новости России и мира сегодня.
«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА»
Нобелевская премия по физике — 2022 | Новости дня от , интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. |
Новости - RW Space | Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически корректировать случайные ошибки, возникающие в процессе их работы. |
Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики | В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения. |
Любопытные новости квантовой физики - Эзопланета - Форум о магии | Китайские физики обнаружили гигантский — на два порядка больше по величине обычного — невзаимный перенос заряда в топологическом изоляторе на основе тетрадимита допированного оловом (Sn—Bi1,1Sb0,9Te2S). |
В МФТИ назвали главный прорыв года в квантовой физике
Если он был возбуждён или если он не был возбужден. И в зависимости от этого получаем ответ на поставленный вопрос». Процесс сложный, но ученые излучают уверенность и делают кубиты также на сверхпроводниках, которым нужны экстремально низкие температуры. Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита. Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США.
Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера.
Подробнее о работе ученых можно узнать из пресс-релиза Нобелевского комитета. Аспе, Клаузер и Цайлингер провели новаторские эксперименты с использованием запутанных квантовых состояний, их исследования проложили путь для новых технологий, основанных на квантовой информации. Квантовая запутанность — феномен, при котором квантовые состояния нескольких частиц оказываются взаимосвязанными независимо от расстояния между ними. Это явление уже используется в криптографии, компьютерных технологиях и квантовой телепортации.
Доказать квантовую запутанность частиц с помощью эксперимента можно, проверив выполнение неравенств Белла по имении физика Джона Белла. Они позволяют узнать о наличии в квантово-механической системе скрытых параметров, определяющих состояние, которое примет одна из частиц.
Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов. Они устроены таким образом, что ошибки в их работе автоматически корректируются, что позволяет вести сложные и длительные вычисления при их помощи.
В 2023 году сразу несколько научных коллективов разработали квантовые процессоры на базе большого числа логических кубитов. Опыты с этими вычислительными машинами впервые на практике продемонстрировали то, что использование логических кубитов действительно позволяет уменьшать частоту появления ошибок при длительной работе компьютера. Один из самых масштабных проектов такого рода, квантовый компьютер на базе 48 логических кубитов, был создан в США группой Михаила Лукина, профессора Гарвардского университета.
Это т. Кванты уже пронизывают нашу жизнь насквозь: от гаджета до лазерной указки. Но современные квантовые технологии выводятся физикой на совершенно иной уровень. С одной стороны, это фундаментально ёмкая область, а с другой, учёным необходимо провести ещё много исследований, чтобы создать квантовые установки с теми параметрами, которые позволяют показать все преимущества квантовых технологий в сравнении с классическими и использовать их в прикладных разработках. В квантовых технологиях, вместо классических битов, используются квантовые биты — кубиты — как мера квантовой информации.
Если вы понимаете, как работает классическая поляризационная оптика, то вы поймете, как работает двухуровневая система в физике, а значит, и как квантовый бит может быть реализован на разных физических двухуровневых системах. Специфика квантовых состояний в том, что состояние двухчастичной квантовой системы может быть полностью определено и при этом состояние составляющих его двух подсистем полностью не определено. В классическом мире вы не найдёте примеров таких состояний, когда вы знаете всё о составной системе и не знаете ничего о тех подсистемах, которые её образуют, - объяснил Сергей Кулик. Комбинаторная и глобальная оптимизация, машинное обучение, геологоразведка, молекулярная структура, странствующий коммивояжёр — примеры сложнейших задач, решить которые помогут квантовые вычислительные устройства. Сергей Кулик представил фазы зрелости квантовых вычислений, согласно которым примерно через 10 лет будет построен квантовый компьютер для специальных приложений и через 20 лет — полномасштабный помехоустойчивый квантовый компьютер для решения масштабных задач — так как это не сможет сделать самый мощный классический компьютер.
Международная гонка кубитов
- Сверхмощный квантовый компьютер
- Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир
- Нобелевка по физике за изучение квантовой запутанности — что это значит
- Физики обнаружили гигантский невзаимный перенос заряда в топологическом изоляторе
- 2. «Выращивание» электродов в живых тканях
- Достижение физиков - прорыв в квантовой запутанности | Пикабу
Экспериментаторы надеются зафиксировать колебания массы атомов
Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку. Новости, анонсы, рекомендации. Бытовая техника. Новости компаний.
Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
Иногда мы даже демонстрируем более глубокое понимание в отдельных направлениях, скажем, в создании кудитных квантовых процессоров. Это процессоры нового поколения, которые используют для обработки информации не кубиты двухуровневые квантовые системы , а кудиты многоуровневые квантовые системы с суперпозицией произвольного количества квантовых состояний. Сейчас в мире есть пять-шесть квантовых процессоров на кудитах, и один из них — заслуга российской команды в Российском квантовом центре и ФИАН им. В нашей работе нам очень помог проект Лидирующих исследовательских центров, Дорожная карта по квантовым вычислениям и Российский научный фонд.
Да и по новым типам кубитов, базовых вычислительных элементов для квантовых компьютеров, в России проводятся пионерские исследования на мировом уровне. Например, недавно продемонстрированные кубиты-флюксониумы с рекордными характеристики, в разработке которых принимали участие мои коллеги из МИСИС. То есть мы стараемся не отставать и искать новые пути развития.
Критическая масса людей, интеллектуальный потенциал для развития этого направления есть. Сейчас мы вступили в активную фазу реализации Дорожной карты по квантовым вычислениям координирует Росатом. Это очень важный проект, объединяющий в рамках страны различные научные группы, которые решают задачи квантовых технологий.
Мы уже видим первые результаты консолидации научного сообщества в этом направлении. Есть ли дефицит компонентов, есть ли утечка мозгов? Нынешнюю ситуацию вы рассматриваете как тёмный период или как время возможностей?
Вы знаете, очень осторожное отношение к поставкам иностранного оборудования началось гораздо раньше. Эта сфера в последние пять лет постепенно становилась стратегической и всё более и более зарегулированной. И кардинального изменения в связи с санкциями не произошло.
Это был логичный шаг, которому предшествовало всё возрастающее внимание к экспорту технологичных товаров со стороны стран Запада. Конечно, такие глобальные ситуации, как сейчас, осложняют работу и научное взаимодействие. Ведь наука, особенно в таких областях, носит международный характер.
Во многих научных публикациях принимают одновременное участие учёные из самых разных стран мира. Поэтому хотелось бы, чтобы текущая ситуация не касалась напрямую возможностей для научного сотрудничества. Страны между собой обмениваются учёными, и это в карьере учёного совершенно нормально: закончить первую ступень образования в одной стране, потом поступить в магистратуру в другой стране, в аспирантуру — в третьей, а работать — вообще в четвёртой, пятой.
Потом вернуться к себе на родину или остаться. Это абсолютно нормальные этапы развития. Есть такой тренд во всех странах мира: после определённого цикла получения опыта учёным стараются создать условия для работы в родной стране.
Здесь пример демонстрирует Китай со своей национальной программой «1000 талантов». Она позволила вернуть огромное количество учёных — и сделать значительный скачок в квантовых технологиях и не только. Именно это становится основным трендом.
Успешно у нас возвращают мозги? Есть примеры успешных возвратов. Вот я учился во Франции, а когда передо мной стоял выбор, куда поехать, я поехал работать в лабораторию в России.
Есть примеры моих коллег, которые либо полностью вернулись, либо проводят здесь существенную часть своего времени. Но мы привыкли к термину «утечка мозгов», боимся его. Приведу пример: в Германии очень существенный процент людей уезжают после аспирантуры работать в Америку.
Но там никто не говорит о какой-то утечке мозгов. Люди за океаном набираются опыта, потом возвращаются и создают в Германии передовые лаборатории. В одном из ведущих немецких научных центров очень много людей именно с опытом работы в Северной Америке.
Поэтому наш фокус должен быть не на величине оттока и связанном с этим расстройстве, а на создании условий для притока. А что может и должно сделать государство, чтобы этот научный импульс не пропал? Мне кажется, очень важный аспект — это долгосрочные программы финансирования.
Вот сейчас есть замечательная программа, которая работает в масштабе 3—5 лет, — гранты Российского научного фонда, которые позволяют молодым учёным создать собственную научную группу с очень большой степенью поддержки. Во многом благодаря поддержке РНФ была создана и моя собственная научная группа. Для этой президентской программы горизонт — три года, после которых грант могут пролонгировать.
Для людей, которых мы хотим привлечь, наверное, можно было бы создавать ещё более простые цепочки более долгосрочных программ финансирования с горизонтом в 10—20 лет. Ведь во многих научных областях для получения результатов необходимо не три года, а пять, десять, пятнадцать лет с изменением стратегии по ходу дела.
Запутанные частицы влияют на состояние друг друга, даже если между ними больше тысячи километров. В 2021 году Нобелевской премией по физике были награждены Джорджио Паризи за открытие взаимодействия между беспорядком и флуктуациями в физических системах, а также Клаус Хассельман и Сюкуро Манабе за физическое моделирование климата Земли. В 2019 и 2020 годах Нобелевскую премию присуждали за работы, так или иначе связанные с космосом. Накануне было объявлено имя лауреата Нобелевской премии по физиологии и медицине. В 2022 году победителем в этой номинации стал шведский биолог Сванте Паабо за исследование эволюции человека. В среду, 5 октября, объявят Нобелевского лауреата по химии.
Зайцева — представителей самых престижных научных школ «Физического» факультета и факультета «Вычислительной математики и кибернетики» МГУ им. Книга называется «Математическое моделирование электромагнитных и гравитационных явлений по методологии механики сплошной среды». Написанная на высоком теоретическом уровне, эта книга была отмечена победой в 2018 году на конкурсе работ МГУ им. Ломоносова, имеющих выдающееся значение для развития науки и образования.
Попробуем кратко пояснить, в чем суть достижения россиян. Предложенная нашими учеными новая математическая модель эфира удивительно компактна, универсальна и всеобъемлюща. Вместе с тем эта математика ориентирована на практику, поскольку использует близкие по смыслу категории «механики сплошной среды» — главной теоретической опоры аэрокосмических технологий. В теории эфира Бычкова-Зайцева показано, что все считавшиеся ранее экспериментальными законы, электричества, магнетизма, электродинамики и гравитации, являются математическими следствиями лишь двух уравнений движения эфира.
В это трудно поверить, но одна и та же математическая модель эфира позволяет описывать все виды взаимодействий! О такой математической теории мировая наука мечтала на протяжении доброй сотни лет. Кроме того, в рамках предложенной теории раскрыто такое фундаментальное физическое понятие, как масса. Авторы уникального научного достижения особо подчёркивают, что методология математического моделирования и методология экспериментальной физики, обобщающая результаты опытов, позволяют сделать обоснованный вывод о существовании эфира.
Попытки создать «теорию всего» предпринимались неоднократно. Но только сейчас можно сказать, что магистральный путь дальнейшего развития фундаментальной физики действительно найден. Этот путь вне всяких сомнений связан с обоснованной российскими специалистами идеей эфира. Попутно заметим, что один из авторов открытия, доктор физико-математических наук, профессор МГУ Ф.
Зайцев, уже внес большой вклад в развитие такой сложнейшей области физики, как управляемый термоядерный синтез.
Чтобы превратить фермионы в бозоны, можно взять два фермиона и объединить их в единую систему. Эта новая система — бозон. Его разрушение позволит нам снова получить фермионы. Делая это циклически, мы можем привести двигатель в действие без использования тепла, — объясняет профессор Томас Буш Thomas Busch , руководитель подразделения квантовых систем OIST. Созданный двигатель функционирует только на квантовом уровне.
Эфир существует! Российские ученые совершили прорыв в фундаментальной физике
Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. Подборка свежих новостей по теме «квантовая физика». Статья Квантовая физика, Квантовые точки принесли ученому из России Нобелевскую премию, Разработан первый в мире квантовый аналог механического двигателя. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Китайские физики обнаружили гигантский — на два порядка больше по величине обычного — невзаимный перенос заряда в топологическом изоляторе на основе тетрадимита допированного оловом (Sn—Bi1,1Sb0,9Te2S).
Физики обнаружили гигантский невзаимный перенос заряда в топологическом изоляторе
Физики создали «червоточину» внутри квантового компьютера. IBM представила самый мощный в мире квантовый компьютер. Новости физики в сети Internet: май 2023 (по материалам электронных препринтов). И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. Нобелевскую премию по физике в 2022 году за «эксперименты с запутанными фотонами, установление нарушения неравенства Белла и новаторскую квантовую информатику» получили Ален Аспект (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия).
Нобелевская премия по физике — 2022
Роберт Шоелкопф Robert Schoelkopf из Йельского университета США и его коллеги "вырастили" усовершенствованную модель такого квантового "животного", научившись разделять кота Шредингера на отдельные, но, тем не менее, зависящие друг от друга части. Эти резонаторы связаны между собой при помощи замкнутого сверхпроводника, играющего роль искусственного атома. Если в эти камеры запустить несколько фотонов, "запутанных" между собой на квантовом уровне, то вся конструкция превращается в единого кота Шредингера, разделенного на две части — то, что происходит с фотонами в одном из резонаторов, будет отражаться на судьбе частиц во второй камере. Что интересно, о существовании "кота" можно узнать только если открыть оба "ящика" — в противном случае наблюдатель увидит набор не связанных друг с другом фотонов. Используя данную "клетку", физики смогли создать чрезвычайно больших котов Шредингера, состоявших в общей сложности из более 80 фотонов.
Цайлингера по измерению поляризации двух спутанных фотонов в паре. В прошлом году Нобелевский комитет решил сделать акцент на исследованиях, так или иначе затрагивающих изменения климата и возможные глобальные угрозы — часть премии была вручена за междисциплинарные исследования хаотических систем основной математический объект этого поля науки — странный аттрактор, обозначающий крайне хаотичную систему с непредсказуемым поведением — таким, например, как система вихрей в атмосфере, непосредственно определяющая прогноз погоды на следующие несколько недель. Предыдущие два года подряд 2019 и 2020 годы внимание Комитета привлекли космические темы — премии были вручены соответственно за экзопланеты и чёрные дыры , то есть два класса модных сегодня астрономических объектов. Подробнее о проблематике, удостоившейся внимания Нобелевского комитета в предыдущие годы, можно прочитать в статьях по ссылкам выше. Каждый год за некоторое время перед объявлением победителей агентство Clarivate составляет рейтинг «потенциальных нобелевских лауреатов». Рейтинг основывается на наукометрических показателях, в частности, на цитируемости тех или иных исследований. Собственно, агентство ведёт одну из признанных мировых баз научных журналов WoS, или Web of Science, — публикации в одном из журналов в этой базе часто являются формальным требованием для измерения «производительности» научных сотрудников во многих странах. Так, в этом году фаворитами и авторами «научных исследований нобелевского класса» по физике назвали нескольких именитых учёных, работающих в области квантовой теории многих тел и исследования наноматериалов. Одного из лауреатов прошлого года, Джорджио Паризи Giorgio Parisi , агентство действительно угадало, а в целом счёт «попаданий», по их словам, составляет 64 лауреата в разных областях. В этом году не получилось угадать фамилии, но агентство правильно предсказало тематику, которая будет в научном тренде ближайшие несколько лет — это квантовая запутанность, информация и другие необычные свойства квантового мира, которые уже находят практическое применение. Трансляция объявления нобелевских лауреатов по физике 2022 года, 4 октября 12:30 мск. Подготовка материала.
Новости квантовых компаний. Изображение предоставлено Microsoft Azure — облачной платформой компании Microsoft. До революции квантовых вычислений доживут не все квантовые стартапы, которым удалось выйти на публичный рынок. Природа квантовых технологий делает их полезными для решения трудоемких задач с огромным количеством переменных. Квантовые вычисления потенциально: улучшат финансовое моделирование и повысят эффективность электрических батарей. Например, для обычных суперкомпьютеров существуют неразрешимая задача сортировки потенциальных кандидатов на получение лекарств - для решения потребуется время вычислений, превышающее текущую продолжительность жизни Вселенной". Новое исследование противоречит мнению Альберта Эйнштейна. Точный механизм пока не определен, но эксперименты новых нобелевских лауреатов доказывают, что квантовая теория действительно описывает естественный мир и что запутанность существует. Это открытие подготовило почву для совершенно новой отрасли вычислительной техники. Сейчас идет гонка за разработкой первых коммерческих квантовых компьютеров, на карту которых потенциально поставлены огромные богатства.
Например, в МГУ работает «квантовый телефон» для связи между ректоратом и другими отделениями университета, сейчас специалисты внедряют видеоформат такой связи. Другой пример: учёные МГУ и РФЯЦ-ВНИИЭФ запускают проект по созданию квантовой космической связи — платформы с небольшими низкоорбитальными спутниками, которые обмениваются с наземным терминалом квантовой информацией для обеспечения безопасной связи. Эта перспективная технология решает проблемы защищенной передачи информации на большой территории России; выведение первого пробного спутника на орбиту запланировано в 2024 году. Мы идёт по пути развития квантовой криптографии - квантового распределения ключе - вплоть до создания квантового интернета. Система работает полностью в автоматическом режиме, когда нет системного администратора, через которого могла бы произойти утечка информации; скорость генерации ключей может быть очень высокой, мастер-ключ может меняться тысячу раз в секунду, хотя и раз в минуту — вполне достаточная скорость для большого числа приложений, — отметил научный руководитель Центра квантовых технологий МГУ Сергей Кулик. Физик кратко упомянул и развитие технологий квантовой сенсорики — измерительных приборов на основе квантовых эффектов. Научная программа НЦФМ включает три направления исследований, посвящённых развитию вычислительных и информационных технологий. В рамках НЦФМ специалисты развивают одну из квантовых субтехнологий — квантовые коммуникации. Планируется создать квантовую сеть на основе сертифицированного оборудования, а также существенно продвинуться в области квантовой космической связи. В марте 2023 года состоялсяexternal link, opens in a new tab первый научный семинар НЦФМ, посвящённый развитию технологии рентгеновской литографии в России.
Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир
Имя этому сердцу неопределенность. Гравитация Эйнштейна заранее задана и понятна. Она не меняется просто так. Гравитация квантовой теории непредсказуема и постоянно меняется. Оппенгейм говорит: а что, если пространство-время не есть кисель холодный, устоявшийся. А — кисель на конфорке, и его постоянно варят. Пространство-время слегка колеблется. Создается квантовая неопределенность там, где Эйнштейн видел статику. Это в самом деле решило бы все.
Уравнения квантовой механики, в которых — одни вероятности, теперь можно применять и в теории относительности. Мир Эйнштейна сохранен, но он стал немного зыбким. Не пострадала и квантовая механика. Это и есть квантовая гравитация. Можно ли это проверить? Да легко. Вес всего на свете должен немного колебаться. Оппенгейм уже поспорил с другими учеными, профессором Карло Ровелли и доктором Джеффом Пенингтоном, что так и будет.
Причем взрывной профессор сделал ставку 5000 к одному. Так уверен в победе. Точный опыт теперь будут делать. Например, все слышали, что эталон килограмма хранится в Париже, в Международном бюро мер и весов, но им фактически не пользуются. Это скорее исторический раритет и символ. Причина: слиток «худеет», теряя 50 микрограммов за сто лет. А что так? Испаряется металл?
Это очень странно.
То, что происходит с одной из частиц в паре, определяет то, что происходит с другой частицей. И эта закономерность — неклассическая корреляция, или запутанность, — сохраняется даже в тот момент, когда они находятся далеко друг от друга.
Альберт Эйнштейн критиковал эту теорию: ведь способность частиц моментально «угадывать» состояние друг друга означала бы, что они обмениваются информацией быстрее скорости света, что противоречит постулатам теории относительности. По мнению Эйнштейна, должны были существовать некие скрытые параметры, узнав которые, ученые смогли бы вернуть квантовую теорию в русло детерминизма, то есть классической модели. А чтобы найти такие параметры, нужно было бы найти другие составляющие двухчастной системы, которые бы не меняли свои свойства при измерении, в отличие от запутанных частиц.
Джон Стюарт Белл, работавший над этой проблемой, в 1960-х годах века предложил проверить наличие скрытых параметров при помощи неравенства которое сейчас называется теоремой Белла. По замыслу ученого, если неравенство выполняется, значит, в системе есть скрытые параметры.
В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции. Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки. Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка. Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера.
Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1. Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах. Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других. В этом помогает такое явление, как квантовая запутанность. В нем состояния двух или большего числа частиц оказываются взаимосвязанными и их значения всегда противоположные. Если у одной частицы значение 0, то у другой, «запутанной» с ним, гарантированно будет 1. Нередко для объяснения запутанности приводится пример с новой парой носков, когда один, надетый на левую ногу и ставший левым, автоматически превращает свою пару в правый, как бы далеко тот ни находился, причем происходит это моментально.
Как сравнивать Многие мировые корпорации громко заявляют о прорывах в создании КК. Одни говорят о рекордном числе кубитов, другие — о рекорде связанных кубитов, третьи — о рекордной когерентности. Что скрывается за этими рекордами и почему оценивать мощность КК стоит по квантовому объему? Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Чем больше число кубитов, тем больше возможностей для решения сложных задач. Если в обычной системе вычислительная мощность растет квадратично, то есть n2, то в квантовой — экспоненциально 2n n — в данном случае число битов, или кубитов. При этом важно, сколько времени кубиты могут проводить операции без потери информации.
Разведка и злоумышленники могут перехватывать зашифрованные сообщения и хранить в надежде, что в будущем появятся КК для их расшифровки. Кроме того, свойства КК позволяют им решать определенные задачи, на которые у классических компьютеров ушли бы квадриллионы лет. Несмотря на то что за почти 30 лет человечество нашло ответы на множество вопросов, связанных с созданием полноценного КК, до его практической реализации пока еще далеко: по самым скромным подсчетам — 5 лет.
Мировые светила физики почти ежегодно получают Нобелевские премии за решение задач, приближающих квантовую эру вычислений. Пока эти наработки можно сравнить с первыми ламповыми компьютерами. В России отдельные разработки КК велись до 2020 г. Эксперты рассказали о том, как правильно сравнивать между собой КК, где они могут пригодиться и как Россия может обогнать нынешних лидеров в этой области. Пока наша страна в роли догоняющей, однако недавно президенту России Владимиру Путину был представлен 16-кубитный КК, что соответствует лучшим мировым достижениям в этой области 2019 г. Зачем это нужно Сейчас Российский квантовый центр РКЦ работает над предоставлением облачного доступа к российским квантовым компьютерам. КК полезен в логистике и финансовой отрасли, задачах моделирования технологических процессов и анализа больших данных в нефтегазовом секторе, а также поможет разработкам в квантовой химии моделирование новых соединений, поиск лекарств , биоинформатике и криптоанализе. Квантовые вычисления являются принципиально вероятностными, а банки зарабатывают на расчете рисков, то есть возможности наступления негативных событий. Поэтому применение квантовых компьютеров позволит улучшить риск-модели и ускорить обработку больших данных, рассказал квантовый энтузиаст, директор по цифровому развитию Делобанка Антон Семенников. Когда же технология получит широкое распространение, можно ожидать снижения ставок в экономике за счет более качественного расчета рисков, добавил он.
Требуется не только создать действующий квантовый компьютер, но и разработать соответствующие алгоритмы и программное обеспечение. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», — считает Семенников. На квантовый мир мы смотрим с позиции разработчика, рассказал заместитель генерального директора холдинга Т1 по технологическому развитию Антон Якимов. Квантовый объем 100-200 кубитов не кажется недостижимым для 2025 г. Однако, по его мнению, вопрос больше в практической плоскости: через какое время такие облачные вычислительные мощности станут доступны для рынка на понятных условиях по модели Quantum-Computing-as-a-Service. Имеется в виду то, над чем сейчас работает РКЦ. Как же это работает Какие же свойства так привлекают исследователей со всего света? В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1.
Нобелевскую премию по физике присудили за квантовую запутанность
Исследователи дважды быстро изменяли отражательную способность зеркала, создав две щели во временной области. В процессе физикам удалось зафиксировать интерференционные полосы вдоль частотного спектра отраженного от зеркала света. При этом интерференция происходила на разных частотах, а не в разных пространственных положениях. В теории эта работа может найти применение в области создания оптических компьютеров. Таким образом физики продемонстрировали наличие элементов и технологий для создания масштабных многоузловых квантовых сетей. Читайте также 7. Первое рентгеновское изображение атома Источник: Saw-Wai Hla Коллектив ученых из Аргоннской национальной лаборатории США совместно с коллегами из Европы, Китая и ряда американских университетов впервые в истории смог при помощи синхротронной рентгеновской сканирующей туннельной микроскопии получить рентгеновский снимок одного-единственного атома, тогда как до сих пор этот метод позволял изучать структуры, насчитывающие около 10 тыс. Преодолеть это ограничение удалось за счет добавления к детектору острого металлического наконечника, который располагался всего в 1 нм над исследуемым образцом и двигался вдоль его поверхности.
Такое усовершенствование позволило исследователям фиксировать уникальные «отпечатки» каждого из составлявших образец химических элементов. В практическом плане эта работа может быть использована экологами для определения присутствия в той или иной среде мельчайших долей отравляющих веществ. Обнаружение доказательств того, что ранние галактики изменили Вселенную Список научных открытий был бы неполным без астрофизики, на благо которой уже второй год работает инфракрасный космический телескоп «Джеймс Уэбб». Ионизация нейтрального межгалактического водорода ультрафиолетовым излучением этих галактик сделала Вселенную прозрачной.
Голография позволяет построить трехмерное изображение с двумерной поверхности на основе излучаемого предметами света. Камера с временной меткой отсняла с разрешением порядка наносекунды на каждом пикселе пару запутанных фотонов, визуализировав их «танец» в реальном времени. Картинка напоминает символ инь и ян. Такие голограммы позволят определять волновую функцию запутанных квантовых частиц, что необходимо для точного предсказания их поведения. Основное преимущество модульных квантовых компьютеров заключается в том, что их можно постоянно модифицировать, добавляя процессоры, серверы и проч.
Этот путь мы прошли за четыре года. Heron разработан модульным и масштабируемым».
Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов.
Они устроены таким образом, что ошибки в их работе автоматически корректируются, что позволяет вести сложные и длительные вычисления при их помощи. В 2023 году сразу несколько научных коллективов разработали квантовые процессоры на базе большого числа логических кубитов. Опыты с этими вычислительными машинами впервые на практике продемонстрировали то, что использование логических кубитов действительно позволяет уменьшать частоту появления ошибок при длительной работе компьютера.
Один из самых масштабных проектов такого рода, квантовый компьютер на базе 48 логических кубитов, был создан в США группой Михаила Лукина, профессора Гарвардского университета.
Как поступить призеру олимпиад? По итогам Летней смены олимпиадной подготовки ЛСОП с 25 июня по 5 июля — 10-дневного интенсива для подготовки к региональному и заключительному этапам ВсОШ по математике, физике, биологии и химии. Приглашаем на ЛСОП-2024: Участников заключительного этапа, победителей и призеров регионального этапа ВсОШ по математике, физике, химии, биологии, информатике и астрономии; Победителей и призеров заключительного этапа олимпиад из перечня РСОШ по тем же предметам; Победителей и призеров заключительного этапа Всесибирской открытой олимпиады школьников. Не призер, а поступить хочу. Что делать?
Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Новости. Фото дня. Нобелевскую премию по физике в 2022 году за «эксперименты с запутанными фотонами, установление нарушения неравенства Белла и новаторскую квантовую информатику» получили Ален Аспект (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия).
Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс
Изобретен квантовый радар для работы в условиях плохой видимости НОВОСТИ Наука и Технологии. Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. Международная команда ученых-физиков из НИТУ «МИСиС», Российского квантового центра, Университета Карлсруэ и Университета Майнца из Германии научилась моделировать процессы, которые могут помочь в расшифровке механизмов фотосинтеза. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших.