Новости период что такое в химии

Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях. Что такое периодическая таблица элементов Менделеева и как ей пользоваться? Основные группы периодической системы, периоды и атомная масса химических элементов. Металлы и неметаллы в ПСХЭ — их структура в системе.

Периоды в химии — что это такое и какие бывают?

Вы не один раз видели таблицу, она состоит из строк и столбцов. Но почему творение Менделеева имеет названия как таблица, так система да еще и с добавлением периодическая. В таблице содержится упорядоченная информация в определённом порядке. Система указывает, что сведения связаны между собой.

Периодичность означает, что через какой-то промежуток или отрезок происходит повторение свойств. Как уже известно, в периодической системе находятся элементы. Принцип их расположения - это увеличение их атомной массы.

В таблице имеются строки — это периоды, и столбцы — группы. Существует несколько вариантов ПСХЭ, так называемый короткий и длинный вариант. Длинный формат вмещает 18 групп, нумерация осуществляется арабскими цифрами I, II…XVIII, Если посмотреть на таблицу, то видим закономерность, так как абсолютно каждый период будет начинаться активным металлом и заканчиваться инертным газом.

Такая периодичность сохраняется 7 раз. В периоде с ростом атомной массы металлические свойства уменьшаются, неметаллические — увеличиваются. Вертикальные столбцы образуют группы.

Это условно компании, где собираются единомышленники. Точнее, располагаются элементы, подобные по своим свойствам. Обратите внимание, что подобие характерно только в пределах подгруппы.

Так, натрий и медь принадлежат одной I группе, но располагаются в разных подгруппах. Натрий — элемент главной подгруппы, медь — побочной. Именно по этой причине они будут иметь разные физические и химические свойства.

В пределах группы с ростом атомной массы металлические свойства увеличиваются, неметаллические — уменьшаются. Таким образом, периодическую систему можно условно назвать домом химических элементов, где каждый из них занимает своё определённое место порядковый номер согласно его свойствам. Рассмотрим подробнее на примере 2 и 3 периода.

Что показывает сравнение: оба периода начинаются с активных металлов Li и Na, для которых характерно существование в виде соединений, в свободном виде могут находиться только под слоем керосина. Они относятся к группе щелочных металлов. Анализируя схему, мы видим, что первые три группы образованны металлами.

Но из-за их количества они вынесены за пределы системы. Периодический закон Д. Менделеев записал в виде периодического закона.

Однако только в 1869 году Дмитрий Иванович Менделеев, русский химик, решил систематизировать имеющуюся информацию и разработал периодическую систему химических элементов. Таблица Менделеева — так называлась система — быстро стала ключевым ориентиром для исследователей и химиков. Менделеев первым в истории открыл закон периодичности элементов. По его мнению, свойства элементов в периодической системе должны изменяться в зависимости от атомного веса, а соседние элементы, расположенные в соответствии с возрастающим атомным номером , демонстрируют некоторое сходство. Это было прорывное открытие, которое произвело революцию в постоянно развивающейся науке под названием химия.

Таблицу Менделеева можно найти практически в каждой школьной химической лаборатории, и ее знание является основой современных химических знаний. Итак, давайте узнаем, как читать таблицу Менделеева, чтобы извлечь из нее как можно больше информации?

Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.

Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы.

Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице.

Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.

Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

Атомный номер всегда является целым числом. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным.

В противном случае получился бы другой химический элемент! По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован.

Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется. Ионы имеют электрический заряд.

Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус». Знаки «плюс» и «минус» не ставятся, если атом не является ионом. Период - строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.

Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек. Каждый период начинается типичным металлом и заканчивается благородным газом, которому предшествует типичный неметалл. В первом периоде, кроме гелия, имеется только один элемент - водород, сочетающий свойства, типичные как для металлов, так и для неметаллов. У этих элементов заполняется электронами 1s-подоболочка.

У элементов второго и третьего периода происходит последовательное заполнение s- и р-подоболочек.

Энциклопедия ДШ Периодическая система химических элементов: как это работает Рассказываем, как устроена таблица Менделеева и как ею пользоваться. Сколько элементов в таблице, какими свойствами они обладают и как периодический закон навсегда изменил изучение химии. Самым значимым его вкладом в науку стало открытие периодического закона, графическое выражение которого получило название Периодической системы химических элементов. Содержание статьи Периодический закон К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.

Пытался решить эту задачу и молодой русский профессор Д. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически. Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так: Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.

Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов. Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства. Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий. Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших и даже не всегда возможных в реальности опытов — теперь стало достаточно одного взгляда в таблицу. Существует легенда, якобы знаменитая таблица явилась Менделееву во сне.

Но сам Дмитрий Иванович эту информацию не подтвердил. Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово! Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий. Периоды — это строки таблицы.

Период (химия)

Средняя оценка: 4. Попытки систематизировать химические элементы предпринимали многие ученые. Но только в 1869 году Д. Менделееву удалось создать классификацию элементов, которая устанавливала связь и зависимость химических веществ и заряда атомного ядра. История Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента. К моменту открытия закона было известно 63 химических элемента. Однако атомные массы многих из этих элементов были определены ошибочно. Сам Д. И Менделеев в 1869 году сформулировал свой закон как периодическую зависимость от величины атомных весов элементов, так как в XIX веке наука еще не имела сведений о строении атома.

При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их. Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов , они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.

Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118. Атомный номер всегда является целым числом. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован. Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется. Ионы имеют электрический заряд. Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус».

Знаки «плюс» и «минус» не ставятся, если атом не является ионом. Период - строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек. Каждый период начинается типичным металлом и заканчивается благородным газом, которому предшествует типичный неметалл. В первом периоде, кроме гелия, имеется только один элемент - водород, сочетающий свойства, типичные как для металлов, так и для неметаллов. У этих элементов заполняется электронами 1s-подоболочка. У элементов второго и третьего периода происходит последовательное заполнение s- и р-подоболочек. Для элементов малых периодов характерно достаточно быстрое увеличение электроотрицательности с увеличением зарядов ядер, ослабление металлических свойств и усиление неметаллических. Четвёртый и пятый периоды содержат декады переходных d-элементов, у которых после заполнения электронами внешней s-подоболочки заполняется, согласно правилу Клечковского, d-подоболочка предыдущего энергетического уровня.

В шестом и седьмом периоде происходит насыщение 4f- и 5f-подоболочек, вследствие чего они содержат ещё на 14 элементов больше по сравнению с 4-м и 5-м периодами. Вследствие различия периодов по длине и другим признакам существуют разные способы их относительного расположения в периодической системе. В короткопериодном варианте, малые периоды содержат по одному ряду элементов, большие имеют по два ряда. В длиннопериодном варианте все периоды состоят из одного ряда. Ряды лантаноидов и актиноидов обычно записывают отдельно внизу таблицы. Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы. С возрастанием заряда ядра у элементов одного периода уменьшается атомный радиус и увеличивается количество валентных электронов, вследствие чего происходит ослабление металлических и усиление неметаллических свойств элементов, ослабление восстановительных и усиление окислительных свойств образуемых ими веществ. Что показывает номер периода? Химия и получил лучший ответ Ответ от TheLastDreamer[гуру] Период - строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.

Тенденции развития периодической системы Несмотря на кажущуюся завершенность, периодическая таблица продолжает развиваться по мере открытия новых сверхтяжелых элементов. Кроме заполнения 7 периода, ученые прогнозируют существование гипотетического 8 периода, вмещающего до 50 химических элементов. Однако их синтез пока не представляется возможным. Также ведутся исследования по расширению периодической системы за пределы атомных ядер - в область адронов и атомоподобных частиц. Альтернативные модели периодической системы Помимо привычной двумерной таблицы Менделеева, предлагались и другие графические модели периодической системы химических элементов. Например, спиральный вариант, цилиндрический или трехмерные многогранники. Такие модели по-новому демонстрируют периодичность, но не получили широкого распространения из-за меньшей наглядности.

Выводы Итак, мы разобрались, что представляет собой период в периодической таблице химических элементов, каково строение периодов и свойства входящих в них элементов. Концепция периодичности, реализуемая посредством периодов и групп, является уникальным научным достижением, позволяющим систематизировать огромный массив данных о свойствах химических элементов и их соединений.

Периоды представляют собой основную организационную структуру химического элемента, позволяющую классифицировать и систематизировать их свойства и связи. Каждый период имеет свою характеристику: в первом периоде находятся только две элемента - водород и гелий, во втором - восемь элементов, в третьем - восемнадцать, и так далее. Периоды имеют отношение ко многим основным свойствам элементов, включая их электронную конфигурацию, радиусы атомов и их активность. Кроме того, периоды играют важную роль в предсказании и понимании химических реакций.

В химии понятие периодов было введено в первой половине XIX века, когда химики начали замечать регулярные закономерности в химических свойствах элементов. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. Более высокая энергия ионизации означает, что ему нужно больше энергии, чтобы отпустить электрон, что снижает вероятность того, что атом будет положительным ионом в химической реакции. Это всего лишь один пример периодичности и не только в химии. Закономерности изменения химических свойств элементов и их соединений по периодам и группам. Закон и периодическая система химических элементов своим появлением разделили химию на два периода: до появления периодической системы Менделеева и после открытия. Рассмотрим подробнее что такое период и что такое группа в периодической таблице Менделеева.

Периодическая система химических элементов: как это работает

Следовательно, внешние электроны удерживаются слабее, и металлические восстановительные свойства элементов усиливаются, неметаллические окислительные - ослабевают. Изменение свойств летучих водородных соединений: 1 в группах главных подгруппах с ростом заряда ядра прочность летучих водородных соединений уменьшается, а кислотные свойства их водных растворов усиливаются основные свойства уменьшаются ; 2 в периодах слева направо кислотные свойства летучих водородных соединений в водных растворах усиливаются основные уменьшаются , а прочность уменьшается; 3 в группах с ростом заряда ядра в главных подгруппах валентность элемента в летучих водородных соединениях не изменяется, в периодах слева направо уменьшается от IV до I. Изменение свойств высших оксидов и соответствующих им гидроксидов кислородсодержащие кислоты неметаллов и основания металлов : 1 в периодах слева направо свойства высших оксидов и соответствующих им гидроксидов изменяются от основных через амфотерные к кислотным; 2 кислотные свойства высших оксидов и соответствующих им гидроксидов с ростом заряда ядра в периоде усиливаются, основные уменьшаются, прочность уменьшается; 3 в группах главных подгруппах у высших оксидов и соответствующих им гидроксидов с ростом заряда ядра прочность растёт, кислотные свойства уменьшаются, основные усиливаются; 4 в группах с ростом заряда ядра в главных подгруппах валентность элемента в высших оксидах не изменяется, в периодах слева направо увеличивается от I до VIII.

Второй порядок реакции Реакции которых скорость определяется изменением концентрации двух слагаемых. Например, для общей реакции Характеристики Реакции второго порядка я Скорость реакции прямо пропорциональна квадрату концентрации реагирующего вещества. Величина К зависит от единицы, в которой концентрация реагента s выражается. III Полураспада реакции второго порядка обратно пропорциональна первоначальной концентрации реагентов т. Период полураспада первого порядка реакции обратно пропорциональна К и зависит от а. Нулевой порядок реакции Реакции скорость которых не зависят от концентрации или в которой концентрация реагентов не изменяется со временем. Таким образом, скорость таких реакций остается постоянная.

Характеристики Реакции нулевого порядка я Скорость реакции не зависит от концентрации реагирующего вещества. График концентрации продуктов со временем представляет собой прямую линию, проходящую через начало координат. III Полураспада прямо пропорциональна начальной концентрации реагентов. Химическая кинетика — раздел физической химии, который изучает влияние различных факторов на скорости и механизмы химических реакций. Под механизмом химической реакции понимают те промежуточные реакции, которые протекают при превращении исходных веществ в продукты реакции. Основным понятием химической кинетики является понятие скорости химической реакции. В зависимости от системы, в которой протекает реакция, определение понятия «скорость реакции» несколько отличается. Гомогенными химическими реакциями называются реакции, в которых реагирующие вещества находятся в одной фазе. Это могут быть реакции между газообразными веществами или реакции в водных растворах.

Для таких реакций средняя скорость равна изменению концентрации любого из реагирующих веществ в единицу времени. Мгновенная или истинная скорость химической реакции равна. Знак минус в правой части говорит об уменьшении концентрации исходного вещества. Значит, скоростью гомогенной химической реакции называют производную концентрации исходного вещества по времени. Гетерогенной реакцией называется реакция, в которой реагирующие вещества находятся в разных фазах. К гетерогенным относятся реакции между веществами, находящимися в разных агрегатных состояниях. Скорость гетерогенной химической реакции равна изменению количества любого исходного вещества в единицу времени на единицу площади поверхности раздела фаз:. Кинетическим уравнением химической реакции называют математическую формулу, связывающую скорость реакции с концентрациями веществ. Это уравнение может быть установлено исключительно экспериментальным путём.

В зависимости от механизма все химические реакции классифицируют на простые элементарные и сложные. Простыми называются реакции, протекающие в одну стадию за счёт одновременного столкновения молекул, записанных в левой части уравнения. В простой реакции могут участвовать одна, две или, что встречается крайне редко, три молекулы. Поэтому простые реакции классифицируют на мономолекулярные, бимолекулярные и тримолекулярные реакции. Так как с точки зрения теории вероятности одновременное столкновение четырёх и более молекул маловероятно, реакции более высокой, чем три, молекулярности не встречаются. Для простых реакций кинетические уравнения относительно просты. Сложные реакции протекают в несколько стадий, причём все стадии связаны между собой.

История создания периодической системы химических элементов Идея систематизации химических элементов зародилась не сразу. На протяжении веков ученые накапливали знания об элементах, открывали все новые и новые, но долгое время не могли увидеть закономерности. Уже греческий философ Аристотель размышлял о сущности и значении химических элементов более 2000 лет назад! Лишь в 1869 году русский ученый Дмитрий Иванович Менделеев сумел расположить известные на тот момент 63 элемента в определенном порядке - по возрастанию их атомного веса. Так появилась Периодическая система химических элементов или Периодическая таблица Менделеева.

Открыть диалоговое окно с формой по клику Теория электролитической диссоциации 144. На этот вопрос отвечает теория электролитической диссоциации, которую мы сейчас рассмотрим. Впервые ее описал шведский ученый Сванте Аррениус. Электролитическую диссоциацию изучают в рамках курса химии за 9 класс. В растворах электролитов, проводящих ток, за это отвечают свободные ионы. В 1882 году шведский химик С.

Что такое период в периодической системе элементов?

Период в периодической таблице-это ряд химических элементов. Что такое 14n в химии Азот (N) — это химический элемент 15 группы (или подгруппы V(a) короткой формы), 2-го периода таблицы Менделеева с атомным номером 7. Чистый азот N2 представляет безцветный газ, без вкуса и запаха, плохо растворимый в воде. Период в периодической таблице-это ряд химических элементов. Первая версия периодической системы химических элементов, созданная еевым в 1869 году.

Что такое период в химии кратко

В него, помимо десяти 5d-элементов La, Hf — Hg , входит семейство из четырнадцати 4f-элементов — лантаноидов лантанидов, Ln. Лантаноиды размещены в группе 3 длинной формы, клетка La, и для удобства вынесены под таблицу. Седьмой период, подобно шестому, содержит 32 элемента. Актиний — аналог лантана. В периодической системе химических элементов их размещают в клетке Ас и, подобно Ln, записывают отдельной строкой под таблицей. Этот приём предполагает наличие существенного химического сходства элементов двух f-семейств.

Именно на этом основывалась «актинидная концепция» Г. Сиборга 1944 , сыгравшая ведущую роль при разработке методов разделения продуктов деления урана и поиске новых элементов. Однако эта концепция справедлива лишь для трёх- и четырёхвалентных An. Это же следует из современных квантово-химических расчётов. Памятник-таблица «Периодическая система элементов Д.

Авторы: Владимир Фролов, Давид Кричевский. Периодическая система химических элементов является важным звеном эволюции атомно-молекулярного учения, способствует уточнению представлений о простых веществах и соединениях, оказала значительное влияние на разработку теории строения атомов. С периодической системой связана постановка проблемы прогнозирования в химии, что проявилось в предсказании как существования неизвестных элементов и их свойств, так и особенностей химического поведения известных элементов. Периодическая система химических элементов — основа неорганической химии ; служит задачам синтеза веществ с заранее заданными свойствами, создания новых материалов, в частности сверхпроводников и полупроводников , подбора специфических катализаторов для различных химических процессов и др. Периодическая система химических элементов — научная база преподавания общей и неорганической химии, а также некоторых разделов атомной физики.

Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру. Суть теории флогистона можно изложить в следующих основных положениях: 1. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка. Флогистон обладает отрицательной массой. Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона было призвано объяснить тот факт, что масса окалины или всех продуктов горения, включая газообразные больше массы обожжённого металла. Флогистонная теория со временем была распространена на любые процессы горения.

Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение. Теория флогистона позволила, в частности, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем: руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола. Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона — от резко негативной до положительной. Однако нельзя не признать, что теория флогистона имела целый ряд несомненных достоинств: — она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения; — теория внутренне непротиворечива, то есть ни одно из следствий не находится в противоречии с основными положениями; — теория флогистона целиком основана на экспериментальных фактах; — теория флогистона обладала предсказательной способностью. Флогистонная теория — первая истинно научная теория химии — послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее. Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности. К середине 18 века одним из важнейших разделов химии стала пневматическая химия, основоположники которой Джозеф Блэк, Даниил Резерфорд, Генри Кавендиш, Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии.

Во второй половине 18 века теория флогистона завоевала среди химиков практически всеобщее признание. На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т. Французский химик Пьер Жозеф Макёр, автор весьма популярного учебника "Элементы химии" и "Химического словаря", писал в 1778 г. Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя — надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу". По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу. Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей, которому наука обязана постулатом "все тела тяжелы", ещё в 1630 г. В 1665 г. Роберт Гук в работе "Микрография" также предположил наличие в воздухе особого вещества, подобного веществу, содержащемуся в связанном состоянии в селитре.

Дальнейшее развитие эти взгляды получили в книге "О селитре и воздушном спирте селитры", которую написал в 1669 г. Открытие кислорода было сделано независимо друг от друга почти одновременно несколькими учёными. Карл Вильгельм Шееле получил кислород в 1771 г. По мнению Шееле, "огненный воздух" представлял собой "кислую тонкую материю, соединённую с флогистоном". Джозеф Пристли выделил кислород в 1774 г. Пристли считал, что полученный им газ представляет собой воздух, абсолютно лишённый флогистона, вследствие чего в этом "дефлогистированном воздухе" горение идёт лучше, чем в обычном. Большое значение для создания кислородной теории горения имели, кроме того, открытие водорода Кавендишем в 1766 г. Значение сделанного Шееле и Пристли открытия смог правильно оценить французский химик Антуан Лоран Лавуазье. В 1774 г. Лавуазье опубликовал трактат "Небольшие работы по физике и химии", где высказал предположение о том, что при горении происходит присоединение к телам части атмосферного воздуха.

После того, как Пристли в 1774 г. Наконец, в 1777 г. Лавуазье сформулировал основные положения кислородной теории горения: 1.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения, форм таких соединений 4. Формулы водородных соединений располагаются под элементами главных подгрупп и только к ним относятся. Свойства элементов в подгруппах закономерно изменяются: сверху вниз усиливаются металлические свойства и ослабевают неметаллические. Очевидно, металлические свойства наиболее сильно выражены у франция, затем у цезия; неметаллические - у фтора, затем - у кислорода. Наглядно проследить периодичность свойств элементов можно и исходя из рассмотрения электронных конфигураций атомов.

Число электронов, находящихся на внешнем уровне в атомах элементов, располагающихся в порядке увеличения порядкового номера, периодически повторяется. Периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением строения их атомов, а именно числом электронов на их внешних энергетических уровнях. По числу энергетических уровней в электронной оболочке атома элементы делятся на семь периодов. Первый период состоит из атомов, в которых электронная оболочка состоит из одного энергетического уровня, во втором периоде - из двух, в третьем - из трех, в четвертом - из четырех и т. Каждый новый период начинается тогда, когда начинает заполняться новый энергетический уровень. В периодической системе каждый период начинается элементами, атомы которых на внешнем уровне имеют один электрон, - атомами щелочных металлов - и заканчивается элементами, атомы которых на внешнем Уровне имеют 2 в первом периоде или 8 электронов во всех последующих - атомами благородных газов. Именно вследствие сходства строения электронных оболочек атомов сходны их физические и химические свойства. Число главных подгрупп определяется максимальным числом элементов на энергетическом уровне и равно 8.

Число переходных элементов элементов побочных подгрупп определяется максимальным числом электронов на d-подуровне и равно 10 в каждом из больших периодов. Поскольку в периодической системе химических элементов Д. Менделеева одна из побочных подгрупп содержит сразу три переходных элемента,близких по химическим свойствам так называемые триады Fe-Со-Ni, Ru-Rh-Pd,Os-Ir-Pt , то число побочных подгрупп, так же как и главных, равно 8. По аналогии с переходными элементами число лантаноидов и актиноидов, вынесенных внизу периодической системы в виде самостоятельных рядов, равно максимальному числу электронов на f-подуровне, т. Период начинается элементом, в атоме которого на внешнем уровне находится один s-электрон: в первом периоде это водород, в остальных - щелочные металлы. Завершается период благородным газом: первый - гелием 1s2 ,остальные периоды - элементами, атомы которых на внешнем уровне имеют электронную конфигурацию ns2np6. Во втором периоде восемь элементов. С него началось заполнение третьего энергетического уровня.

Электронная формула аргона: 1s22s22p6Зs23p6. Натрий - аналог лития, аргон - неона.

Периоды имеют отношение ко многим основным свойствам элементов, включая их электронную конфигурацию, радиусы атомов и их активность. Кроме того, периоды играют важную роль в предсказании и понимании химических реакций. Элементы в пределах одного периода имеют подобные свойства, поэтому знание периодической системы элементов позволяет спрогнозировать химическое поведение и реакционную способность различных элементов. Таким образом, понимание периода в химии является необходимым для изучения и практического применения химических процессов, а также для разработки новых материалов и реакций в области науки и промышленности.

что такое период в химии определение

Период периодической системы — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. В периодах и группах периодической системы химические элементы располагаются в порядке возрастания заряда их атомных ядер, т.е. порядкового номера элемента. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Kr (четвёртый период) приобретает способность вступать в химические соединения. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов.

Периодическая система химических элементов: как это работает

Период в химии — это горизонтальная строка в таблице элементов, в которой расположены химические элементы с одинаковым количеством энергетических уровней электронной оболочки. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. Период в химии — это горизонтальная строка в таблице Менделеева, представляющая собой упорядоченный набор химических элементов.

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

В группе с увеличением заряда атома основные свойства усиливаются, а кислотные - ослабевают. Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются, вторые - убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить. Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF - самая слабая из этих кислот, а HI - самая сильная. Восстановительные и окислительные свойства Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные - усиливаются. В группе с увеличением заряда атома восстановительные свойства усиливаются, а окислительные - ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные - с неметаллическими и кислотными. Так гораздо проще запомнить ;- Электроотрицательность ЭО , энергия связи, ионизации и сродства к электрону Электроотрицательность - способность атома, связанного с другими, приобретать отрицательный заряд притягивать к себе электроны. Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает к себе электроны и уходит в отрицательную степень окисления со знаком минус "-". Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д. Менделеева - это фтор. Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше. Энергия связи а также ее прочность возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны чем больше он ЭО-ый , тем прочнее получается связь, которую он образует.

Понятию ЭО-ости "синонимичны" также понятия сродства к электрону - энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации - количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы. Пытался решить эту задачу и молодой русский профессор Д.

Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически. Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём.

Поэтому современная формулировка закона звучит так: Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов. Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов. Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства. Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий.

Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших и даже не всегда возможных в реальности опытов — теперь стало достаточно одного взгляда в таблицу. Существует легенда, якобы знаменитая таблица явилась Менделееву во сне. Но сам Дмитрий Иванович эту информацию не подтвердил. Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово! Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.

Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий. Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.

Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов.

Седьмой период не завершён.

Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек энергетических уровней. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева. Группа периодической системы химических элементов — последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением.

Номер группы определяется количеством электронов на внешней оболочке атома валентных электронов и, как правило, соответствует высшей валентности атома.

Как и щелочные металлы, водород является восстановителем. Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d— или f—электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d—элементов от лантана La — до ртути Hg , а после первого переходного элемента лантана La следуют 14 f—элементов — лантаноидов Се — Lu. После ртути Hg располагаются остальные 6 основных р-элементов шестого периода Тl — Rn. В седьмом незавершенном периоде за Ас следуют 14 f—элементов- актиноидов Th — Lr.

В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы. В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру. Элементы в Периодической системе разделены на восемь групп I — VIII , которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б.

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно: В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы. У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях.

К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп литий, бериллий, натрий и др. У p-элементов электронами заполняются p-орбитали. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Номер периода соответствует числу заполняемых энергетических уровней. Номер группы, как правило, соответствует числу валентных электронов в атоме то есть электроном, способных к образованию химической связи. Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе? Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др. Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус — понятие довольно сложное и неоднозначное.

Различают радиусы атомов металлов и ковалентные радиусы неметаллов. Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств. Мы говорим про орбитальный радиус изолированного атома.

Орбитальный радиус — это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов. Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами. Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы. Например , в ряду атомов: F — Cl — Br — I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.

Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру. Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус.

Например , в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов. В периодах слева направо орбитальный радиус атомов уменьшается.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142. В периоде слева направо атомный радиус уменьшается, а справа налево — увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243 Рассмотрим закономерности изменения радиусов ионов : катионов и анионов. Катионы — это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Что такое периоды и группы в химии?

Закон и периодическая система химических элементов своим появлением разделили химию на два периода: до появления периодической системы Менделеева и после открытия. Натрий в таблице менделеева занимает 11 место, в 3 периоде. Ведь его Периодическая таблица химических элементов грубо не верна в окончаниях всех периодов! Создание периодической системы химических элементов является результатом многовекового опыта и наблюдений исследователей со всего мира. Хотя химические изменения были ускорены или замедлены изменением таких факторов, как температура, концентрация и т. д., эти факторы не влияют на период полураспада.

Похожие новости:

Оцените статью
Добавить комментарий