Новости процессор амд а10

AMD также представила Ryzen 7 5700. Он очень похож на Ryzen 7 5700X, 5700G, 5700X3D, 5800X и 5800X3D; это 8-ядерный/16-поточный процессор на базе Zen 3. В нем отсутствует интегрированная графика, поэтому он не является APU, как 5700G. Процессор AMD a10-4600m для ноутбука. Линейка процессора: A10 Тип: Процессор Архитектура: Trinity Сокет процессора: Socket FS1 Базовая частота, ГГц: 2.3. Рейтинг процессоров AMD 2023 года ТОП–10 лучших процессоров AMD Какой процессор АМД лучше для игр? Например, по итогам 2022 года NVIDIA заняла большую часть рынка видеокарт, тогда как AMD ушла ниже 10%. В ноутбуке установлены процессоры новейшей архитектуры Zen 4 серии AMD Ryzen 8040 HS с интегрированным нейроблоком. На выбор покупателей предлагаются модификации с Ryzen 5 8645HS, Ryzen 7 8845HS и Ryzen 9 8945HS.

Процессор AMD A10-7800

Чтобы компьютерные игры были в состоянии использовать всю мощь аппаратной начинки вашего компьютера, AMD придумала Mantle. Mantle представляет собой программный компонент, который позволяет легко применять приемы программирования и оптимизации, написанные для консолей, к ПК с архитектурой Graphics Core Next GCN. Разрыв между консолями и компьютерами в плане игр отныне заполнен раз и навсегда. Драйверы в наборе программного обеспечения AMD Catalyst позволяют приложениям обращаться непосредственно к архитектуре Graphics Core Next, открывая перед разработчиками игр дорогу в мир прекрасной графики и отличной детализации. Все будущие игры, созданные на основе игрового движка Frostbite3 от компании ЕА, будут поддерживать Mantle - таким образом, вас ждет десяток прекрасных игр, которыми вы сможете насладиться уже совсем скоро! Полноценное звучание с эффектом присутствия, реализованное технологией AMD TrueAudio, перенесет вас в самый центр происходящего на экране и обеспечит полное погружение в любимую игру или фильм высокого разрешения. С технологией AMD TrueAudio ты услышишь каждый шорох, и заметишь врага еще до того, как он окажется в твоем поле зрения. Теперь ваша любимая игра будет так же хорошо звучать, как и выглядеть.

Переводя пользователей на принципиально новый уровень восприятия, процессоры со встроенной графикой AMD A10-7700K и AMD A10-7850K теперь обеспечивают не просто графическую и вычислительную мощь. Оснащенные технологией AMD TrueAudio, они теперь обеспечивают беспрецедентный уровень акустической точности и глубины объемного звучания. Улучшенная пропускная способность в сочетании с экстрапроизводительным звучанием существенно улучшает внутриигровое восприятие звукового окружения — вы слышите оппонентов с невероятной реалистичностью и потрясающим качеством окружающих звуковых эффектов, и игра становится еще больше похожей на реальность. Ключевым отличием технологии Eyefinity от обычного подключения нескольких мониторов к одной или нескольким видеокартам является возможность образовывать единый виртуальный дисплей для 3D-приложений. Так, например, при подключении трёх мониторов с Full HD разрешением 1920 x 1080 пикселей, можно запускать игры в разрешении 5760 x 1080 пикселей при ландшафтной ориентации мониторов, или же в 3240 x 1920 пикселей при портретной.

Они работают на частоте от 1. Архитектура Kaveri - архитектура, пришедшая на смену Richland. Переработанные процессорные ядра Steamroller принадлежат к третьему поколению модульного дизайна, впервые представленного в архитектуре Bulldozer. Каждое ядро теперь оснащено одним декодером, предсказатель переходов был оптимизирован, а кэш L1i увеличился с 64 до 96 КБ на модуль.

Кодирование видео — ещё одна задача наряду с финальным рендерингом и шифрованием, где процессору A10-7850K удаётся показать лучшее, чем A10-6800K, быстродействие. Более того, старший Kaveri почти дотягивает здесь по своей производительности до интеловского двухъядерника Core i3-4340. На фоне результатов в приложениях других типов — это весьма выдающийся результат для нового процессорного дизайна компании AMD. Поскольку скорость перекодирования видео «голым» кодером x264 представляет скорее академический интерес, мы измерили и производительность при конвертировании при помощи популярной свободной утилиты Freemake Video Converter 4. Следует отметить, что эта утилита использует библиотеку FFmpeg, то есть, в конечном итоге также опирается на кодер x264, однако в ней сделаны определённые специфические оптимизации. При тестировании для создания максимальной нагрузки именно на вычислительные ядра процессоров технология CUDA отключалась, однако DXVA-оптимизации оставались активированы. Впрочем, уровень этого преимущества невелик, поэтому говорить, что четырёхъядерные процессоры AMD с очередным обновлением микроархитектуры стали лучше двухъядерников Intel с точки зрения производительности x86-ядер, не приходится. Мы убедились в том, что скорость работы его x86-ядер не выдерживает никакой критики, и теперь попробуем посмотреть на новый APU с другой стороны — со стороны графической составляющей. Здесь A10-7850K должен дать нам поводы для оптимизма. Его графическое ядро имеет очень высокую по меркам процессоров с интегрированным GPU теоретическую производительность. Согласно данным, распространяемым компанией, этот гибридный процессор способен обеспечить приемлемый уровень графической производительности больше 30 кадров в секунду в FullHD-разрешении не только в большинстве сетевых проектов, но и в популярных однопользовательских играх. Давайте посмотрим, насколько эти утверждения соответствуют действительности. Для предварительной оценки относительного быстродействия графического ядра гетерогенного процессора Kaveri мы прибегли к синтетическому бенчмарку Futuremark 3DMark. Из состава пакета использовалось два подтеста: Cloud Gate, предназначенный для определения DirectX 10-производительности типовых домашних компьютеров, и более ресурсоёмкий Fire Strike, нацеленный на DirectX 11-игровые системы. Как видно по результатам, оно способно составить достойную конкуренцию дискретным графическим картам, оснащаемым DDR3-памятью, не говоря уже об интегрированных GPU всех типов. Наиболее показательны в этом плане индексы производительности, полученные в наиболее требовательном 3DMark Fire Strike. Это вполне закономерно, ведь количество шейдерных процессоров у старшей версии Spectre доведено до 512, в то время как Richland и Radeon R7 250 довольствуются массивом из 384 шейдеров. Видеокарта Radeon R7 250, оснащённая GDDR5 памятью, заметно обходит A10-7850K по производительности, несмотря на то, что её графический движок по спецификациям явно слабее. Совершенно очевидно, что если AMD захочет продолжать наращивать мощность встроенной графики, она в первую очередь должна озаботиться либо переходом на подсистемы памяти с принципиально большей пропускной способностью, либо внедрением в процессор какого-либо объёмного высокоскоростного кэша, как это, например, сделано у конкурента в Intel Iris Pro Graphics. Впрочем, 3DMark — это сугубо синтетический тест, и делать какие-то общие выводы, опираясь лишь на его показатели, было бы не совсем верным. Потому давайте посмотрим, как проявляют себя встроенные графические ядра в реальных играх. Тесты в них запускались в двух режимах: при полноценном FullHD-разрешении 1920x1080 с низкими или средними настройками качества и при разрешении 1280x720 с выбором среднего или высокого качества. Полноэкранное сглаживание, естественно, не применялось. Battlefield 4 — один из самых популярных многопользовательских шутеров, который создаёт достаточно серьёзную нагрузку на графические ресурсы. Тем не менее, интегрированное в A10-7850K графическое ядро демонстрирует в нём свою полную состоятельность. Оно вполне способно обеспечить приемлемую играбельность в FullHD-разрешении, а с определёнными оговорками можно даже попробовать задействовать средние настройки качества. Никакие другие интегрированные GPU такого уровня быстродействия не предлагают. Если же снизить разрешение до уровня 720p, то доступным для A10-7850K станет и высокое качество изображения. Впрочем, обратите внимание, здесь A10-7850K всё-таки уступает дискретным видеокартам класса Radeon R7 250, вне зависимости от того, какой памятью они снабжены. Это наводит на мысль о том, что слабым местом Spectre является не только общая с процессорной частью шина памяти, но и невысокая рабочая частота. F1 2013 — компьютерная игра в жанре гоночного автосимулятора, разработанная компанией Codemasters и базирующаяся на технологии EGO 3. Подобные игры не отличаются слишком высокими требованиями к графической производительности системы, поэтому даже на интегрированной графике F1 2013 можно использовать с высокими настройками качества. И хотя в этом случае графика A10-7850K проигрывает дискретным видеоускорителям класса Radeon R7 250, частоту кадров она выдаёт более чем достаточную. Здесь играет роль то, что F1 2013 процессорозависима, а с быстродействием скалярных x86-ядер дело у Kaveri обстоит, мягко говоря, не очень хорошо. Metro: Last Light — далеко не новый шутер от первого лица, но его всё ещё можно отнести к числу наиболее требовательных к аппаратным компонентам компьютера. Поэтому здесь мы сталкиваемся с тем, что мощности графики A10-7850K для обеспечения приемлемой частоты кадров в FullHD-разрешении хватает далеко не всегда. Даже при самом минимальном качестве изображения новый APU компании AMD вызовет желание снизить разрешение, например, до 720p, где настройки изображения можно будет улучшить уже до среднего уровня. Последний приключенческий боевик от третьего лица, вышедший в серии Tomb Raider, предлагает чрезвычайно насыщенный, реалистичный и богатый графическими эффектами игровой мир. Тем не менее, игра с минимальными настройками неплохо идёт и на интегрированной графике, выдавая приемлемый уровень fps на гибридных процессорах AMD даже в FullHD разрешении. Заслуга же Kaveri здесь в том, что в разрешении 1980x1080 он позволяет выставить даже среднее качество изображения, частота же кадров при этом остаётся на приемлемом уровне. Впрочем, графическая карта Radeon R5 250, располагающая всего 384 шейдерными процессорами, но при этом снабжённая GDDR5 памятью, работает быстрее A10-7850K в полтора раза. Отличие же в производительности нового флагманского APU и его предшественника поколения Richland составляет лишь 6 процентов, что в очередной раз приводит нас к выводу о том, что 512 шейдерных процессоров в Kaveri явно избыточны, а инженерам AMD следовало бы в первую очередь задуматься об оптимизации подсистемы памяти. Популярнейший многопользовательский танковый аркадный симулятор World of Tanks — одна из тех игр, уровень быстродействия в которой волнует очень многих игроков. И здесь A10-7850K показывает себя достаточно неплохо. Фактически, можно говорить, что мощности встроенной в этот APU графики будет достаточно для комфортной игры в FullHD-разрешении при средних настройках качества. Однако отличие в графической производительности Kaveri от старшего процессора Richland вновь весьма незначительно. И это значит, что главная проблема встроенного в A10-7850K графического движка — недостаточная пропускная способность шины памяти — всплывает и здесь. Так, дискретная видеокарта Radeon R7 250 с меньшей вычислительной теоретической производительностью, но быстрой GDDR5-памятью обеспечивает примерно на 38 процентов более высокую скорость. Подводя итог тестам графической производительности Kaveri в игровых приложениях, отметим, что скорость A10-7850K действительно оказалась заметно выше скорости всех прочих процессоров с интегрированной графикой. Однако, к сожалению, графический движок нового гибридного процессора компании AMD нельзя назвать всеядным. Как показывает практика, некоторые требовательные шутеры в FullHD-разрешении всё-таки просаживают производительность Kaveri даже при самых минимальных настройках. Причём, проблема в этом случае заключается не в недостаточной мощности графического ядра, а в том, что дизайн Kaveri не обеспечивает его памятью с удовлетворительным быстродействием. Гетерогенная производительность Раньше, говоря о производительности гибридных процессоров, раздельным тестированием CPU и GPU можно было бы и ограничиться. Теперь же ситуация изменилась, так как появился целый пласт задач, которые могут активно задействовать одновременно ядра разного типа. Такие гетерогенные приложения пользуются фрейморком OpenCL 1. AMD считает, что большинство задач для обработки и создания медийного контента вполне способно на распределение нагрузки по всем, предоставляемым современными APU, вычислительным ресурсам, за счёт чего скорость их решений может быть серьёзна увеличена. Собственно, концепция HSA, которая в перспективе может быть внедрена в практическое использование, должна сделать такое совместное использование вычислительных ресурсов CPU и GPU более простым и доступным. Но на данный момент до внедрения HSA ещё далеко. Тем не менее приложения, которые всё же используют мощности графического ядра для вычислений через OpenCL 1. В их число входят как и свободно распространяемые программные продукты …так и коммерческое программное обеспечение. В идеале, мы бы не хотели прибегать к отдельным тестам производительности в задачах, использующих OpenCL. Было бы гораздо лучше, если бы поддержка гетерогенных процессоров появилась в общеупотребительных приложениях, в том числе и тех, которые мы используем для обычного тестирования. Однако такого пока нет: гибридные вычисления внедрены далеко не везде, причём в подавляющем числе случаев OpenCL-ускорение применяется лишь для реализации каких-то конкретных операций, и, чтобы его увидеть, необходимо придумывать специальные тесты. Поэтому исследование гетерогенной производительности стало отдельной и независимой частью нашего материала. Говоря о том приросте, который может дать вовлечение GPU в вычисления, AMD любит хвастаться результатами синтетических бенчмарков. Оно и понятно: одно дело — переделка уже имеющегося кода, а другое - разработка специальных алгоритмов для решения на параллельных процессорах графического ядра. Наиболее известным тестом OpenCL-производительности выступает бенчмарк Basemark CL, которым мы и воспользовались при проведении нашего тестирования. Этот тест измеряет производительность APU при решении задач трёх типов: при обработке изображений при шумоподавлении, сглаживании и увеличении резкости , при физическом моделировании гидродинамических и волновых процессов, а также мягких субстанций и при построении фракталов. То, что специально подобранные задачи при выполнении на параллельных процессорах графического ядра могут получать гигантский прирост производительности, не вызывает никакого удивления. Собственно, Basemark CL и призван показать тот вычислительный потенциал, который скрыт в GPU современных интегрированных процессоров. Именно на подобные числа и опирается AMD. В мире, где большинство ресурсоёмких приложений будет работать не только на x86-ядрах, но и на параллельных шейдерных процессорах GPU, процессоры AMD могут оказаться лучше предложений конкурента. Вопрос лишь в том, окажемся ли когда-нибудь в этом мире мы. Давайте теперь посмотрим на ситуацию, складывающуюся в реальных общеупотребительных программах. Впрочем, сразу же стоит отметить, что, как и в большинстве других случаев из реальной жизни, ускорение средствами графического ядра в WinZIP работает лишь изредка, при сжатии файлов объёмом более 8 Мбайт. Мы же для целей тестирования специально файлы не подбирали, а измеряли время архивации директории с дистрибутивом пакета Adobe Photoshop CC. Как интеловские процессоры работали быстрее в архиваторах, так и продолжают работать с включением OpenCL-поддержки. Более того, прирост скорости у процессоров Haswell даже больше, чем у Kaveri и Richland. В частности, в приложении Calc формульные расчёты могут выполняться с использованием мощностей GPU. Для целей тестирования мы измеряли время пересчёта таблицы с финансовыми данными. В Libre Office Calc OpenCL-оптимизация пока не отшлифована окончательно, поэтому во многих случаях время производительность при переносе вычислений на GPU не повышается, а падает. Так и произошло в нашем случае. При этом ни при включении поддержки OpenCL, ни при её выключении, процессорам Kaveri не удаётся обойти по скорости работы интеловские Haswell. Правда, на самом деле гетерогенные возможности APU используются лишь в работе нескольких фильтров. В частности, AMD рекомендует измерять производительность при выполнении операции Smart Sharpen, которую мы и проделали с 24-мегапиксельным изображением. Тут всё работает как надо. При этом прирост производительности, который наблюдается в системе на базе Kaveri, выше, чем во всех остальных системах, но в итоге даже с OpenCL-оптимизациями A10-7850K проигрывает и Core i5-4430, и Core i3-4340. Значение быстрых x86-ядер для Photoshop переоценить очень сложно. Ещё один пример популярного приложения, поддерживающего OpenCL, — это профессиональная программа для редактирования и монтажа видео Sony Vegas Pro 12. При выполнении в ней рендеринга видео нагрузка может распределяться по разнородным ресурсам гибридных процессоров. Ситуация полностью аналогична предыдущему случаю. Гибридные процессоры AMD получают от включения в Sony Vegas OpenCL-алгоритмов существенный прирост, достигающий 60 процентов, однако это их не спасает от поражения. Во-первых, неплохо ускоряются и интеловские Haswell, графическое ядро которых также имеют поддержку OpenCL, а, во-вторых, даже при задействовании для вычислений встроенных GPU, производительность x86-ядер продолжает играть огромное значение. Иными словами, пока идея AMD о том, что быстрое графическое ядро и программные оптимизации позволят компании превзойти конкурента в производительности в приложениях, не работает. Попутно хочется затронуть и ещё один аспект, связанный с переносом с x86-ядер на GPU алгоритмов транскодирования видео высокого разрешения. Отдельно обсудить этот пример следует потому, что в процессорах Intel имеется специальный движок Quick Sync, направленный на аппаратное ускорение операций этого типа. У AMD формально существует симметричный ответ — движок VCE, однако на практике он не используется, а существующие утилиты для перекодирования видео опираются на OpenCL-оптимизации. Для проверки того, какой прирост в скорости можно получить в этом случае, мы воспользовались программой MediaCoder 0. Задействование возможностей графического ядра через OpenCL при перекодировании видео позволяет процессорам AMD получить некоторый прирост в быстродействии. Однако конкурировать с Intel Quick Sync бесполезно. Эта аппаратная технология имеет очень высокую эффективность, которая пока недостижима никакими другими средствами. В итоге, можно заключить, что даже в том существующем программном обеспечении, которое способно переносить часть нагрузки на шейдерные процессоры графического ядра, новые процессоры AMD Kaveri не достигают той производительности, которую могут предложить интеловские Haswell аналогичной стоимости.

Заявленные требования TDP не превышают 125 Вт, но вызывают сомнение — скорее всего, после знакомства с перечнем реальных показателей, Грета Тунберг устроит против Intel крестовый экопоход. А вот шестиядерный i5-10400F без видеоядра действительно может стать серьезной заявкой на борьбу против Ryzen 5 3600 как по цене, так и по потенциальной скорости. В гонку с противником подключится и i3-10100, почти равный по характеристикам Ryzen 3 3300X. Речь, конечно, о процессорах, которые стоят меньше 200 долларов. Поддерживаемым процессорами разъемом, по всей видимости, станет LGA 1200. Intel снова поменяла сокеты, так что без новой материнской платы любителям топового железа не обойтись. На серии K появится возможность отключать Hyper-threading.

Процессор AMD A10-6800K

Но, как мы уже говорили ранее, в большинстве задач, ориентированных на ЦП, чип AMD отстает от более дешевых чипов Intel Core i3, которые можно было купить примерно за 125 долларов на момент написания этой статьи. Также заметка о наших испытательных стендах. Мы протестировали все чипы, которые сравниваем Kaveri A10-7800 с Windows 8. Мы также протестировали чипы Intel с той же оперативной памятью, но только на самой быстрой и более низкой скорости, официально поддерживаемой этими чипами. В Cinebench 11.

А последнее поколение A10-6800K делает чуть лучше, чем новый чип, который мы здесь рассматриваем. Медиа-конверсионные тесты Затем мы перешли к нашим тестам по анализу мультимедиа, в которых мы увидим, как выглядит повышение производительности в реальных сценариях, включающих обработку аудио, видео и графических файлов. В этом временном тесте немного замедляется тактовая частота A10, как и базовая архитектура Bulldozer, которая всегда, сравнительно говоря, боролась с однопоточными рабочими нагрузками. A10-7800 отстает от A10-7850K, но отстает от процессоров Intel Core i3 и i5, и медленнее, чем A10-6800K предыдущего поколения.

Затем мы подвергли A10-7800 тестам преобразования видео и редактирования фотографий, используя еще два компонента многоядерного программного обеспечения. Как обычно, энергосберегающий A10-7850K был чуть быстрее. Для пробного редактирования фотографий мы запустили оригинальный Adobe Photoshop CS6 который также использует несколько ядер и подвергли наше тестовое изображение в Photoshop ряду из 11 фильтров, запускаемых последовательно через файл Actions… В этом тесте A10-7800 опередил A8-7600, даже при работе на более низком 45-ваттном TDP. Но новый чип A10-7800 вновь оказался на несколько секунд позади последнего поколения A10-6800K и финишировал более чем на минуту позже, чем Intel Core i3-4130.

В целом, производительность процессора для A10-7800 не совсем потрясающая. Но он достаточно близок к более дорогому и энергоемкому A10-7850K, чтобы сделать последний чип менее ценным, если вы не планируете разгон и не беспокоитесь о мощности или теплопроизводительности. И на этом фронте, Kaveri A10, безусловно, более впечатляющим. Производительность графики Мы начали наше графическое тестирование с версии 3DMark от Futuremark, в частности, ее высокопроизводительного субтеста Fire Strike 2013 года, который предназначен для измерения общих графических возможностей системы.

A10-7800 доминировал над большинством других чипов здесь, не отставая от более дорогого A10-7850K… В тесте графической подсистемы, который пытается отделить графические возможности от других отличий компонентов, A10-7800 почти удвоил счет более дорогого Core i5-4570, в то же время значительно опередив A10-6800K предыдущего поколения, который сам по себе был только немного опередил более новый A8-7600 на базе Kaveri. И все они обеспечивают воспроизводимую частоту кадров при 1080p и высоких настройках. Имейте в виду, однако, что это старая игра. Как мы увидим, частота кадров значительно ниже при использовании более нового и требовательного кода.

Переключение на DirectX 11, особенно на Aliens Vs. Тест игры Predator, частота кадров резко упала… Опять же, тем не менее, A10-7800 работал намного лучше, чем встроенная графика на любом чипе Intel. Но ни одна из частот кадров здесь не воспроизводилась при высоких настройках. В более поздних играх, таких как Tomb Raider и Sleeping Dogs, мы смогли достичь или, по крайней мере, приблизиться к воспроизводимой частоте кадров с помощью двух последних чипов AMD с настройками 1080p и средней графической системой.

Но, опять же, так было только с быстродействующей оперативной памятью… При разрешении 1080p Core i5-4570 мог выдавать только примерно от половины до двух третей частоты кадров, как A10-7800, и он не приблизился к удобству воспроизведения. Напоминаем, что в эти игры по-прежнему можно будет играть с новейшей интегрированной графикой Intel, но вам придется либо снизить разрешение ниже 1080p, либо снизить настройки детализации игры до низких уровней.

Техпроцесс 32 нанометра - общее количество транзисторов достигает 1303 миллионов. Для процессора будет нужно качественное охлаждение потому, что тепловая мощность доходит до 65 Вт.

Температура при загруженности может составлять 713 градусов. Процессор устанавливается на платы с разъемом Socket FM2. Следует также отметить присутствие встроенного видеоадаптера Radeon HD 7660D. Тактовой частоты 3400 МГц хватит для современных задач поставленных перед ПК.

В тестах The Verge в Cyberpunk 2077 при разрешении 4K и максимальных графических настройках наивысший показатель потребления энергии составил 67 Вт. Во время проведения бенчмарка Cinebench, чип AMD нагрелся до 84 градусов, тогда как процессор Intel — до 101 градуса. Подводя итог, обозреватели выразили уверенность, что 7800X3D станет хитом у поклонников игр, как в предыдущие годы им был 5800X3D.

Тем не менее, сама AMD обещает, что на той же самой тактовой частоте новая микроархитектура может предложить примерно 20-процентное улучшение производительности по сравнению с Piledriver. Правда, при этом из-за усложнения дизайна и его мобильной ориентации максимальные тактовые частоты для Steamroller стали ниже, поэтому реальный прирост в скорости работы процессоров, построенных на новой микроархитектуре, оказался совсем небольшим. И здесь не помогло даже внедрение более современной 28-нм производственной технологии. В итоге, Steamroller следует воспринимать как эволюционное развитие предыдущих микроархитектур Bulldozer и Piledriver — к такому выводу нетрудно прийти, если смотреть и на производительность, и на внутреннее строение.

AMD продолжает своё движение по пути оптимизации базовой микроархитектуры небольшими шажками, не затрагивая заложенный c появлением Bulldozer фундамент. Как и ранее, в Steamroller применена всё та же процессорная структура с двухъядерными сплотками и разделяемым 2-мегабайтным кешем второго уровня на каждый такой модуль. Нет никаких нововведений и в системе команд: поддержки AVX2 инструкций в новой микроархитектуре так и не появилось. Основные же изменения коснулись распределения разделяемых между ядрами одного модуля ресурсов. Дело в том, что изначальная концепция процессоров Bulldozer предполагала реализацию достаточно существенного набора функциональных блоков в двухъядерном модуле в единичном экземпляре.

К числу таких разделяемых между ядрами узлов относились блоки выборки и декодирования инструкций, блок операций с плавающей запятой и кеш-память. Подобный подход позволял AMD добиться уменьшения сложности полупроводниковых кристаллов и снижения их тепловыделения, что в конечном итоге и позволяло компании создавать многоядерные процессоры, работающие на сравнительно высоких тактовых частотах. Но обратной стороной такого подхода становилось то, что при многопоточной нагрузке разделяемые ресурсы оказывались узким местом, приводящим к простоям исполнительных устройств и ограничивающим производительность. Как показала практика, наибольшие «заторы» возникали на этапе декодирования инструкций, и в Steamroller разработчики AMD решили исправить этот недостаток и удвоить количество декодеров. Теперь каждое из ядер, входящих в двухъядерный модуль, получило собственный независимый декодер, способный обрабатывать до четырёх x86-инструкций за такт.

К сожалению, первоначальная выборка при этом осталась в сфере ответственности общего на два ядра функционального узла, эффективность и результативность работы которого инженеры AMD попытались улучшить другими мерами. В частности, совершенствованию подверглись алгоритмы предсказания переходов за счёт роста ёмкости буферов , а также с 64 до 96 Кбайт была увеличена вместимость общего на модуль кэша инструкций первого уровня, степень ассоциативности которого возросла с двух до трёх. При этом следует понимать, что удвоение числа декодеров со всеми смежными мерами — это лишь ликвидация основного бутылочного горлышка микроархитектуры. Ожидать от Steamroller близкого к двукратному увеличения производительности явно не следует: узкие места всё ещё сохранились на этапах выборки и исполнения инструкций, и их частичное устранение намечено лишь в следующей итерации микроархитектуры — Excavator. В Steamroller же к изменениям во фронтальной части исполнительного конвейера добавились лишь некоторые мелкие переделки, которые не оказывают существенного влияния на производительность.

Так, была проведена балансировка ролей исполнительных устройств в блоке FPU с целью оптимизации их загрузки, а также оптимизирован интерфейс между кеш-памятью первого и второго уровня, что позволило увеличить скорость перемещения данных. Некоторые нововведения в Steamroller вообще направлены исключительно на улучшение экономичности. Например, L2-кеш получил деление на четыре области, имеющие независимое питание, что позволяет отключать его по частям, а в декодерах добавилась очередь микроопераций, при наполнении которой основная логика этих блоков также может обесточиваться. К сожалению, вместе с увеличением производительности микроархитектура Steamroller существенно нарастила и свою сложность. Число транзисторов, задействованных в одном двухъядерном модуле, с переходом от Piledriver к Steamroller возросло более чем на 60 процентов.

Связано это не только с внутренними изменениями в микроархитектуре, но и с вводом новых автоматизированных методов компоновки полупроводникового кристалла. В итоге, внедрение Steamroller заставило AMD отказываться от своей изначальной идеи — компоновки процессоров из большого числа высокочастотных, но простых ядер. Иными словами, выбранное направление развития микроархитектуры можно расценить и как некоторое изменение её основополагающей парадигмы, что на практике вылилось в нежелание AMD использовать Steamroller в многоядерных процессорах класса FX. Но AMD преподносит Steamroller с большим оптимизмом и говорит о весомости внесённых в микроархитектуру улучшений, не заостряя внимание на том, какой они дались ценой. По данным компании, количество промахов при обращении к L1-кешу инструкций снизилось на 30 процентов, число неправильных предсказаний переходов уменьшилось на 20 процентов, а общая эффективность работы планировщика поднялась на 5-10 процентов.

И всё это в конечном итоге приводит к улучшению загрузки исполнительных устройств примерно на четверть. Обычно мы не принимаем на веру такие заявления производителей. Поэтому, чтобы практически проверить эффективность всех улучшений, сделанных AMD в новой микроархитектуре, мы решили сравнить практическую производительность четырёхъядерных процессоров Richland и Kaveri построенных на микроархитектуре Piledriver и Steamroller соответсвенно при их работе на одинаковой частоте 4,0 ГГц. В качестве средства численной оценки быстродействия были выбраны синтетические бенчмарки из диагностической утилиты Aida64 4. Попутно на тех же диаграммах приводятся и результаты, демонстрируемые в тестах четырёхъядерным процессором Haswell, работающим на аналогичной частоте 4,0 ГГц с отключенной технологией Hyper-Threading.

Для удобства восприятия все результаты нормированы по показателям производительности Richland. Картина получается весьма унылая. Несмотря на все старания AMD никакого заметного прироста скорости не видно. Среднее увеличение производительности при переходе от Piledriver к Steamroller составляет не более 10 процентов. Причём, существуют и случаи, когда производительность новой микроархитектуры ниже, чем у старой.

Такая ситуация наблюдается, в частности, в бенчмарке Queen, который фокусируется на выявлении результативности предсказаний переходов и штрафа, возникающего при ошибках в них. А это значит, что заявления AMD об улучшении эффективности входной части исполнительного конвейера, можно подвергнуть сомнению. Наилучшее же увеличение производительности, обеспечиваемое внедрением микроархитектуры Steamroller, наблюдается в бенчмарке хеширования. Здесь для теста используется стандартный алгоритм SHA1 и целочисленные варианты векторных инструкций. Попутно представленная диаграмма позволяет наглядно оценить, насколько AMD со своими микроархитектурами отстала от Intel.

Разница в быстродействии Kaveri и Haswell, имеющих одинаковое количество вычислительных ядер и работающих на одной и той же тактовой частоте, — примерно двукратная. Иными словами, внедрение компанией AMD очередной версии своей микроархитектуры ничего не меняет, и с точки зрения вычислительной производительности чётырёхъядерные Kaveri могут рассматриваться лишь в роли конкурентов двухъядерных процессоров Core i3. Но не будем спешить с окончательными выводами, и посмотрим, как обстоит дело с производительностью вещественночисленного блока FPU. Здесь преимущество Kaveri над Richland на одинаковой тактовой частоте составляет в среднем 6-7 процентов. Всё это наглядно доказывает, что процессоры семейства Kaveri с точки зрения вычислительной x86-производительности интересны не более чем их предшественники.

Что бы ни говорила AMD о сделанном микроархитектурном рывке и о возможности сопоставления новинок с четырёхъядерниками конкурента, все такие заявления разбиваются о суровую реальность. Впрочем, о практической производительности Kaveri в общеупотребительных приложениях мы ещё поговорим ниже, а пока давайте обсудим то, что у AMD получается гораздо лучше x86-ядер — встроенный графический ускоритель. Графическое ядро Spectre Интегрированное графическое ядро процессоров Kaveri, получившее кодовое имя Spectre, также как и вычислительные ядра, обновило свою архитектуру. Это означает, что интегрированный в Kaveri GPU по своим возможностям приведён в соответствие с современными видеоускорителями: он основывается на той же архитектуре, что и видеокарты AMD семейства Volcanic Islands. Конечно, количество шейдерных процессоров в Spectre по сравнению с флагманскими видеокартами Hawaii значительно уменьшено, но, тем не менее, встроенный в Kaveri графический ускоритель относится к классу Radeon R7 и поддерживает все современные программные интерфейсы, включая DirectX 11.

Никаких принципиальных изменений при переносе архитектуры GCN из видеокарт в гибридные процессоры сделано не было, поэтому основным структурным элементом графики остались вычислительные кластеры Compute Unit , имеющие по 64 совместимых со стандартом IEEE 2008 шейдерных процессора, массив которых наделён четырьмя векторными и 16 текстурными блоками. В максимальной конфигурации графическое ядро Kaveri может содержать до восьми таких вычислительных кластеров, плюс геометрический сопроцессор и до восьми блоков растровых операций, способных обрабатывать до 8 пикселей за такт или до 32 пикселей — в режиме без цвета. Таким образом, суммарно графическое ядро Kaveri может иметь до 512 шейдерных процессоров, то есть по этой характеристике новый APU находится где-то между очень неплохими видеокартами среднего уровня Radeon R7 250 и Radeon R7 250X. Однако следует напомнить, что игровое быстродействие встроенной в процессоры графики во многом ограничивается пропускной способностью шины памяти, а не мощностью шейдерных процессоров видеоядра. Поэтому, в действительности, производительность Spectre всё же ниже, чем у 100-долларовых дискретных видеокарт.

Впрочем, помимо интерфейса памяти, GPU из процессоров Kaveri по сравнению со своими дискретными собратьями не имеет никаких других архитектурных ограничений. Так, Spectre обрабатывает и растеризует до одного геометрического примитива за каждый такт, имеет увеличенную кэш-память для хранения параметров примитивов и улучшенную производительность геометрических шейдеров и аппаратной тесселяции, для чего в GCN сделаны улучшения в буферизации данных. Однако главная особенность Kaveri, на которую особенно напирает AMD, это — возможность использования ресурсов графического ядра для вычислений с поддержкой модели разделяемой с x86-ядрами оперативной памяти. Для этой цели в видеоядре в полном объёме присутствует пул из восьми независимых движков асинхронных вычислений, которые могут работать параллельно с графическим командным процессором и обслуживать до восьми очередей команд каждый. Эти движки имеют прямой доступ к кеш-памяти и контроллеру памяти процессора, за счёт чего и реализуется набор технологий, упрощающий организацию гетерогенных вычислений HSA.

Фактически, движки асинхронных вычислений способны работать как отдельные вычислители, и это позволяет AMD на полном серьёзе представлять Spectre как дополнительные восемь процессорных ядер. Для этого компания оперирует собственным определением вычислительного ядра — AMD представляет его как программируемый аппаратный блок, способный выполнять в своём собственном контексте независимо от других ядер по крайней мере один процесс в виртуальной памяти. Но тут, конечно, нужно понимать, что такие вычислительные квазиядра из GPU требуют собственный программный код и могут быть задействованы лишь в специально разработанном программном обеспечении, осуществляющим параллельную обработку данных. Говоря о смежных возможностях графического ядра Kaveri, нельзя не упомянуть и о том, что в нём, как и в современных видеокартах, присутствует звуковой сопроцессор TrueAudio, предназначенный для создания аппаратно ускоряемых динамических пространственных звуковых эффектов. Кроме того, как и раньше, в процессоре сохранились выделенные движки VCE и UVD для кодирования и декодирования видеоконтента высокого разрешения.

При этом их возможности в очередной раз расширены. А номер версии UVD возрос до четвёртого: здесь улучшилась устойчивость при обработке видеопотока с ошибками. Немного о маркетинге: HSA Раньше было принято ругать маркетинговый департамент компании AMD, который из рук вон плохо справлялся с продвижением новинок и новых технологий. Теперь же ситуация кардинально изменилась, маркетинг AMD умудряется даже пробуждать в пользователях интерес к тем возможностям, которых ещё нет в реальности. Именно такая история произошла и с HSA: в процессоры Kaveri всего лишь заложена аппаратная база для общего доступа к памяти всех типов ядер и вычислительных, и графического , но AMD взялась рьяно продвигать новую технологию, демонстрируя впечатляющие графики и обещая гигантский рывок в производительности.

Однако на самом деле никакого HSA пока нет. Для внедрения и использования HSA-возможностей помимо аппаратной совместимости требуется создание программной инфраструктуры, а её не существует даже в самом минимальном виде. В первую очередь, AMD пока не выпустила HSA-совместимый драйвер, и поэтому говорить о каком-то общедоступном программном обеспечении сильно преждевременно. Конечно, программы, использующие HSA-возможности, в конце концов, появятся, но произойдёт это, очевидно, не завтра или послезавтра, а значительно позже — тогда, когда процессоры семейства Kaveri, скорее всего, будут уже неактуальны. Сейчас же поддержка HSA в Kaveri может быть интересна лишь разработчикам программ, которые могут получить в своё распоряжение аппаратное средство для отладки своих перспективных продуктов.

Все же существующие на данный момент приложения с поддержкой гетерогенных вычислений пользуются программным интерфейсом OpenCL 1. Поэтому с точки зрения обычного пользователя Kaveri — это ровно такой же по возможностям гибридный процессор, как и его предшественники поколения Richland. Тем не менее, учитывая заложенную в Kaveri аппаратную поддержку HSA, пару слов о ней всё-таки следует сказать. Однако не забывайте, здесь мы говорим лишь о том, как всё должно будет работать в отдалённой перспективе. Итак, основная идея гетерогенных вычислений заключается в том, что многие задачи могут выполняться на параллельных потоковых процессорах графических ядер быстрее и с меньшими затратами энергии, нежели на скалярных x86-ядрах.

Комбинируя и те, и другие ресурсы, можно получить универсальную аппаратную базу для эффективного выполнения широкого спектра задач. Однако на ранних стадиях процессоры с гетерогенным дизайном не могли завоевать широкую популярность. Проблема заключалась в том, что для их использования нужны были специальные программы, создание которых вызывало у разработчиков большие трудности. Технологии же семейства HSA способны с одной стороны существенно упростить программирование алгоритмов, работающих в гетерогенной среде, а с другой — увеличить их производительность. В её рамках новые гибридные процессоры могут получить простой путь доступа ко всей системной памяти вне зависимости от того, какой частью APU сгенерирован соответствующий запрос.

Иными словами, любое из ядер Kaveri вне зависимости от того, ядро ли это с x86-архитектурой или графическое ядро имеет равноценный и простой доступ непосредственно в кэш и системную память. Аппаратная реализация hUMA в Kaveri обеспечивает когерентность кеш-памяти и даёт графическому ядру возможность работать не только с физической, но и с виртуальной памятью в рамках 32-гигабайтного адресного пространства. Иными словами, hUMA убирает любые ограничения и любое разделение памяти на системную и видеопамять. Сейчас вся вычислительная нагрузка так или иначе проходит через процессорные ядра, в том числе и та, которая предназначена для решения на графическом ядре. За отправку задач на GPU и контроль их исполнения в любом случае отвечают x86-ядра, что вносит дополнительные задержки.

Новый же подход к организации вычислений, hQ, разрешает графическому ядру взаимодействовать с приложением и другими ядрами не под управлением CPU, а напрямую, уравнивая ядра с различной природой в своих правах. Иными словами, hQ стирает грани между ролями CPU и GPU, уменьшает задержки и упрощает параллельную обработку данных разнородными ядрами. С теоретических позиций HSA выглядит многообещающе. AMD рассчитывает, что использование этой технологии станет обычным делом в приложениях для воспроизведения и обработки изображений и видео; в интерфейсах нового поколения, основанных на распознавании голоса, жестов и лиц; а также в играх, где HSA-возможности могут задействоваться при физических расчётах или при моделировании искусственного интеллекта. Осталось только дождаться появления соответствующих программ, использующих оптимизированный под HSA интерфейс OpenCL 2.

Полупроводниковый кристалл Kaveri и новый техпроцесс Рассмотрев составные части CPU и GPU гибридного процессора Kaveri, логично перейти к комплексному знакомству с ним. И вот на этом уровне, к сожалению, AMD может порадовать своих поклонников не слишком многим. Kaveri, как и их предшественники Trinity и Richland, собраны на базе двух двухъядерных процессорных модулей Steamroller и GPU.

AMD представила 6-нм «Альдебарана» для ИИ и «эпичные» 64-ядерные ЦП с 800-МБ кэшем

Новейший четырехъядерный процессор AMD A10-5750M с тактовой частотой 2.5 ГГц и передовая видеокарта AMD Radeon HD 8970 обеспечивают высокую производительность и полноценный игровой опыт. В ноутбуке установлены процессоры новейшей архитектуры Zen 4 серии AMD Ryzen 8040 HS с интегрированным нейроблоком. На выбор покупателей предлагаются модификации с Ryzen 5 8645HS, Ryzen 7 8845HS и Ryzen 9 8945HS. Что примечательно, AMD удалось сохранить сопоставимый уровень задержки обращений к памяти между поколениями CPU: 118 нс против 108 нс, из которых только 3 нс приходится на IO-блок, а 10 нс уже на саму память. Компьютерный процессор для AMD A10-9700/8700 CPU A10 серии сокет AM4 65 Вт 3,5 ГГц четырехъядерный процессор AM4 CPU.

AMD запустила производство процессоров на архитектуре Zen 5 со встроенным ИИ

Локализация вычислений, связанных с ИИ, в будущем станет востребована бизнесом, как считает представитель AMD. Сейчас все подобные операции преимущественно выполняются в облаке, но не все компании и организации готовы доверять сторонним серверным системам чувствительную информацию, и в этом смысле появление процессоров, способных обрабатывать эти данные локально с высокой эффективностью, должно решить проблему. Правда, программное обеспечение должно развиваться синхронно с аппаратным, чтобы разработчики последнего смогли продемонстрировать эффективность своих компонентов. Ближайшие три года будут решающими с этой точки зрения, как добавил Макафи. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.

Также AMD внесла изменения и на уровне транзисторов. Еще одним изменением является оптимизация Shadow P-States. Как правило, Windows или другая операционная система может управлять APU через восемь разных P-состояний.

Ryzen 5 5600GT — немного более быстрая версия 5600G. AMD предлагает 5600GT по очень привлекательной цене — 140 долларов. Ryzen 5 5500GT — это версия 5600GT с немного более низкой тактовой частотой и еще более низкой ценой — 125 долларов!

Все 4 новых процессора Socket AM4, анонсированные сегодня, должны появиться в магазинах с 31 января. Похожие новости из раздела:.

Сам не тестировал меня оно не очень интересует , но неделю назад с Делловцами говорили -- их просто смех пробрал от словосочетания "Барселона и FP"... Пока в Сети я видел сравнения только прототипов полугодовой давности.

Ну "не шмагли" они, чего повторять аргументы полугодовой давности, когда процессор пощупать было нельзя! Все, пошшупали...

AMD запустила производство процессоров на архитектуре Zen 5 со встроенным ИИ

Обозреваемый процессор AMD A10-7800 формально является вторым по производительности решением в линейке после разблокированного AMD A10-7850К. Процессоры AMD A-серии 6-го поколения превосходят их по весу, используя до 12 вычислительных ядер (4 ЦП + 8 ГП)*, что позволяет вдвое повысить производительность по сравнению с конкурентными решениями при выполнении ресурсоемких рабочих нагрузок.10. AMD представила на CES 2023 десктопные процессоры Ryzen 7 7800X3D с технологией кэширования V-Cache. Они получили 8 ядер и 16 потоков — как у более старого Ryzen 7 5800X3D, однако максимальная тактовая частота выросла на 500 Гц — до 5 ГГц, кэш — 104 МБ. Обзор нового процессора AMD A10 5800K Trinity. В то время как компания Intel стабильно шла по пути увеличения вычислительной производительности, AMD сделала небольшой, но важный для себя и всех пользователей шаг в сторону, создав первые APU. Процессоры AMD A6, A8 и A10 семейства Kaveri.

AMD A10-4600M: тест и обзор мобильного процессора на базе архитектуры Trinity – THG.RU

А это значит, что заявления AMD об улучшении эффективности входной части исполнительного конвейера, можно подвергнуть сомнению. Наилучшее же увеличение производительности, обеспечиваемое внедрением микроархитектуры Steamroller, наблюдается в бенчмарке хеширования. Здесь для теста используется стандартный алгоритм SHA1 и целочисленные варианты векторных инструкций. Попутно представленная диаграмма позволяет наглядно оценить, насколько AMD со своими микроархитектурами отстала от Intel. Разница в быстродействии Kaveri и Haswell, имеющих одинаковое количество вычислительных ядер и работающих на одной и той же тактовой частоте, — примерно двукратная. Иными словами, внедрение компанией AMD очередной версии своей микроархитектуры ничего не меняет, и с точки зрения вычислительной производительности чётырёхъядерные Kaveri могут рассматриваться лишь в роли конкурентов двухъядерных процессоров Core i3. Но не будем спешить с окончательными выводами, и посмотрим, как обстоит дело с производительностью вещественночисленного блока FPU.

Здесь преимущество Kaveri над Richland на одинаковой тактовой частоте составляет в среднем 6-7 процентов. Всё это наглядно доказывает, что процессоры семейства Kaveri с точки зрения вычислительной x86-производительности интересны не более чем их предшественники. Что бы ни говорила AMD о сделанном микроархитектурном рывке и о возможности сопоставления новинок с четырёхъядерниками конкурента, все такие заявления разбиваются о суровую реальность. Впрочем, о практической производительности Kaveri в общеупотребительных приложениях мы ещё поговорим ниже, а пока давайте обсудим то, что у AMD получается гораздо лучше x86-ядер — встроенный графический ускоритель. Графическое ядро Spectre Интегрированное графическое ядро процессоров Kaveri, получившее кодовое имя Spectre, также как и вычислительные ядра, обновило свою архитектуру. Это означает, что интегрированный в Kaveri GPU по своим возможностям приведён в соответствие с современными видеоускорителями: он основывается на той же архитектуре, что и видеокарты AMD семейства Volcanic Islands.

Конечно, количество шейдерных процессоров в Spectre по сравнению с флагманскими видеокартами Hawaii значительно уменьшено, но, тем не менее, встроенный в Kaveri графический ускоритель относится к классу Radeon R7 и поддерживает все современные программные интерфейсы, включая DirectX 11. Никаких принципиальных изменений при переносе архитектуры GCN из видеокарт в гибридные процессоры сделано не было, поэтому основным структурным элементом графики остались вычислительные кластеры Compute Unit , имеющие по 64 совместимых со стандартом IEEE 2008 шейдерных процессора, массив которых наделён четырьмя векторными и 16 текстурными блоками. В максимальной конфигурации графическое ядро Kaveri может содержать до восьми таких вычислительных кластеров, плюс геометрический сопроцессор и до восьми блоков растровых операций, способных обрабатывать до 8 пикселей за такт или до 32 пикселей — в режиме без цвета. Таким образом, суммарно графическое ядро Kaveri может иметь до 512 шейдерных процессоров, то есть по этой характеристике новый APU находится где-то между очень неплохими видеокартами среднего уровня Radeon R7 250 и Radeon R7 250X. Однако следует напомнить, что игровое быстродействие встроенной в процессоры графики во многом ограничивается пропускной способностью шины памяти, а не мощностью шейдерных процессоров видеоядра. Поэтому, в действительности, производительность Spectre всё же ниже, чем у 100-долларовых дискретных видеокарт.

Впрочем, помимо интерфейса памяти, GPU из процессоров Kaveri по сравнению со своими дискретными собратьями не имеет никаких других архитектурных ограничений. Так, Spectre обрабатывает и растеризует до одного геометрического примитива за каждый такт, имеет увеличенную кэш-память для хранения параметров примитивов и улучшенную производительность геометрических шейдеров и аппаратной тесселяции, для чего в GCN сделаны улучшения в буферизации данных. Однако главная особенность Kaveri, на которую особенно напирает AMD, это — возможность использования ресурсов графического ядра для вычислений с поддержкой модели разделяемой с x86-ядрами оперативной памяти. Для этой цели в видеоядре в полном объёме присутствует пул из восьми независимых движков асинхронных вычислений, которые могут работать параллельно с графическим командным процессором и обслуживать до восьми очередей команд каждый. Эти движки имеют прямой доступ к кеш-памяти и контроллеру памяти процессора, за счёт чего и реализуется набор технологий, упрощающий организацию гетерогенных вычислений HSA. Фактически, движки асинхронных вычислений способны работать как отдельные вычислители, и это позволяет AMD на полном серьёзе представлять Spectre как дополнительные восемь процессорных ядер.

Для этого компания оперирует собственным определением вычислительного ядра — AMD представляет его как программируемый аппаратный блок, способный выполнять в своём собственном контексте независимо от других ядер по крайней мере один процесс в виртуальной памяти. Но тут, конечно, нужно понимать, что такие вычислительные квазиядра из GPU требуют собственный программный код и могут быть задействованы лишь в специально разработанном программном обеспечении, осуществляющим параллельную обработку данных. Говоря о смежных возможностях графического ядра Kaveri, нельзя не упомянуть и о том, что в нём, как и в современных видеокартах, присутствует звуковой сопроцессор TrueAudio, предназначенный для создания аппаратно ускоряемых динамических пространственных звуковых эффектов. Кроме того, как и раньше, в процессоре сохранились выделенные движки VCE и UVD для кодирования и декодирования видеоконтента высокого разрешения. При этом их возможности в очередной раз расширены. А номер версии UVD возрос до четвёртого: здесь улучшилась устойчивость при обработке видеопотока с ошибками.

Немного о маркетинге: HSA Раньше было принято ругать маркетинговый департамент компании AMD, который из рук вон плохо справлялся с продвижением новинок и новых технологий. Теперь же ситуация кардинально изменилась, маркетинг AMD умудряется даже пробуждать в пользователях интерес к тем возможностям, которых ещё нет в реальности. Именно такая история произошла и с HSA: в процессоры Kaveri всего лишь заложена аппаратная база для общего доступа к памяти всех типов ядер и вычислительных, и графического , но AMD взялась рьяно продвигать новую технологию, демонстрируя впечатляющие графики и обещая гигантский рывок в производительности. Однако на самом деле никакого HSA пока нет. Для внедрения и использования HSA-возможностей помимо аппаратной совместимости требуется создание программной инфраструктуры, а её не существует даже в самом минимальном виде. В первую очередь, AMD пока не выпустила HSA-совместимый драйвер, и поэтому говорить о каком-то общедоступном программном обеспечении сильно преждевременно.

Конечно, программы, использующие HSA-возможности, в конце концов, появятся, но произойдёт это, очевидно, не завтра или послезавтра, а значительно позже — тогда, когда процессоры семейства Kaveri, скорее всего, будут уже неактуальны. Сейчас же поддержка HSA в Kaveri может быть интересна лишь разработчикам программ, которые могут получить в своё распоряжение аппаратное средство для отладки своих перспективных продуктов. Все же существующие на данный момент приложения с поддержкой гетерогенных вычислений пользуются программным интерфейсом OpenCL 1. Поэтому с точки зрения обычного пользователя Kaveri — это ровно такой же по возможностям гибридный процессор, как и его предшественники поколения Richland. Тем не менее, учитывая заложенную в Kaveri аппаратную поддержку HSA, пару слов о ней всё-таки следует сказать. Однако не забывайте, здесь мы говорим лишь о том, как всё должно будет работать в отдалённой перспективе.

Итак, основная идея гетерогенных вычислений заключается в том, что многие задачи могут выполняться на параллельных потоковых процессорах графических ядер быстрее и с меньшими затратами энергии, нежели на скалярных x86-ядрах. Комбинируя и те, и другие ресурсы, можно получить универсальную аппаратную базу для эффективного выполнения широкого спектра задач. Однако на ранних стадиях процессоры с гетерогенным дизайном не могли завоевать широкую популярность. Проблема заключалась в том, что для их использования нужны были специальные программы, создание которых вызывало у разработчиков большие трудности. Технологии же семейства HSA способны с одной стороны существенно упростить программирование алгоритмов, работающих в гетерогенной среде, а с другой — увеличить их производительность. В её рамках новые гибридные процессоры могут получить простой путь доступа ко всей системной памяти вне зависимости от того, какой частью APU сгенерирован соответствующий запрос.

Иными словами, любое из ядер Kaveri вне зависимости от того, ядро ли это с x86-архитектурой или графическое ядро имеет равноценный и простой доступ непосредственно в кэш и системную память. Аппаратная реализация hUMA в Kaveri обеспечивает когерентность кеш-памяти и даёт графическому ядру возможность работать не только с физической, но и с виртуальной памятью в рамках 32-гигабайтного адресного пространства. Иными словами, hUMA убирает любые ограничения и любое разделение памяти на системную и видеопамять. Сейчас вся вычислительная нагрузка так или иначе проходит через процессорные ядра, в том числе и та, которая предназначена для решения на графическом ядре. За отправку задач на GPU и контроль их исполнения в любом случае отвечают x86-ядра, что вносит дополнительные задержки. Новый же подход к организации вычислений, hQ, разрешает графическому ядру взаимодействовать с приложением и другими ядрами не под управлением CPU, а напрямую, уравнивая ядра с различной природой в своих правах.

Иными словами, hQ стирает грани между ролями CPU и GPU, уменьшает задержки и упрощает параллельную обработку данных разнородными ядрами. С теоретических позиций HSA выглядит многообещающе. AMD рассчитывает, что использование этой технологии станет обычным делом в приложениях для воспроизведения и обработки изображений и видео; в интерфейсах нового поколения, основанных на распознавании голоса, жестов и лиц; а также в играх, где HSA-возможности могут задействоваться при физических расчётах или при моделировании искусственного интеллекта. Осталось только дождаться появления соответствующих программ, использующих оптимизированный под HSA интерфейс OpenCL 2. Полупроводниковый кристалл Kaveri и новый техпроцесс Рассмотрев составные части CPU и GPU гибридного процессора Kaveri, логично перейти к комплексному знакомству с ним. И вот на этом уровне, к сожалению, AMD может порадовать своих поклонников не слишком многим.

Kaveri, как и их предшественники Trinity и Richland, собраны на базе двух двухъядерных процессорных модулей Steamroller и GPU. Иными словами, гибридные процессоры нового поколения сохраняют в максимальной конфигурации четырёхъядерный дизайн и принципиально превосходят предшественников лишь по оснащённости интегрированного графического ядра Radeon R7. Оно не только несёт новую архитектуру GCN 1. На фоне того, что улучшений в микроархитектуре Steamroller не так много, процессоры Kaveri стали ещё более графически-ориентированными. Если в Richland на долю x86-части приходилось 58 процентов транзисторного бюджета, то в новом Kaveri эта доля снизилась до 53 процентов. Но в целом новый APU стал гораздо сложнее своего предшественника.

Прошлые версии гибридных процессоров AMD состояли из примерно 1,3 млрд. А это даже больше количества транзисторов в процессорах Intel Haswell с графикой GT3, которое ограничивается величиной 1,8 млрд. Так что Kaveri выступают прекрасной иллюстрацией того, что высокая сложность полупроводникового кристалла не обязательно конвертируется в высокую производительность, а вот производственные проблемы создаёт заметные. Для массового выпуска Kaveri компания AMD прибегла к более современному техпроцессу с 28-нм нормами. Производственным партнёром была выбрана GlobalFoundries, сумевшая перенастроить своё оборудование для выпуска APU. Новый техпроцесс был специально оптимизирован для сверхплотного размещения транзисторов на кристалле и получил название SHP Super High Performance.

При этом от технологии SOI было решено отказаться. В результате полупроводниковый кристалл Kaveri удалось разместить на площади 245 мм2, то есть по физическому размеру он почти эквивалентен 32-нм кристаллу процессоров Richland. Полупроводниковый кристалл Kaveri Однако обратной стороной сверхплотного размещения транзисторов стала необходимость снижения их рабочей частоты. То есть были выше примерно на 10-15 процентов. Впрочем, как показывает практика, с выпуском энергоэффективных Kaveri всё оказалось тоже не так просто, и пока модели с типичным тепловыделением меньше 95 Вт остаются недоступны. Обе модели имеют по четыре x86-ядра, но различаются частотами.

Технология Turbo Core способна при низкой нагрузке повышать эти величины до 4,0 ГГц в первом случае и до 3,8 ГГц — во втором. Кроме того, процессоры различаются и количеством шейдерных процессоров. Их максимальное количество заложено лишь в модели A10-7850K, которая обладает 512 шейдерами. Во второй же модели из ряда A10, A10-7700K, возможности GPU урезаны на четверть: число шейдерных процессоров сокращено до 384, то есть до уровня Richland. Частота графического ядра у обеих моделей Kaveri установлена в 720 МГц. Поэтому на деле получилось так, что новый процессорный разъём введён в употребление лишь с целью искусственного обновления парка материнских плат.

Все такие платы основываются на новых наборах логики семейства Bolton A88X и A78 , которые по спецификациям практически не отличаются от своих предшественников Hudson A85X и A75. Но и то и другое, на самом деле, идёт от самих процессоров Kaveri, в которых AMD обновила контроллер шины PCI Express и подтянула параметры контроллера памяти. Есть лишь одна новая возможность, появившаяся непосредственно в наборах логики A88X и A78. Его характеристики в сравнении с флагманским гибридным процессором Richland выглядят следующим образом: Как видно из таблицы, старшая модель линейки Kaveri дороже A10-6800K, но при этом предлагает не слишком много преимуществ. Фактически, она лучше лишь с точки зрения мощности GPU, который не только переведён на новую архитектуру, но и располагает увеличенным количеством шейдерных процессоров. Правда, ограничивать графическую производительность A10-7850K будет не мощность графического ядра, а пропускная способность памяти.

С производительностью же вычислительной части, очевидно, дело будет обстоять несколько хуже. Мало того, что новая микроархитектура Steamroller даёт лишь совсем небольшое улучшение в количестве исполняемых за такт инструкций, так ещё и частоты A10-7850K ощутимо ниже, чем у его предшественника. При этом AMD не стесняется устанавливать на свою новинку цену на уровне младших моделей Core i5, что, исходя из всего сказанного выше, кажется слишком много. Впрочем, может быть мы что-то упускаем из вида? Согласно показаниям диагностической утилиты CPU-Z, A10-7850K при полной нагрузке на все ядра работает с частотой 3,7 ГГц при номинальном напряжении 1,328 В, которое почти не отличается от привычного напряжения питания гибридных процессоров AMD прошлых поколений. Технология Turbo Core работает у Kaveri вполне ожидаемо, поднимая его частоту до 4,0 ГГц при нагрузке на один из двух модулей Steamroller.

Приятно, что AMD в Kaveri смогла окончательно разобраться с формулой частоты CPU, и в процессе тестирования при реальной процессорной нагрузке мы не сталкивались со снижением частоты ниже штатных 3,7 ГГц — раньше, как вы помните, такие ситуации возникали. В моменты же простоя при работе энергосберегающих технологий частота A10-7850K падает до 1,7 ГГц. Интегрированный северный мост процессора работает на более низкой, нежели сам CPU, частоте. Она у рассматриваемой модели составляет 1,8 ГГц. На коробке обозначено, что процессор относится к серии Black Edition, и это правда — коэффициенты умножения у него разблокированы, так что простой разгон как CPU-, так и GPU-части вполне возможен.

Отличие принципиальное: первая платформа не может похвастаться встроенной в ЦП графикой, зато отличается восемью физическими ядрами, с частотой до 5 ГГц; вторая — более бюджетная, с интегрированной графикой, да и в целом более сбалансированная для нужд медиа-ПК. Вот только техпроцесс во всех решениях, как и архитектура камней в целом, уже порядком устарели. Это негативным образом сказывается на производительности, и в данном случае конкурировать с решениями Intel становится все сложнее и сложнее, если такое вообще возможно. Это действительно так, потому что на штатном кулере типа BOX температура в нагрузке не поднималась во время тестирования выше 65 Градусов, при тактовой частоте 4 ГГц. Не забываем про аппаратную поддержку DirectX 11.

Whats Next? Подписаться AMD Adrenalin 21. Some users may experience elevated disk space consumption by the Multimedia Athena Dumps folder.

Таким образом, выбор между процессорами AMD и Intel зависит от конкретных потребностей и задач, которые вы выполняете. Поэтому, вместо споров, можно обратиться к бенчмаркам и обзорам процессоров, и сделать осознанный выбор между этими двумя платформами. А может вы выберите эльбрус? Я бы не против обзавестись последней моделью компьютера на отечественной разработке!

Процессоры A10

Предварительные спецификации процессоров AMD Ryzen 7000 'Raphael'. Полный обзор новой AMD Apu A10-6800K, протестированной в стандартной комплектации и сильно разогнанной, чтобы оценить отличия от предыдущего поколения. Подробный обзор технических характеристик и бенчмарков AMD A10-7850K. A10 4600M производства AMD имеет четыре ядра с частотой 2.3 GHz.

Обзор и тестирование процессора AMD A10-7800

В итоге пользователи, которые приобретут процессор AMD FX-8350, всего за 195 долларов (аналог от компании Intel – i5 3570K, стоимостью 235 долларов), получат 8 процессорных ядер, работающих с частотой до 4,2 ГГц!!! и 8 Мбайт кеш-памяти уровня L3. Новейшие процессоры AMD A10-7700K и AMD A10-7850K – это настоящий кладезь технологий и великолепный результат многолетнего труда лучшего производителя процессоров со встроенной графикой. Поступили новости о том, что AMD, один из крупнейших производителей процессоров и видеокарт, планирует запустить в производство чипы для ИИ к концу года, рассчитывая на рост. Оснащенный Security Engine от SafeNet™, сетевой процессор Au1550 представляет собой универсальную высокопроизводительную высокоинтегрированную защищенную систему на кристалле (SOC) с малым потреблением.

Обзор процессора AMD A10-7870K (Godavari): цена игры

Но только время покажет, сколько выиграет крупный дизайн TrueAudio. Тем не менее, другой прорыв с чипами Kaveri и новыми графическими картами компании является потенциально более широким. Чтобы использовать этот огромный охват в основных играх, компания рекламирует интерфейс прикладного программирования API , который называется Мантия. Но хотя эти API являются высокоуровневыми - по сути, менее эффективными, поскольку им необходимо работать на всех последних графических платформах и оборудовании, - Mantle - это низкоуровневый API, разработанный специально для архитектуры Graphics Core Next. Что дает Mantle стратегическое положение: поддержка этой архитектуры присутствует во всех игровых консолях текущего поколения, а также в последних видеокартах AMD. Mantle должен принести улучшения производительности для будущих игр, позволив перенести некоторые из низкоуровневых настроек кода, которые используются для сжатия производительности с оборудования для игровых приставок, на те же самые названия, которые поступают на ПК. Это также должно упростить портирование игр на ПК, которые создаются на консолях, что хорошо для всех геймеров ПК, даже если вы приверженец Nvidia. Но это также, вероятно, даст карточкам AMD преимущество в играх, портированных с использованием кода Mantle.

DirectX 12 обещает Mantle-подобные функции с преимуществом, которое почти наверняка станет универсальной поддержкой для будущих графических чипов Intel, Nvidia и AMD и кремния. Хотя ожидается, что DX12 не получит существенной поддержки в играх до конца 2015 года, Nvidia заявляет, что все графические процессоры на базе Fermi, Kepler и Maxwell будут поддерживать его. Это означает, что почти все последние выделенные графические карты будут поддерживать API в 2015 году. По крайней мере, Mantle столкнется с трудной борьбой с широким распространением, когда разработчики игр смогут просто написать код для DirectX 12, который, как они знают, будет работать на самом последнем оборудовании, в то время как Кодирование для Mantle принесет пользу лишь подмножеству владельцев AMD-карт. Наконец, новые чипы Kaveri от AMD интегрируют ЦП и ГП таким образом, что теоретически может позволить двум разным процессорам лучше компенсировать рабочие нагрузки, перенося больше задач на ГП. HSA, безусловно, имеет огромное значение для скорости обработки и эффективности определенных задач. Но мы подчеркиваем потенциал технологии, а не ее нынешние преимущества в реальном мире, потому что последние в лучшем случае зарождаются.

Программное обеспечение должно быть написано или переписано, чтобы воспользоваться преимуществами HSA. И индустрия программного обеспечения часто не спешит использовать новые аппаратные возможности. Например, первые многоядерные процессоры для настольных ПК появились на рынке в 2005 году. Девять лет спустя нам все еще часто приходится обращаться к высокопроизводительному программному обеспечению для создания контента как мы это делаем в нашем тестировании производительности , чтобы действительно увидеть все преимущества программного обеспечения. А некоторые распространенные программы например, iTunes по-прежнему облагаются налогом только на одно ядро. Таким образом, в то время как HSA обладает потенциалом для ускорения многих задач а также делает их выполнение более энергоэффективным , вероятно, пройдет не менее пары лет, прежде чем значительное количество программного обеспечения догонит, что сделает HSA действительно полезным для среднего потребителя за пределами несколько отдельных задач. В краткосрочной перспективе, по крайней мере, поддержка HSA не является достаточно распространенной, чтобы сделать ее основной популярностью для основных пользователей и бюджетных игроков - для тех пользователей, которым нынешние APU от AMD подходят больше всего.

Производительность процессора Прежде чем мы перейдем к результатам тестов A10-7800, помните, что чип может быть настроен на мощность 45 или 65 Вт, во многом как A8-7600 ближе к среднему. Это важное улучшение, даже если вы не планируете работать на более низких настройках, поскольку A10-7850K, который, как мы увидим, лишь немного быстрее, имеет номинальную расчетную тепловую мощность TDP 95 Вт. Но, как мы уже говорили ранее, в большинстве задач, ориентированных на ЦП, чип AMD отстает от более дешевых чипов Intel Core i3, которые можно было купить примерно за 125 долларов на момент написания этой статьи. Также заметка о наших испытательных стендах. Мы протестировали все чипы, которые сравниваем Kaveri A10-7800 с Windows 8.

Флагманская модель Ryzen 9 8945HS имеет восемь ядер и шестнадцать потоков, работает на частоте до 5,2 ГГц, а её показатель энергопотребления колеблется в диапазоне 35—45 Вт. Все они также оснащены восемью ядрами и шестнадцатью потоками, а вот их частота работы чуть меньше — 5,1 ГГц. Самый «слабый» процессор — Ryzen 3 8440U с четырьмя ядрами и восемью потоками.

Шустро работает даже с весьма тяжелой графикой. Хорошо распределяет нагрузку между GPU и видеокартой. Но греется сильно. Стоит кулер на вдув, 2 80 мм на выдув и основной - титан с 120 мм вентилятором.

Сам не тестировал меня оно не очень интересует , но неделю назад с Делловцами говорили -- их просто смех пробрал от словосочетания "Барселона и FP"... Пока в Сети я видел сравнения только прототипов полугодовой давности. Ну "не шмагли" они, чего повторять аргументы полугодовой давности, когда процессор пощупать было нельзя! Все, пошшупали...

AMD A10-4600M: тест и обзор мобильного процессора на базе архитектуры Trinity – THG.RU

Гибридный процессор AMD А10-7800 тестировался в штатном режиме и при максимальном разгоне, а также энергосберегающем режиме при ограничении TDP до 45 Вт. Процессор AMD A10-5700 разработан на основе 32 nm технологического процесса и архитектуры Trinity. AMD также представила Ryzen 7 5700. Он очень похож на Ryzen 7 5700X, 5700G, 5700X3D, 5800X и 5800X3D; это 8-ядерный/16-поточный процессор на базе Zen 3. В нем отсутствует интегрированная графика, поэтому он не является APU, как 5700G. Цены на игры Требования Процессоры Видеокарты. amd a-series На прошлой неделе был объявлен процессор A10-6700T, который относится к новому поколению AMD "Richland". Ознакомиться с отзывами покупателей, узнать достоинства и недостатки, поделиться своим отзывом о Процессор AMD PRO A10-8770 OEM.

Похожие новости:

Оцените статью
Добавить комментарий