показателе расслоения общества. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC.
Новости по теме
- Коэффициент Джини — Рувики: Интернет-энциклопедия
- Какие страны и почему отличаются высоким показателем джини география реферат
- Маленький статистический ликбез - коэффициент неравенства доходов Джини | Пикабу
- Коэффициент Джини — Рувики: Интернет-энциклопедия
- Коэффициент Джини - индекс концентрации доходов — Тюлягин
- Коэффициент Джини | это... Что такое Коэффициент Джини?
Как рассчитывать коэффициент Джини
Насколько большую разницу можно ожидать? Этот ожидаемый разрыв между двумя случайно выбранными людьми и измеряется коэффициентом Джини. Он рассчитывается как среднее значение разрыва между всеми парами людей в населении Если доходы распределены равномерно, то можно ожидать небольшой разрыв между доходами двух случайно выбранных людей. Там, где высокий уровень неравенства, мы можем ожидать большой разрыв Однако, если измерять этот показатель в абсолютном выражении, он также будет зависеть от богатства населения в целом.
Если даже самые обеспеченные представители населения имеют низкий доход, то абсолютный разрыв между доходами людей будет маленьким. Для простоты представим, что всё население состоит из тех двух человек, встретившихся на улице. Все доходы принадлежат одному человеку, а остальные вовсе не имеют дохода — коэффициент Джини равен 1 Наименьшее возможное значение среднего разрыва, то есть 0 — ситуация абсолютного равенства.
Доходы всех людей равны — коэффициент Джини равен 0 Метод 2: Разрыв между «кривой Лоренца» и «линией идеального равенства» Слева указана доля дохода, получаемая каждой пятой частью гипотетического населения. Справа — суммарные доходы всех групп населения.
Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам. Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей. На основании данных по распределению доходов в России за 2021 год составим сводную таблицу [1].
Экономическое неравенство, что же еще! В 1912 году итальянский статистик и демограф Коррадо Джини предложил в своем труде «Вариативность и изменчивость признака» новую модель определения степени расслоения общества страны или региона по какому-либо признаку. Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини.
Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться.
Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты.
Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам. Список источников и литературы: 1. Указ Президента РФ от 13. Указ Президента РФ от 7 мая 2018 г.
Как построить кривую Лоренца
- Социальное неравенство. Индекс Джини | Блог Свободного Инвестора
- Коэффициент Джини — Рувики: Интернет-энциклопедия
- Коэффициент Джини - что это такое простыми словами
- Коэффициент Джини. Из экономики в машинное обучение
- Вы точно человек?
Среди населения России растет доходное неравенство: почему ускорился этот процесс?
К 1912 году итальянский статистик Коррадо Джини разработал алгебраическую интерпретацию кривой Лоренца: коэффициент, призванный указывать, насколько неравным является экономическое распределение. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. показателе расслоения общества.
Индекс Джини
Индекс концентрации Джини - Студенческий научный форум | Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. |
Коэффициент джини в России: статистика, динамика, прогноз | Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. |
Вы точно человек? | Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. |
Коэффициент Джини: все ли равны? | Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. |
Индекс Джини в странах мира
Коэффициент Джини может использоваться для выявления уровня неравенства по накопленному богатству. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини".
Задача №77. Расчёт коэффициента Джини
Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые. Группы равны по численности жителей, но различаются по уровню дохода: средний класс зарабатывает в два раза больше, чем бедные, а богатые зарабатывают в два раза больше, чем средний класс.
Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это.
Строится она следующим образом: 1. Берём ось координат, по оси X будем отмерять процент населения обычно принято делить на 5 частей, называемых квинтилями , а по оси Y будем отмерять процент дохода также принято делить на 5 частей. Отмечаем точками, процент от общего дохода, который получает каждый квинтиль. Соединяем линии — Кривая Лоренца готова. Но для определения Коэффициента Джини нужно построить ещё и линию «абсолютного равенства». Линия будет являться биссектрисой между координатными осями. График готов. Чем больше площадь фигуры, образованной Кривой Лоренца и линией «абсолютного равенства», тем сильнее проявляется в данном обществе неравенство. Коэффициент Джини — это отношение площади этой фигуры к площади треугольника, образованного осью X, линией «абсолютного равенства» и вертикальной линией на отметке 100 по оси X. В результате мы получим значение от 0 до 1. Где 0 — абсолютное равенство, а 1 — абсолютное неравенство когда все доходы принадлежат одному человеку. Если считать по квинтилям, то единицу мы не получим даже в теории, но при разбиении оси X на количество граждан такая ситуация возможна теоретически, если всё принадлежит кому-то одному из представителей данного общества и то, коэффициент всё равно на какие-то миллионные доли будет меньше 1. То есть, чем меньше значение этого коэффициента, тем меньше будет неравенство. Индекс Джини — это тот же Коэффициент Джини, но выраженный в процентах. Значение индекса находится в пределах от 0 до 100. Децильный коэффициент Помимо Коэффициента Джини есть и другие коэффициенты, отражающие неравенство в обществе. Так, популярностью пользуется также Децильный коэффициент. Дециль — это десятая часть. Например, в офисе трудятся 100 работников от уборщиц до генерального директора.
Экономическое неравенство, что же еще! В 1912 году итальянский статистик и демограф Коррадо Джини предложил в своем труде «Вариативность и изменчивость признака» новую модель определения степени расслоения общества страны или региона по какому-либо признаку. Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини.
Ваш пароль
Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю.
Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России. У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной. В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной.
Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода.
Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным. Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины.
Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля. Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека. Какой из данных видов налогов является более справедливым?
Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми. Но эта точка зрения ошибочна. Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости.
Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой?
Посчитаем сумму налога, уплаченную каждым индивидом. В результате индивид, зарабатывающий больше, платит и большую сумму налога. И в чем же здесь несправедливость?
Для оценки справедливости налоговой системы выделяются следующие постулаты: Принцип получаемых выгод: индивиды должны платить налоги в соответствии с выгодой, которую они извлекают из услуг государства. На этом принципе может быть основана идея, что богатые люди должны платить больше налогов, чем бедные. Поскольку государство является предоставителем общественных благ и гарантом прав собственности, богатые люди извлекают больше выгод от государства, чем бедные, потому что у них есть больше собственности.
Также этот принцип оправдывает идею программ по борьбе с бедностью за счет богатых. Все мы хотим жить в обществе, которое не испытывает революций и социальных потрясений из-за неприемлемого уровня жизни беднейших слоев населения. Поэтому идея помощи бедным за счет богатых кажется оправданной.
Принципы платежеспособности: горизонтальная справедливость и вертикальная справедливость. Горизонтальная справедливость означает, что индивиды с одинаковыми доходами должны платить одинаковые налоги.
Определяющий признак бедности — такой уровень лишений, при котором человек не имеет доступа к товарам и услугам, считающимся в данном обществе необходимыми для поддержания приемлемого уровня жизни. Из такого определения видно, что критерии бедности могут изменяться от страны к стране и в различные периоды истории данного общества. Сегодня за этой чертой живут примерно 700 миллионов человек. Когда бедность определяется через установленную денежную величину дохода или потребления черта бедности , говорят об абсолютной бедности. Другой подход заключается в привязке к постоянно меняющимся стандартам уровня жизни. В этом случае говорят об относительной бедности: уровень бедности зависит от характеристик распределения доходов во всём обществе и на первый план выходит неравенство.
Использование понятия относительной бедности связано с тем, что, начиная с определённого уровня развития экономики, помимо материальных лишений питание, одежда, условия жилья и т.
В исследованиях и мониторингах также часто используется субъективная бедность, под которой понимается мнение самих респондентов о границах бедности и собственном благосостоянии. Понятие «прожиточный минимум» определяется в Федеральном законе «О прожиточном минимуме в Российской Федерации» от 24.
В первую очередь это чисто техническая величина, с помощью которой государство оценивает, с одной стороны, величину своих социальных обязательств, с другой — уровень жизни в стране и состояние экономики. Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц.
В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы.
Богатые и бедные страны могут иметь одинаковые или близкие коэффициенты Джини. Например, в 2018 году в Гвинее индекс был 29,6, а в развитой Германии — 31,7; джини рассматривает распределение денежных доходов, в то время как иногда работникам могут выдавать зарплату продуктами, опционами на акции компании и так далее. Не говоря о том, что серая зарплата тоже остается за рамками расчета; статистические организации опираются на разные данные и используют разные подходы, в результате индекс Джини для одной страны может отличаться. Например, по данным Росстата, в 2017 году в России индекс был 41,3, а по расчетам Всемирного банка — 37,7; коэффициент Джини может работать некорректно для нерыночных экономик, где доходы концентрируются не у предпринимателей, а у государства, и могут возвращаться народу в виде социальных благ. Коэффициент Джини, который учитывает именно доходы граждан, в этом случае будет завышен. Индекс Джини обнажает проблемы неравенства. Из-за этого его иногда ошибочно трактуют как индикатор справедливости распределения богатства. Но равномерно не значит справедливо.
В условиях рыночной экономики, когда доходы распределяются конкурентным путем, эталонного уровня индекса не существует. Джини и прочие методики лишь помогают отслеживать социальные диспропорции и оценивать эффективность действий властей в борьбе с неравенством. А вопрос справедливости лежит вне области статистики. Среди преимуществ коэффициента Джини выделяют: Простота интерпретации. Коэффициент Джини - простой и легко интерпретируемый показатель. Он предоставляет наглядное представление о степени неравенства в распределении доходов. Возможность сравнения. Он позволяет сравнивать уровень неравенства между разными странами, регионами и временными периодами, что облегчает анализ динамики и международных различий. Широкое применение. Используется в различных областях, включая экономику , социологию, исследования бедности и общественные науки.
Устойчивость к масштабу.
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
Одну ось графика размечаем под равные доли населения по численности. Вторую - под доли в сумме доходов, которые получает каждая такая доля населения. Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией. А теперь изменим доходы. Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному.
В количественном плане характеризуется показателями, отражающими степень неравномерности распределения доходов.
Различие в доходах имеет следствием неравномерность в распределении материальных и нематериальных благ и играет определяющую роль в существовании экономического неравенства. Предельный продукт англ. Предельный продукт того или иного ресурса выражается в физических единицах в отличие от товарного предельного продукта, выражаемого в денежной форме MRP. Поэтому в экономической литературе встречается иное, буквальное название этой величины — «физический объём... Индекс потребительских цен ИПЦ, индекс инфляции, англ. Consumer Price Index, CPI — один из видов индексов цен, созданный для измерения среднего уровня цен на товары и услуги потребительской корзины за определённый период в экономике.
Трудовые ресурсы — часть населения страны, которая по физическому развитию, приобретенному образованию, профессионально-квалификационному уровню способна заниматься общественно-полезной деятельностью. Общая факторная производительность англ. Общая факторная производительность может рассматриваться как мерило долгосрочных технологических изменений или технологической динамики. Сбережения — накапливаемая часть денежных доходов населения, предназначенная для удовлетворения потребностей в будущем. Сбережения используются для покупки ценных бумаг и других финансовых инструментов, или размещаются в виде банковских вкладов. Различают личные и принудительные сбережения.
Экономический рост — увеличение объёма выпуска товаров и услуг в рассматриваемой экономической системе в стране, регионе, мире. Мерой экономического роста служит прирост реального ВВП в целом или на душу населения. Основной психологический закон — сформулированное Джоном Мейнардом Кейнсом положение о том, что личное потребление зависит от уровня доходов, однако его динамика отстаёт от роста доходов. Индекс гендерного неравенства англ. The Gender Inequality Index — интегральный показатель, который отражает неравенство в возможностях достижений между мужчинами и женщинами в трех измерениях: репродуктивном здоровье, расширении прав и возможностей, а также на рынке труда. Индекс гендерного неравенства был представлен Секретариатом Всемирного экономического форума в Женеве в 2010 году.
Используется Организацией Объединённых наций в докладе о человеческом развитии с 2010 года. Скорость обращения денег англ. Скорость обращения денег во многом зависит от объёмов экономической активности при заданной денежной массе. Если период времени заявлен, скорость может быть представлена числом. В противном случае показатель должен быть задан в форме число за период времени. Благосостояние — обеспеченность населения государства, социальной группы или класса, семьи, отдельной личности необходимыми для жизни материальными, социальными и духовными благами.
Кривая спроса — это график, иллюстрирующий связь между ценой определенного товара или услуги и количеством товара, которое может и хочет купить потребитель по данной цене. Является графическим представлением спроса. Счёт текущих операций — раздел платёжного баланса страны, в котором фиксируются экспорт и импорт товаров и услуг, чистый доход от инвестиций и чистый объём трансфертных платежей.
Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов.
World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более. Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики. Экономисты возлагают вину за растущее неравенство доходов в США на такие факторы, как технологические изменения, глобализация, упадок профсоюзов и снижение минимальной заработной платы. Особенности Индекс Джини — это показатель распределения доходов среди населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и скрывать важную информацию о распределении доходов.
Глобальное неравенство, измеряемое индексом Джини, неуклонно росло в течение последних нескольких столетий и резко возросло во время пандемии COVID-19.
А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.
Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства. Фактически ищут 2 площади.
Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения.
Коэффициент Джини, значение по странам мира и в России
Доверять Джини или нет: вот в чем вопрос / Хабр | Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. |
Вы точно человек? | Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. |
Коэффициент джини в России | В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. |
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель. The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%).
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Значение коэффициента Джини варьируется от 0 до 1, где более высокие значения представляют большее неравенство в доходах и где: 0 представляет идеальное равенство доходов все имеют одинаковый доход 1 представляет собой идеальное неравенство доходов все доходы принадлежат одному человеку. Список коэффициентов Джини по странам можно найти здесь. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel.
У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни.
Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов.
Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале.
Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение.
Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.
И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме.
Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка.
Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает.
Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169.
Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики.
Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие.
Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом.
Соотношение нулей и единиц подбиралось так, чтобы коэффициент Джини имел определенное значение. Как известно, ширина «классического» доверительного интервала уменьшается при увеличении объёма выборки.
Исследую эту зависимость у доверительного интервала коэффициента Джини, для чего проведу ряд испытаний с данными, имеющими различные объемы наблюдений и сопоставимые значения коэффициента Джини. Число строк наблюдений.
Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.
Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях.
Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор.