Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды.
Данные на 23 апреля 2024 г.
- VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
- Альманах ИИ №11. ИИ в здравоохранении
- Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом
- Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время
Цифровой ассистент: как искусственный интеллект помогает московским врачам
Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что. Искусственный интеллект (ИИ) — это чудо современной технологии, которое уже не просто фантастика из фильмов, но и реальность, влияющая на множество сфер нашей жизни от смартфонов и голосовых помощников до систем автоматизации в производстве и медицине. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает.
Чем так хорош искусственный интеллект в медицине?
- VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
- Применение ИИ в медицине
- ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня
- Врачам и пациентам: как искусственный интеллект помогает в медицине
- Альманах ИИ №11. ИИ в здравоохранении
- Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом - ФармМедПром
Что хотите найти?
Напомним, что в 2022 г. В 2023 г. В целом, к сентябрю 2023 г. Почти половина из них были успешными.
ИИ позволяет вместо проведения ресурсоёмких опытов по взаимодействию молекул для получения необходимых свойств соединения использовать генеративные и рекомендательные модели. За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery. С помощью собственной ИИ-платформы фармпроизводитель определил два препарата для лечения фиброза. Один из них уже находится на первой стадии клинических исследований. В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года.
Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями.
Та статистика, которую мы имели на начало октября, - это 70 регионов [, которые] уже приобрели и внедряют соответствующие решения", - сказал он на форуме "Биотехмед". Большая часть таких разработок - решения для работы с медицинскими изображениями, уточнил Пугачев.
Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков.
Вторая проблема — неточная работа алгоритмов. Используемый сотнями больниц по всему миру для рекомендаций по лечению больных раком, алгоритм был основан на небольшом количестве синтетических случаев и очень ограниченом количестве реальных данных. Многие из его рекомендаций по лечению были ошибочными, например, предлагали использовать несовместимое лекарство для пациента с сильным кровотечением, что представляет явное противопоказание. Еще одна проблема — предвзятость. Низкий социально-экономический статус — основной фактор риска преждевременной смертности. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья.
С этой проблемой тесно связано смещение результатов из-за отсутствия включения меньшинств в наборы данных.
Эксперимент
Искусственный интеллект и Big Data (анализ больших данных) трансформировали медицинскую сферу. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Разрабатываем решения для медицины будущего с искусственным интеллектом.
Искусственный интеллект в помощь врачам и пациентам
Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. «Электронный доктор» уволен: почему в России приостановили работу искусственного интеллекта в медицине. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”.
Решения СберМедИИ вошли в ТОП-10 медицинских нейросетей (ИИ) в России в 2024 году
ВЦИОМ. Новости: Прогресс или угроза, или об искусственном интеллекте в медицине | В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. |
Искусственный интеллект в здравоохранении внедряют 70 регионов России | Искусственный интеллект существенно улучшает точность аппаратной диагностики в медицине благодаря нескольким ключевым аспектам. |
Искусственный интеллект в помощь врачам и пациентам | Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков. |
MIBS + HealthCareBusinessNews - Технологии на страже здоровья | Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении? |
Роман Душкин: «Медицина — это область доверия»
В настоящий момент мы заканчиваем клинические испытания», — подчеркнул Каталевский. По его словам, искусственному интеллекту в данном проекте отводится вспомогательная функция: система подсвечивает вероятные изменения, на основе которых диагноз ставит врач. На основе созданного ПО возможно проводить массовый скрининг населения посредством быстрой, качественной и недорогой диагностики. Система может с успехом применяться в телемедицине — например, в отдаленных регионах страны. Для этого достаточно сделать снимок сетчатки глаза, загрузить его в систему, а результат прислать доктору в любой точке страны для постановки полноценного диагноза и подбора лечения», — подчеркнул Каталевский. Он отметил, что компанией создан инструмент, который позволяет доктору и сэкономить время для диагностики, и получить второе мнение, если речь идет о сложном или спорном случае. Также система помогает в обучении молодых врачей.
В основном ИИ задействуют для того, чтобы избавить врача от рутинной обработки больших объемов информации или же поручают умной программе перепроверку результатов обследования, чтобы минимизировать ошибки, связанные с человеческим фактором. Однако не только ИИ проверяет результаты работы врачей, но и наоборот. Все российское медицинское программное обеспечение, созданное с применением технологий ИИ, автоматически относится к наивысшему третьему классу потенциального риска. Это означает, что все заключения, выданные искусственным интеллектом, проходят строгий контроль медицинских специалистов.
В России любое программное обеспечение, созданное для применения в медицинских целях, считается медицинским изделием. Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации.
Машина может работать по заранее установленным человеком правилам.
Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т.
Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни.
Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению.
Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты.
Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами.
Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства.
Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут.
С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений.
Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам.
Машина справилась с задачей лучше специалистов.
Мэр напомнил, что еще 10—15 лет назад цифровизацию здравоохранения рассматривали как вспомогательную технологию, чтобы решить организационные проблемы — сократить очереди к врачам, наладить контроль, навести порядок с ведением документации. Но далеко не главное. Главное — современные цифровые технологии реально спасают жизни и радикально повышают качество лечения людей. Мы убедились в этом на примере внедрения искусственного интеллекта в работу службы лучевой диагностики", — заявил Собянин. Он напомнил, что анализируя снимки КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 разных заболеваний, включая рак легких, пневмонию, остеопороз, ишемическую болезнь сердца, инсульт и другие.