной бомбы получившей обозначение EC-17. Мощность взрыва составила 11Мт.
Как и в случае с «Bravo», выделившаяся мощность намного превысила ожидаемые 1. Масса устройства - 18т. Энерговыделение — 6,9 Мт. Взрыв оставил на дне лагуны кратер 100м. Масса устройства — 12,5 т. Испытание было неудачным. Вместо планировавшейся 1Мт. Это произошло из-за того, что нейтронный поток от триггера достиг второй ступени, пред- варительно разогрев ее и помешав эффективному обжатию.
Остальные изделия, испытан- ные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижа- ющим эффект предварительного разогрева термоядерного топлива. Это дало прибавку мощности в 2. Мощность взрыва составила 13. Масса «Runt II» 17,8т. Вклю- чение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle Romeo» и исключения испытаний устройств «Ramrod» и «Jughead». По сравнению с весом остальных зарядов, эта бомба выглядит совсем небольшой масса - 2. Первона- чально она разрабатывалось как чисто атомная бомба с мощностью в диапазоне сотен килотонн в которой применялось радиационное обжатие одного атомного заряда другим. Идея была сохранена но в проект добавили термоядерное горючее для увеличения мощ- ности.
Проект выиграл в весе, но применение в нем дорогого и отсутствующего на тот момент в должных количествах материала - высокообогащенного лития сдерживало его производство до 1955г. Таким образом на вооружение США уже в 1954г поступили в ограниченном коли- честве первые термоядерные бомбы. Это были огромные и тяжелые мастодонты ЕС-14 «Alarm Clock» масса 14т. Эти заряды изготовлены сериями по 5 шт. Термоядерная бомба Mk. Взять ее в полет мог только B-36. Для ее эксплуатации требовались специальные машины, средства и приспособления. Подве- сить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало гибкость применения этого оружия.
Поэтому все пять Mk. После операции «Castle» было развернуто серийное производство новых термоя- дерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie» «Castle Nectar» - Mk. В 1955- 1957гг. В 1955 — 56гг. Наследник «Castle Yankee» - Mk. В 1954-55 гг. В 1956г.
Энерговыделение составило 3. Важное отличие этого заряда от испытанных ранее то, что он был сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бом- бометание термоядерного устройства с самолета. Самая мощная американская бомба была разработана по программе B-41.
Такая технология применяется на АЭС для максимального результата по выработке электроэнергии. Водородная бомба действует сильнее, чем атомная. Радиус ее поражения в разы превышает масштабы ядерного оружия. Одна такая бомба может унести миллионы жизней, и разрушить мегаполисы за считанные секунды.
В результате воздействия ионизирующих излучений у человека может возникнуть лучевая болезнь. Электромагнитный импульс ЭМИ — это кратковременное электромагнитное поле, возникающее во время взрыва ядерного боеприпаса. Поражение людей ЭМИ возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяжёнными проводными линиями. Продолжительность действия — несколько десятков миллисекунд. Ядерное оружие в России В России ядерное оружие официально подразделяют: на стратегическое; тактическое нестратегическое. Что такое стратегическое ядерное оружие Стратегическое ЯО предназначено для масштабного поражения территории противника, самых чувствительных и важных целей. В России этот вид оружия представлен так называемой «ядерной триадой». Это значит, что ядерный запас разделён между тремя типами вооружений: наземного, воздушного, морского базирования.
Обычно «триада» представлена межконтинентальными баллистическими ракетами, стратегическими бомбардировщиками-ракетоносцами и атомными подводными лодками. То есть, защищает государство на всех трёх уровнях: на земле, в воде и в воздухе. Что такое тактическое ядерное оружие Тактическое ЯО — боеприпасы с более ограниченным радиусом действия, нежели стратегические. Оно нужно для точечного применения на поле боя, для какого-то ограниченного ядерного удара.
Водородная (термоядерная) бомба: испытания оружия массового поражения
Простое помещение дейтрида лития рядом с атомной бомбой-запалом приведёт к разбросу его без существенного выделения энергии, поэтому он окружается оболочками тяжёлого металла, не допускающими быстрого разлёта. Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы. Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой. Взрыв бомбы приводит к испарению пластмассы, давление которой сжимает дейтрид лития в 1000 раз, а плутониевый стержень примерно вчетверо. Сжатие и нагрев инициируют термоядерную реакцию, а плутониевый стержень играет роль "запальной свечи", продуцируя нейтроны для превращения лития в тритий. Металлический корпус может быть из вольфрама, и не добавляет ни энергии взрыву, ни радиоактивного заражения, а может быть из необогащённого или слабообогащённого урана, что увеличивает мощность взрыва и создаёт мощное заражение "грязная бомба" - впрочем, так именуют и радиологическую бомбу, в которой реакции деления или синтеза нет, а просто разбрасываются обычным химическим взрывом изотопы.
Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать взрывы в Японии , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями.
Из 1 кг дейтерида лития-6 после полного синтеза выделяется энергия, эквивалентная взрыву 60 тыс. Как видите, разница между энергией атомного деления и ядерного синтеза отличается всего в три раза. Хотя разница в теории невелика, в действительности это все равно что сравнивать рай и ад. Самая мощная атомная бомба, когда-либо созданная людьми, — это атомная бомба мощностью, эквивалентной 450 000 тонн тротила, которая была взорвана в ходе операции «Плющ» в США в 1955 году. Самой мощной водородной бомбой стала царь-бомба, которая была испытана нашей страной во времена Советского Союза в 1961 году. Взрыв этой бомбы поразил всех экспертов в мире. Ее мощность составила 50 миллионов тонн в тротиловом эквиваленте. То есть фактически мощность водородной бомбы была в 111 раз больше самой мощной в мире атомной бомбы. Слева — грибовидное облако водородной бомбы, а справа — грибовидное облако атомной бомбы Почему же если потенциальная энергия ядерного деления урана-235 и ядерного синтеза дейтерид лития-6 отличается всего в 3 раза на деле разница при взрыве оказывается колоссальной? Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний. После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны. Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки.
Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Царь-бомба Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. Ударная волна обошла планету три раза. На полигоне Новая Земля не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности Штаты располагали на тот момент бомбами вчетверо меньше по силе стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой. Царь-бомба Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Водородная бомба Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.
В чем разница между атомной и водородной бомбой?
Водородная (более правильное название "термоядерная") бомба прежде всего в разы мощнее атомной. Чем отличается ядерная бомба от атомной? Ученые определили отличия между атомной и водородной бомбой. Атомная война приведёт к превращению значительной части планеты в ядерную пустыню, а подвергшаяся ядерным ударам территория будет бесполезна для победителя из-за радиоактивного заражения. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. Отличие водородной бомбы от атомной: список различий, история создания.
Какая бомба мощнее: ядерная или водородная
Join В чем разница между атомной и водородной бомбой? Атомная ядерная и водородная она же термоядерная бомбы — это два сокрушительных типа оружия массового поражения, похожие по названию, но разные в принципе действия. В чем между ними отличие, и какая бомба смертоноснее? Каков принцип действия атомной бомбы? Атомная бомба признается сравнительно примитивным ядерным оружием, в основе которого заложена идея деления тяжелого радиоактивного химического элемента на два легких. Реакция распада этих веществ достигается путем подрыва обычной взрывчатки. Детонация приводит к раскалыванию ядра атома на две части и высвобождению свободных нейтронов.
США — единственная страна, которая использовала атомную бомбу в войне. В 1986 году взрыв ядерного реактора на Чернобыльской АЭС стал очередным доказательством того, что несет в себе не только использование ядерного оружия, но и ошибки в управлении атомными станциями. Последствия чернобыльской аварии мир ощущает до сих пор. Еще одна авария произошла на японской атомной электростанции «Фукусима-1» в марте 2011 года. Причиной катастрофы стало мощное землетрясение, за которым последовало цунами с высотой волн превышающих 10 метров. По Международной шкале ядерных и радиологических событий, аварии на АЭС присвоен 7-ой уровень опасности. Подробнее о том, что сегодня происходит в Зоне отчуждения Чернобыльской АЭС подробно рассказывал мой коллега Андрей Жуков, рекомендую к прочтению. Ядерный взрыв Спустя микросекунды после взрыва ядерной бомбы энергия, высвобождаемая в виде рентгеновских лучей, нагревает окружающую среду и образуя огненный шар из перегретого воздуха, внутри которого температура и давление настолько экстремальны, что превращают всю материю в горячую плазму субатомных частиц такие же процессы происходят в ядрах звезд, включая Солнце. Взрывная волна, на долю которой приходится примерно половина взрывной энергии бомбы, первоначально распространяется быстрее скорости звука, но быстро замедляется из-за потери энергии при прохождении через атмосферу. Вскоре после того, как ядерный взрыв высвободил большую часть энергии, огненный шар начинает остывать и подниматься, превращаясь в знакомое грибовидное облако.
Больше по теме: Как подготовиться к ядерной войне, чтобы выжить? У ядерного взрыва три механизма поражения: ударная волна, вспышка видимого и инфракрасного излучения, а также гамма-излучение. В конечном итоге ветер разносит высокорадиоактивную смесь расщепленных по округе, подвергая выживших почти смертельной дозой ионизирующего излучения. Степень радиационного загрязнения зависит от мощности бомбы: для оружия мощностью в сотни килотонн зона непосредственной опасности может охватить тысячи квадратных километров. Еще больше интересных статей о новейшем оружии, включая биологическое, читайте на нашем канале в Яндекс. Дзен — там регулярно выходят статьи, которых нет на сайте!
Метод взрыва используется только для плутония и не работает с ураном. Для урана метод оружия более популярен.
Рекомендуем Разница между условным сроком и условно-досрочным освобождением Основное различие: условное наказание относится к условию, когда преступник отбывает наказание в обществе, а не в тюрьме, тогда как условно-досрочное освобождение можно охарактеризовать как условное досрочное освобождение из тюрьмы и служение в обществе. Оба эти условия относятся к преступникам и преступникам. Испытание относится к условию, когда преступник отбывает наказание в обществе и должен придерживаться определенных условий, тогда как условно-досрочное освоб популярные сравнения Разница между FreeBSD и Linux Ключевое отличие: FreeBSD - это Unix-подобная операционная система. Linux также является операционной системой с открытым исходным кодом, которая смоделирована на UNIX. Они тихие, одинаковые по производительности. Однако некоторые различия встречаются в таких аспектах, как лицензия, доступность исходного кода и т популярные сравнения Основное отличие: NAS, сокращение от сетевого хранилища, - это компьютерное хранилище данных на уровне файлов, подключенное к компьютерной сети, которое обеспечивает доступ клиентам. SAN, сокращение от Storage-area Network, является выделенной сетью, которая позволяет нескольким пользователям получать доступ к хранилищу данных на популярные сравнения Разница между выпуклым и вогнутым зеркалом Основное отличие: вогнутые и выпуклые два класса сферических зеркал. Вогнутое зеркало - это сферическое зеркало, в котором отражающая поверхность и центр кривизны падают на одну и ту же сторону зеркала.
Телефон с двумя SIM-картами.
В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов. Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества критической массе количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд. Наука Как спят слоны?
Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы. Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми. Возможные последствия взрыва водородной бомбы В первую очередь водородная бомба — это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями.
Что происходит после взрыва термоядерного заряда: ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения; тепловой эффект — невероятная тепловая энергия, способна расплавить даже бетонные конструкции; радиоактивные осадки — облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва. Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям. Всем спасибо! Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.
Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана. Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни.
Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации. Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого».
Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона.
Водородная бомба и ядерная — какие различия между двумя видами ядерных взрывов?
Чем отличается атомная бомба от водородной. Ядерная (атомная) и термоядерная (водородная) бомбы очень похожи друг на друга. Обе бомбы являются оружием массового поражения и основываются на ядерной реакции, приводящей к высвобождению колоссальной энергии. Отличие водородной бомбы от атомной: список различий, история создания. Атомная бомба и ядерная бомба: два разных понятия. Атомная бомба и водородная бомбы являются мощным оружием, которое использует ядерные реакции в качестве источника взрывной энергии. Ученые впервые разработали технологию ядерного оружия в ходе Второй мировой войны.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года. Принцип работы атомной и водородной бомб. Конструкция ядерного заряда.
Термоядерная бомба и ядерная отличия
В чем разница между ядерной и термоядерной бомбой? | | Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно. |
Разница между водородной бомбой и атомной бомбой | Чем отличается атомная бомба от водородной. |
Водородная (термоядерная) бомба: испытания оружия массового поражения | Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез. |
Никто не спрячется: что будет после ядерной войны?
Водородная (термоядерная) бомба: испытания оружия массового поражения. не одно и то же). путем ядерного синтеза. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной. Чем отличается атомная бомба от водородной.