Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей.
Что такое CRISPR?
- Журнал «Московская медицина» - Применение искусственного интеллекта в московском здравоохранении
- Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине | Аргументы и Факты
- Повышение качества
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
- Предварительный просмотр:
- Данные о пациентах: доскональная обработка
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков. Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза. Созданные лекарственные средства ингибируют рецептор DDR1, который участвует в развитии болезни. Для этого ИИ потребовался 21 день, после чего ученые выбрали наиболее подходящие варианты препаратов и протестировали их на лабораторных животных. На это ушло еще 25 дней.
Таким образом на выбор потенциального лекарства потребовалось всего 46 дней. Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США.
Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований.
В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза. Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной. Искусственный интеллект всего за 3 недели создал нужный алгоритм, ученые выбрали наиболее подходящие варианты, за 25 дней провели тестирование новых лекарств на животных. Для выбора оптимального варианта потребовалось 46 дней. Без ИИ на это потребовалось бы более 8 лет и несколько миллионов долларов. Активное внедрение искусственного интеллекта в медицину — это возможность наконец-то найти лекарства от заболеваний, которые на сегодняшний день считаются неизлечимыми. Это болезнь Альцгеймера, рассеянный склероз и множество других патологий, которые становятся причиной преждевременной инвалидности или смерти. Использование искусственного интеллекта в медицине для автоматизации данных о пациентах Информация о пациентах обычно хранится в медицинских карточках. У каждого медучреждения своя картотека.
Из-за этого процесс сбора анамнеза и постановки диагноза затягивается на неопределенное время. Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными. Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными. В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера. Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам.
Возникают и морально-нравственные аспекты — кто несет ответственность за принятое и непринятое решение. Эта проблема рождается в самом алгоритме: он гибкий и критерий «не навреди» не всегда самый быстрый или дешевый способ лечения пациента.
Разработчики могут установить параметры для системы, которые не совпадают с медицинской этикой и это также может повредить здоровью пациентов. Вопрос потери конфиденциальности тоже стоит довольно остро — данные пациента должны быть защищены от несанкционированного доступа, а использование ИИ в медицине может невольно повысить риск утечки личной информации. Еще одна проблема — неуместное лечение. Может возникнуть ситуация, когда ИИ предлагает протокол, который не подходит пациенту или его приоритетному заболеванию, что может привести к серьезным последствиям. Алгоритмы ИИ могут быть недостаточно точными в отношении определенных групп пациентов, таких как дети, пожилые люди и беременные женщины. Наконец, использование ИИ может создать зависимость от технологии и уменьшить важность роли врача в лечебном процессе или даже вызвать что-то новое — типа «киосков самолечения». Перспективы ИИ-медицины Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Нейросети и другие формы ИИ используются для диагностики, лечения и прогнозирования различных заболеваний.
В будущем мы можем ожидать ещё большего расширения использования нейронных сетей в медицине, и она может стать одной из главных областей применения ИИ. Однако, необходимо учитывать, что использование нейросетей требует от специалистов тщательного контроля работы систем и ответственного подхода к принятию решений на основе анализа данных. Перспективны любые направления — от назначений индивидуальной программы диспансеризации, до ранжирования рисков пациентов. Последнее особенно интересно: рисковое управление на математическом уровне, позволит намного эффективнее использовать ресурсы. Еще одно важное направление — снижение отчетно-аналитической нагрузки на врача и медицинскую организацию в целом.
Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок. Например, некоторые сервисы, помимо анализа изображений, автоматически заполняют врачебное заключение. Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами. Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения.
Перспективы применения ИИ
- Применение искусственного интеллекта в медицине
- ИИ в медицине: тренды и примеры применения
- Новости партнеров
- Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
- Как искусственный интеллект создает лекарства
Применение искусственного интеллекта в московском здравоохранении
Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Сбор данных и искусственный интеллект в медицине. Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний.
Искусственный интеллект в медицине — не конкурент, но помощник
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли | Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. |
ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр | «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. |
Роман Душкин: «Медицина — это область доверия» | В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. |
Обзор Российских систем искусственного интеллекта для здравоохранения | “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. |
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ | Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. |
Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины
В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований.
Национальная база медицинских знаний
Одной из самых важных функций искусственного интеллекта в диагностике редких и генетических заболеваний является распознавание нежелательных генетических вариантов. Используя мощные алгоритмы, искусственный интеллект может анализировать генетическую информацию пациента и сравнивать ее с базами данных геномов, чтобы идентифицировать редкие или мутационные гены, которые могут быть связаны с заболеванием. Благодаря такому анализу искусственный интеллект может помочь в определении вероятности развития определенного генетического заболевания у пациента, что позволяет врачам принимать ранние меры по предупреждению или лечению. Он также может помочь в выборе наиболее эффективных методов лечения, учитывая индивидуальные особенности пациента и его генетическую предрасположенность. Кроме того, искусственный интеллект может помочь в исследованиях редких и генетических заболеваний путем анализа большого объема данных о пациентах. Это позволяет ученым выявлять новые паттерны и корреляции, определять новые подтипы заболеваний и разрабатывать инновационные методы лечения. Искусственный интеллект является мощным инструментом в борьбе с редкими и генетическими заболеваниями, обеспечивая более точную диагностику, персонализированное лечение и новые направления исследований. Это открывает новые перспективы для пациентов, страдающих от этих сложных состояний, и помогает предотвратить прогрессирование заболевания и улучшить качество их жизни. Искусственный интеллект в процессе лечения: персонализированная медицина и индивидуальные прогнозы Искусственный интеллект ИИ в медицине привносит новые возможности в процесс лечения, делая его более персонализированным и эффективным. Благодаря ИИ, врачи и исследователи получают доступ к огромным объемам данных, анализ и обработка которых помогают прогнозировать результаты лечения и предсказывать индивидуальные характеристики пациентов.
Использование ИИ в процессе лечения способствует развитию персонализированной медицины, где каждому пациенту предлагается индивидуальный подход и оптимальный план лечения. Алгоритмы машинного обучения и искусственные нейронные сети позволяют анализировать множество факторов, таких как генетическая предрасположенность, медицинская история, прогнозируемые реакции на определенные лекарственные препараты и другие факторы, которые могут влиять на эффективность лечения. Искусственный интеллект также помогает врачам прогнозировать и предотвращать возможные осложнения и побочные эффекты лечения. Анализ данных, полученных от предыдущих пациентов с аналогичными характеристиками и диагнозами, позволяет предсказывать вероятность возникновения определенных проблем и рекомендовать соответствующие меры по их предотвращению. Применение ИИ в медицине также способствует улучшению диагностики. Алгоритмы искусственного интеллекта могут сравнивать медицинские снимки и анализировать отклонения, которые человеческий глаз может упустить. Таким образом, ИИ помогает врачам выявлять заболевания на более ранних стадиях и принимать соответствующие меры для лечения их. Искусственный интеллект в медицине — это один из инновационных инструментов, который помогает улучшить процесс лечения пациентов. Персонализированная медицина и индивидуальные прогнозы, основанные на анализе данных, позволяют врачам предоставлять наиболее оптимальные варианты лечения каждому пациенту в зависимости от его индивидуальных потребностей и рисков.
Это открывает новые возможности для более эффективного и успешного лечения пациентов в будущем. Возможности искусственного интеллекта в развитии новых методов лечения и терапии Искусственный интеллект предоставляет огромные возможности для развития новых методов лечения и терапии в медицине. Благодаря использованию алгоритмов искусственного интеллекта, медицинские учреждения и специалисты в области здравоохранения могут значительно улучшить качество и эффективность лечения. Одной из главных возможностей искусственного интеллекта является диагностика заболеваний. Алгоритмы машинного обучения позволяют проводить более точные и быстрые анализы медицинских данных, выявлять скрытые паттерны и предсказывать вероятность развития определенных заболеваний. Это позволяет раньше обнаруживать опасные состояния пациентов и принимать соответствующие меры для их лечения.
Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу. Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет. Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов. И возможно, не все сразу принесут желаемые результаты. Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места. Насколько они достоверны? И это, безусловно, гигантские объемы данных. Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины. Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных. Совместно мы определяем набор необходимых сведений, определяем требования к обязательности полей — стремимся собирать только востребованные данные. Эта работа позволяет нам собирать данные не «в один котел» наряду с неструктурированными данными так называемого озера данных, а в структурированном виде с формализованными значениями там, где это нужно и возможно. Это важно для синхронизации понятийного аппарата, одинаковой интерпретации сущностей в физическом и цифровом мире. При формировании нового стандарта оказания экстренной помощи на фактических данных мы увидели рассогласованность в наименованиях и емкости терминов одних и тех же лабораторных и инструментальных исследований клинический анализ крови или общий клинический анализ крови — минимальное отклонение в одно слово, а для анализа и обработки — это разные единицы данных. В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины. В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением. С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения. В арсенале столичных рентгенологов сегодня 6 комплексных сервисов для анализа КТ органов грудной клетки, органов брюшной полости. Такие сервисы в рамках одного исследования выявляют сразу несколько патологий и формируют заключение. Всего в рамках проекта ИИ-сервисы проанализировали уже 12 миллионов лучевых исследований.
Ключевые достижения цифровых платформ базируются на данных В 40 раз с 2019 года вырос объем медицинских данных, ежедневно регистрируемых в Федеральном реестре электронных медицинских документов. Эта информация доступна для машинной обработки, что способствует целям развития ИИ в здравоохранении, полагает Дмитрий Темнов. О необходимости работы с разными источниками данных рассказала Елена Соколова Sber AI Lab; лаборатория искусственного интеллекта «Сбера» : «Это и медицинские тексты, и изображения, и сигналы. Например, в 2021 году благодаря анализу медицинских сведений мы создали решения для определения вероятности нового коронавируса по кашлю, и Symptom Checker — решение для анализа симптоматики заболевания пациента и подсказки, к какому врачу с такой симптоматикой лучше обратиться». В планах Sber AI Lab — развивать направление популяционного анализа населения для выявления пациентов из группы риска развития хронических болезней. Этот проект базируется на анализе электронных медкарт. А еще один проект — персональная комплексная диагностика пациента, которая также будет основана на изучении ИИ его медкарты. Пример такого проекта мы реализовывали в 2022 году вместе с правительством Москвы. Речь идет о проекте диагностического ассистента. Разработанная модель ИИ анализирует всю содержащуюся в медкарте информацию: жалобы, результаты инструментальных и лабораторных исследований, анамнез, описание заключений — и выдает второе мнение врачу. Модель обучалась на обезличенных данных более чем на 30 млн визитов пациентов», - поделилась Елена Соколова из лаборатории искусственного интеллекта «Сбера». В медицине большинство сервисов для обработки диагностических изображений ориентировано на лучевое исследование, говорит Анна Мещерякова, гендиректор компании «Платформа «Третье мнение»: «Уровень зрелости этого направления самый высокий: данные — цифровые, инфраструктура наиболее готова к внедрению ИИ. Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики». Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года. Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова.
Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью. Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев. Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников. В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний. Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т.
Искусственный интеллект в медицине и здравоохранении
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы | Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. |
Топ-7 прорывов в медицине в 2023 году | Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины |
Машины лечат людей: как нейросети используют в российской медицине | Москва | ФедералПресс | Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. |
AI-платформа для анализа медицинских изображений
Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее. Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона. То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней.
Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует.
Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии.
Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов.
У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник.
Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию.
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
В это же время Н. Винер создал свои основополагающие работы по кибернетике. Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине.
В 2021 г. Для сравнения, в 2020 г. Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны.
Предварительный просмотр:
- Как работают нейронные сети в медицинской сфере?
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
- ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня
- Искусственный интеллект в медицине: добро или зло?
- Направления деятельности и рабочие группы
ИИ в медицине: тренды и примеры применения
Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”.
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
Помогают врачам и ученые из ИТМО. Они создали алгоритм, который может определить признаки инфаркта миокарда. Чтобы создать такой алгоритм, ученые обучили модель более чем на 20 тысячах записях ЭКГ. Вот она обратила внимание на эти изменения, и когда врач смотрит, и у него эта кардиограмма с подписью инфаркт, он смотрит на кардиограмму, эти отведения, и согласен с тем, что сделала нейросеть», — отметила доцент факультета инфокоммуникационных технологий ИТМО Александра Ватьян. Однако юристы убеждены — несмотря на пользу и помощь искусственного интеллекта, работу главного звена в этой цепочке — врача, он не заменит. Если мы рассматриваем искусственный интеллект как автономную систему, которая подменяет работу врача, об этом речи не идет.
Все системы-роботы на сегодня управляются человеком», — прокомментировала медицинский юрист Наталья Патрушева. К слову, в феврале этого года Госдума приняла в первом чтении законопроект, в котором говорится о создании специальной комиссии в случае причинения вреда искусственным интеллектом. Она будет заниматься выявлением обстоятельств, в результате которых был причинен вред.
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2? Столкнувшись с трудностями борьбы с коронавирусом, мы в очередной раз заострили внимание исследователей на важности аналитики, в частности, аналитики эпидемиологической обстановки в мире. К этой сфере исследований сейчас наблюдается повышенный интерес, и это понятно: никто не хочет вновь пережить то, что до сих пор происходит в мире с декабря 2019 года в процессе борьбы с пандемией. Во избежание повторения событий последних двух лет группа учёных с моим непосредственным участием в настоящее время проводит внедрение предиктивной аналитики, которое реализуется с помощью искусственного интеллекта и позволяет моделировать различные сценарии развития событий и анализировать ход эпидемий, что даёт возможность заранее подготовить систему здравоохранения к вероятности масштабного противостояния очередным заболеваниям и «предсказать» их возможные последствия. Современные технологии необходимы и административному аппарату, и непосредственно в лечении. К примеру, давно установлено, что некоторые элементы высокоточных операций лучше доверить автоматике, исключив тем самым влияние человеческого фактора и снизив вероятность ошибок. Думаю, что в дальнейшем доля участия ИИ в непосредственном лечении, а также в последующем сопровождении пациентов будет только увеличиваться.
Как Вы считаете, обоснована ли на данном этапе развития российской медицины такая статья расходов? Несомненно, что потребуются значительные финансовые ресурсы, однако столь же очевидно, что такие вложения имеют долгосрочную отдачу.
Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта.
Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки.