Новости карлики звезды

«Жэньминь жибао он-лайн»: китайские астрономы обнаружили уникальные звёзды-карлики с высоким содержанием лития. Система из двух потухших звезд, так называемых белых карликов, открыта астрономами на расстоянии восьми тысяч световых лет от Земли.

Древняя карликовая звезда найдена в Млечном Пути

Европейские астрономы обнаружили четыре новых коричневых карлика Астрономы из Астрономической обсерватории Падуи Италия и других стран провели наблюдения за 25 звездами в рамках пилотного обзора COPAINS. Об открытии сообщается в статье, опубликованной 4 мая на сервере препринтов arXiv.

В одних длинах инфракрасных волн он казался тусклым, как очень старый объект, в других - ярким, как молодой и горячий. Ученые провели дополнительные исследования. Как выяснилось, объект движется очень быстро.

Он летит к нашей галактике со скоростью 800 тыс. По мнению экспертов, это показывает, что The Accident очень древний и в течение миллиардов лет подвергался воздействию гравитации более крупных объектов. Кроме того, он содержит мало метана, в отличие от других объектов такого рода.

Это не самое быстрое вращение белых карликов, но оно есть. Эти характеристики указывают на слияние в прошлом. Нейтронные звезды — даже более плотные, чем белые карлики, и поддерживаемые давлением нейтронного вырождения — образуются, когда звезда, масса которой в 8—30 раз превышает массу Солнца, достигает конца своей жизни. Команда надеется их найти. Как генерируется магнитное поле и почему есть ли такое разнообразие напряженности магнитного поля среди белых карликов? Исследование опубликовано в журнале Nature.

Используя 2,1-метровый телескоп в Национальной обсерватории Китт-Пик США , астрономы обнаружили двойную звезду, состоящую из пары белых карликов, которые совершают один оборот вокруг общего центра масс всего за 6,91 минуты. Вся система, по словам ученых, уместилась бы внутри Сатурна, и, ожидается, что вскоре она станет одним из самых сильных источников гравитационных волн, которые будут зафиксированы будущей космической обсерваторией Европейского космического агентства «Laser Interferometer Space Antenna» LISA. Статья, описывающая открытие рекордсмена с самым коротким периодом обращения среди всех известных затменных двойных, представлена в журнале Nature. Этот сценарий характерен для звезд, чьи массы не превышают солнечную в 10 раз, при этом не только для одиночных, но и, как в данном случае, для двойных, образующих бинарные системы из белых карликов. Белый карлик Sirius B в сравнении с Землей.

Радиоастрономия обнаружила ультрахолодную звезду

Однако в некоторых случаях, по мере остывания, эти элементы смешиваются. В случае Януса разделение на водородную и гелиевую часть может быть связано с действием магнитного поля. Поэтому, если магнитное поле на одной стороне сильнее, там смешивание будет идти хуже и будет больше водорода». Чтобы решить эту загадку, ученые хотят открыть больше аналогичных объектов с помощью ZTF и строящейся обсерватории имени Веры Рубин в Чили.

Но она является самой холодной звездой из когда-либо обнаруженных с помощью радиоастрономии, то есть это самая холодная звезда, излучающая радиоволны. Результаты исследования опубликованы в журнале The Astrophysical Journal Letters, а коротко о нем рассказывает Phys. Температура звезды составляет около 425 градусов по Цельсию. Для сравнения, температура на поверхности Солнца достигает 5600 градусов. Она расположена примерно в 37 световых годах от Земли. Кстати, впервые объект был замечен еще в 2011 году астрономами Калифорнийского технологического института США.

В зоне обитаемости не должно быть слишком холодно или жарко. С учётом того, что красные карлики холоднее Солнца, в случае с ними данная область должна располагаться на более близком расстоянии. Но, если говорить про опасность, то карликовые звёзды предрасположены к вспышкам, а это означает, что для нашей планеты это реальная угроза.

Ученые отмечают, что необычная траектория движения планеты может быть обусловлена наличием поблизости еще не открытой планеты-гиганта, которая влияет на TOI-2257 b своей гравитацией. Подобные TOI-2257 b экзопланеты невозможно обнаружить в телескоп напрямую. Астрономы идентифицировали небесное тело методом транзитной фотометрии — когда планета проходит на фоне своей звезды, у последней уменьшается яркость. Благодаря этому ученые могут измерить точный орбитальный период планеты. Используя другие наблюдения, астрономы могут определить диаметр, плотность планеты и даже состав атмосферы.

Астрономы открыли две белых звезды-карлика, обреченных на гибель

По мере старения звезды раздуваются, превращаясь в красные гиганты, после чего их внешний материал сдувается, а ядра сжимаются в плотные, раскаленные добела карлики. Связано это с тем, что белый карлик — конечный продукт эволюции звезды средней массы. Подобно всем звездам, красные карлики превращают водород в гелий. По мере старения звезды раздуваются, превращаясь в красные гиганты, после чего их внешний материал сдувается, а ядра сжимаются в плотные, раскаленные добела карлики. к нему принадлежит 90% звезд.

Оранжевые звёзды – то, что надо для жизни

Астрономы идентифицировали небесное тело методом транзитной фотометрии — когда планета проходит на фоне своей звезды, у последней уменьшается яркость. Благодаря этому ученые могут измерить точный орбитальный период планеты. Используя другие наблюдения, астрономы могут определить диаметр, плотность планеты и даже состав атмосферы. Ученые намерены продолжить наблюдения и изучение планеты TOI-2257 b. Они также надеются получить новые данные с помощью космического телескопа «Джеймс Уэбб».

А поведение частиц с полуцелым спином описывается квантовой статистикой, созданной Ферми и Дираком и названной их именами. Сами же частицы называют фермионами. Бозонами являются фотоны и нейтрино.

А протон, электрон, нейтрон являются фермионами. В квантовой механике существует принцип Паули, который гласит: в одном и том же квантовом состоянии не могут находиться сразу две и больше частицы с полуцелым спином. Фермионы не могут обладать одинаковыми энергиями или импульсами! А теперь заглянем внутрь звезды. Источники нагрева исчерпаны, звезда остывает. Представим, что она совсем остыла — температура ее стала равной абсолютному нулю. Естественно, что вся тепловая энергия частиц энергия их хаотического движения тоже исчезла.

Нет хаотического движения, нет и давления. Ничто не противостоит тяжести, стремящейся сжать звезду. Ничто ли? Звезда ведь состоит из атомных ядер, протонов, электронов, нейтронов, в общем — из фермионов. И значит, в остывшей звезде действует квантовая статистика Ферми — Дирака, действует и принцип Паули. Две частицы не могут обладать одинаковыми импульсами! Когда мы говорим, что в абсолютно холодной звезде прекращается всякое движение, это справедливо только для одной-единственной частицы.

Одна частица действительно обладает нулевым импульсом. Но именно поэтому любая другая частица должна иметь импульс, отличный от нуля действует принцип Паули! Третья частица должна иметь еще больший импульс и так далее. В звезде колоссальное число частиц в Солнце их около 1057. И как бы мало ни отличались импульсы частиц друг от друга, все же импульс самой энергичной из них окажется огромным. Но если есть импульс, то есть и давление. Если импульс частиц может оказаться большим, то велико может быть и давление.

Импульс самой быстрой частицы в такой системе называется граничным Ферми-импульсом, а описанный нами газ называется вырожденным Ферми-газом. Схема того, как появляется звезда белый-карлик. Если такой газ нагревать, то вырождение исчезнет — частицы приобретают хаотическое тепловое движение, освобождают уровни, на которых находились раньше, все больше и больше увеличивая свои импульсы… Итак, остывая, звезда сжимается. Частицы все сильнее прижимаются друг к другу. Частиц очень много, граничный импульс Ферми очень велик. Наступает вырождение — давление вырожденного газа становится больше, чем обычное тепловое давление. А если сжатие продолжается, то давление вырожденного газа способно даже уравновесить силу тяжести!

Теория вырожденных звезд была развита в 1931 году астрофизиком Субраманьяном Чандрасекаром.

Судя по этому, система содержит очень много неона, кремния, серы, а ее раскаленная туманность достигает температуры в миллионы градусов. Точную массу звезды ученые пока не определили. По их приблизительным оценкам она составляет более чем 1,4 Солнца. Скорее всего, она возникла при слиянии пары белых карликов и один из них был кислородно-неоново-магниевым. Они образуются в результате гибели звезд, имеющих массу около 10 солнечных.

При этом его радиус 2140 км, что делает его очень похожим в этом плане на Луну 1737 км , передаёт Nature. Но в то же время масса белого карлика примерно в 1,3 раза больше массы нашей звезды — Солнца. По словам учёных, ZTF J190132.

Астрономы подтвердили редкость юпитероподобных экзопланет у карликовых звезд

Учёные обнаружили несколько неудавшихся звёзд – так называемых коричневых карликов – которые вращаются на предельной скорости. Выяснилось, что WD 1856 + 534 — это белый карлик, крошечный остаток от того, что когда-то было звездой, подобной Солнцу. Исследователи вычислили, что температура звезды составляет порядка 6,3 тысячи ˚C, что относит ее к категории кристаллизующихся белых карликов. Экзопланеты вблизи карликовых звёзд оказались непригодными для жизни.

Красные карлики – шанс для жизни

Для науки это событие интересно тем, что примерно через 700 миллионов лет белые карлики взорвутся и превратятся в сверхновую I типа. К такому выводу ученые пришли после вычисления орбит звезд, их массы и расстояния между ними. Если раньше образование сверхновой через слияние двух белых карликов было только теорией, то теперь обнаружена реальная пара таких звезд, отмечают ученые.

Одна половина его поверхности состоит из водорода, обратная — из гелия, говорится в исследовании, опубликованном в журнале Nature. Белые карлики — «тлеющие», но весьма горячие остатки не очень массивных звезд, которые сожгли свое термоядерное топливо и обречены на медленное затухание.

Обычно в конце эволюции звезды наподобие Солнца раздуваются до стадии красного гиганта, после чего внешняя оболочка сдувается, и остается типичный белый карлик — углеродно-кислородное ядро, иногда с небольшим включением более тяжелых элементов, окруженное горячей оболочкой из газа. Моделирование показывает, что Солнце проэволюционирует до фазы белого карлика примерно через 5 млрд лет. Наблюдения, проведенные астрономом Иларией Каяццо из Калифорнийского технологического института с помощью камеры Zwicky Transient Facility ZTF в Паломарской обсерватории в США, позволили обнаружить белый карлик, меняющий представление об эволюции подобного рода объектов.

Возможно, эти звезды образовались в результате редкого слияния двух космических объектов. Эти звезды покрыты слоем пепла, который обычно образуется при сгорании гелия, что указывает на возможность их формирования в результате столкновения других звезд.

Художественная иллюстрация, отображающая процесс слияния двух белых карликов, в результате которого образовался новый тип звезд. Этот сгусток электронно-ядерной плазмы, называемый белым карликом, будет медленно остывать до фоновой температуры Вселенной в течение следующих нескольких триллионов лет. Но теперь астрономы обнаружили два не совсем обычных белых карлика. Как известно, в атмосферах таких звезд преобладает водород или гелий, но в атмосферах новых объектов ученые обнаружили большое количество углерода и кислорода, причем концентрация обоих элементов, достигала 20 процентов.

Поэтому любые коричневые карлики по-прежнему будут относительно яркими в инфракрасном свете. Сначала астрономы сфотографировали центр кластера с помощью NIRCam ближней инфракрасной камеры «Уэбба», чтобы определить кандидатов на коричневые карлики по их яркости и цветам. Они следили за наиболее перспективными целями с помощью NIRSpec ближне-инфракрасный спектрограф телескопа. Три кандидата на самый крошечный коричневый карлик. Луман Университет штата Пэнс и К.

Астрономы нашли «мёртвую» звезду размером с Луну и с большей чем у Солнца массой

Ультрахолодные карлики — звезды настолько холодные, что практически не излучают видимого света, и увидеть их можно лишь в инфракрасном диапазоне. 77 результатов новостей. После смерти звезды есть 97-процентный шанс того, что она превратится в белого карлика. Субкоричневые карлики излучают очень мало света по сравнению со звездами, поэтому инфракрасные инструменты JWST очень важны для этого исследования.

Все виды звёзд. Сверхновые, карлики, нейтронные и прочие

Пример белого карлика GD 362 показывает, что жизнь после смерти действительно возможна. В этом случае белый карлик начинает отбирать водород у звезды, вокруг которой он вращается по спирали. Оранжевые карлики почти в три-четыре раза более распространены, чем звёзды, подобные солнцу, что облегчает поиски. Например, некоторые белые карлики образуются в результате слияния двух звезд, что изменяет их состав и может способствовать формированию плавучих кристаллов.

Радиоастрономия обнаружила ультрахолодную звезду

Однако проанализировать его удалось только сейчас, для чего использовалась сеть наземных телескопов, установленных в Австралии и Южной Африке. Радиус открытой звезды составляет от 0,65 до 0,95 радиуса Юпитера. Ее масса пока еще точно не определена. Однако ученые предполагают, что эта звезда массивнее Юпитера от четырех до 44 раз. Для сравнения, Солнце в 1000 раз массивнее Юпитера. Обнаружение этого коричневого карлика, излучающего радиоволны при такой низкой температуре, - отличное открытие".

Вероятность все же отыскать такое тело была оценена всего в несколько процентов. Препринт работы доступен на сайте arXiv. Данные наблюдений за экзопланетами показывают, что тела планетарного масштаба с массой, сравнимой с Юпитером, часто обнаруживаются у солнцеподобных звезд. При этом в модели образования планет за счет аккреции вещества протопланетного диска на твердое ядро, планеты-гиганты должны реже встречаться или вообще не встречаться вокруг красных карликов.

Однако такие объекты все равно обнаруживаются , например, у звезд с массой менее 0,3 массы Солнца известны два экзогиганта — LHS 252b с массой 0,46 массы Юпитера и GJ 83.

Используя другие наблюдения, астрономы могут определить диаметр, плотность планеты и даже состав атмосферы. Ученые намерены продолжить наблюдения и изучение планеты TOI-2257 b. Они также надеются получить новые данные с помощью космического телескопа «Джеймс Уэбб». Екатерина Гура.

По словам Блэкмана, это первый раз, когда микролинзирование было использовано для обнаружения белого карлика, и это только пятый белый карлик, который когда-либо был обнаружен с экзопланетой. И как окно в наше будущее, ни один из других белых карликов не может служить убедительной солнечной заменой. По словам Блэкмана, две экзопланеты очень близки к своим белым карликам - это лишь часть расстояния, на котором Меркурий вращается вокруг нашего Солнца. Астрономы не знают, как они туда попали. Другая экзопланета вращается вокруг белого карлика и пульсара, или пульсирующей нейтронной звезды.

Круто, но не то, что у нас на заднем дворе. Последняя планета вращается так далеко от своего белого карлика, что астрономы даже не уверены, принадлежит ли она этой звезде, говорит Блэкман, поэтому ни одна из них не подходит. Система, которую обнаружила команда Блэкмана, представляет собой одинокую звезду с газовым гигантом примерно на 40 процентов больше Юпитера, который движется по примерно схожей с ним орбите.

У карликовой звезды нашли две суперземли

Астрономы говорят, что найденный крошечный белый карлик, названный ZTF J1901+1458, родился как раз из пары двух "постаревших" звезд. Белые карлики — это выгоревшие ядра потухших звезд, которые по мере угасания раздувались, превращаясь в красного гиганта, но по окончании этой фазы не обладали достаточной массой. Астрономы обнаружили двойную звездную систему, в которой материя перетекает на белый карлик с звезды-компаньона.

Похожие новости:

Оцените статью
Добавить комментарий