Порядка 30% от месячной нормы осадков прольется на Москву в субботу, сообщил ведущий специалист центра погоды "Фобос" Евгений Тишковец в своем Telegram-канале.
Композитная карта
Такое развитие синоптической истории ранее прогнозировали и местные синоптики: «29 апреля обходными путями до Урала доберется черноморский циклон, которому придется обогнуть массив антициклона на востоке Европейской части России, прежде чем подобраться к нашему региону. Циклон вызовет 29-30 кратковременные дожди и понизит температуру на 8-10 градусов», рассказывала главный синоптик Уральского УГМС Галина Шепоренко. Что касается детализированной сводки погоды для Челябинской области, то 27 апреля будет облачно с прояснениями, в северной половине местами пройдут небольшие дожди, днем в субботу возможны грозы. Температура воздуха предстоящей ночью плюс 4-9, при прояснении — до минус 1, днем 27 апреля — плюс 18-23.
На карте качества воздуха вы увидите области как с чистым воздухом, так и области загрязнения воздуха различными примесями по европейскому стандарту CAQI: 0 - воздух абсолютно чистый, 100 - воздух крайне загрязнен. На сайте «Метеосервис. Погода в Москве и Санкт-Петербурге представлена с точностью до районов, на очереди другие крупные города России.
Опыт показывает, что прогнозирование погоды в Москве с точностью до улицы или дома не имеет особого смысла: при значительном увеличении вычислений, точность прогнозов растет на доли процента.
Что же, не буду тогда вдаваться в технические сложности, постараюсь писать более понятно. Итак, прогноз погоды со спутника. Такой прогноз называется наукастинг, обычно он делается на ближайшие часы до 2-6 часов вперед. Про спутниковые данные уже рассказывал, что же такое метеорологические радары? Это доплеровские радиолокационные станции, которые позволяют определять координаты выпадения осадков, направления их движения и их тип. Расположение радаров на территории Росси приведено ниже взято отсюда Как видно, в основном они располагаются в Европейской части России.
Все что дальше Урала - естественно, будет работать плохо. Поэтому для этих территорий применяют модели численного прогноза погоды вместо радаров.
Цветные осадки: дождь с песком придет на Южный Урал 26 апреля 2024, 13:53 Осадки с небольшим содержанием песка придут в Челябинскую область 27 апреля в Челябинской области ожидаются дожди подверженные влиянию пыли из пустыни Сахара. В нескольких регионах, в том числе на Южном Урале, 27 апреля прогнозируют дожди, подверженные влиянию пыли из пустыни Сахара.
В некоторых регионах России уже прошли оранжевые дожди.
Search code, repositories, users, issues, pull requests...
Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп» - Доступ | Прогноз осадков на 2 часа (наукастинг). Сотрудники «Фобоса» предупредили россиян о мощнейшей за шесть лет вспышке на Солнце. Погода в Казахстане 16 февраля: ожидаются сильные морозы, на юго-востоке — осадки. Фобос – последние новости. |
А можно поточнее? Как делается прогноз погоды и можно ли его улучшить? | наукастинг, который позволяет выпускать прогноз об опасных явлениях погоды на ближайшие несколько часов. |
Больше всего осадков в городе 2024
Грозовые дожди в Новгородской области. Сегодня Всемирная метеорологическая организация считает наукастингом прогноз на два часа вперёд. точный и подробный прогноз погоды в любом уголке мира на сегодня, завтра и неделю. Прогноз осадков на 2 часа (наукастинг). Согласно прогнозу, который озвучил ведущий специалист центра погоды «Фобос» Евгений Тишковец, первый весенний месяц будет холодным – усилятся морозы, будет идти снег. Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков. Прогноз осадков на 2 часа (наукастинг).
Композитная карта
Чтобы отрисовать красивые анимированные карты, компьютеры ежесекундно производят огромное количество математических операций, сопоставляя данные о прогнозе с картой. Так выглядит карта ветров в Яндекс. Погоде Так выглядит карта ветров в Яндекс. Погоде В 2018 году мы прошли ещё один важный этап в развитии гиперлокального прогноза: добавили в алгоритм расчёта данные со спутниковых снимков, эта технология получила название спутникового наукастинга.
Снимки со спутников позволили повысить точность прогноза в зонах со слабым радарным покрытием и снизили зависимость прогноза от радиолокаторов, которые иногда выходят из строя. Самым сложным оказалось вывести данные с радаров и спутников на одной карте, ведь нужно было согласовать их по времени и правильно склеить. С этой задачей помогла нейросеть — благодаря хитрой склейке на карте незаметны границы зон действия радаров и нет резких изменений областей осадков на стыках радаров и спутника.
Они позволяют строить точные прогнозы, но у каждого из них есть недостаток: станций не так много, у радаров есть погрешности из-за рельефа местности, зданий и птиц, а спутники висят над экватором, поэтому высокие широты, где и находится Россия, на снимках не очень хорошо видны. Выход есть: можно попросить людей рассказывать нам о погоде. Возможно, вы видели в Яндекс.
Погоде вопрос типа «На улице дождь?
Мониторинг метеорологических условий и состояния поверхности дорог Контроль качества данных Формирование и передача сообщений в ИТС Контроль состояния поверхности дорог коэффициент сцепления Специализированный прогноз зимней скользкости на 4 часа Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Подготовка рекомендаций по количеству внесения реагента Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Наукастинг осадков по данным ДМРЛ на 2 часа Мониторинг состояния автомобильных дорог, рекомендации по обработке Наукастинг осадков по данным ДМРЛ на 2 часа Специализированный прогноз зимней скользкости Для специализированного прогноза зимней скользкости используются: Численная гидротермодинамическая модель пограничного слоя атмосферы Данные дорожных метеостанций.
Распределение атмосферного давления и осадков на Земле 6 лет назад. Просмотры: 36658 Youtube - Образование.
Обучение - Znaika TV. Погоды 6 лет назад. Прогноз осадков на два часа — Алексей Преображенский 5 декабря 2016 года команда Яндекс. Погоды запустила алгоритм, предсказывающий осадки на ближайшие два часа....
Это привело к очень большим проблемам с транспортом, пробки на федеральных трассах стояли несколько дней. Согласно нашей базе данных, 2010 год до сих пор занимает первое место по количеству опасных метеорологических явлений. Вы рассказали про вспышку торнадо. Как вообще смерчи образуются в Пермском крае? Есть такое обывательское представление, что смерчи образуются где-то над степями, над прериями, по аналогии с США. На самом деле ничего подобного. Как раз леса очень сильно способствуют возникновению такого рода явлений, потому что они обеспечивают повышение относительной влажности воздуха, а это необходимо, чтобы образовался смерч. Еще нужен низкий уровень конденсации. Его можно определить по облакам.
Если нижняя граница облаков расположена ниже высоты 1,5-2 км, то вероятность возникновения смерчей увеличивается. Над лесами такие условия формируются часто, поэтому большинство самых мощных смерчей фиксируются в лесной зоне. Ваша докторская диссертация и другие проекты во многом касаются темы смерчей. Я и мои коллеги активно работаем по этой теме с 2016 года. Мы занимаемся выявлением смерчей по повреждениям лесов, ветровалам и собираем базу данных смерчей в лесных зонах России. За период с 2001 года по настоящее время выявлено порядка 750 случаев. В прошлом году мы опубликовали базу данных по смерчам в Пермском крае с 1984 года до сегодняшнего дня. Зафиксировано порядка 60 случаев. Это не значит, что у нас каждый год бывает по 2-3 смерча.
В Пермском крае бывает примерно один сильный смерч за 10 лет. Они наблюдались в 1984, 1993, 2005, 2006, 2009 и 2018 годах. Учитывая, что территория региона огромная, это в общем-то очень низкая повторяемость. Поэтому если вы живете в Пермском крае, вероятность увидеть торнадо довольно низкая. Вероятность от него пострадать — еще ниже. Однако это событие хоть и редкое, но реально опасное. Часто смерчи приводят к масштабному ущербу. Есть ли у вас видео смерчей? Например, два таких видео были сняты во время Янаульского смерча в Башкирии 29 августа 2014 г.
В той местности проходил смерч, он был достаточно продолжительным и принес серьезные разрушения. В итоге получилась интересная видеозапись.
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым
У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. Раньше карта осадков давала прогноз на два часа вперед с десятиминутным интервалом. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг). Главная» Новости» Больше всего осадков в городе 2024.
АИИС «МетеоТрасса» для автодорог
Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта. Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно. Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат. Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения. Обученная часть — дельта от обучаемой части, изменение тензора.
Мы берем запомненное состояние, с помощью деконволюции делаем из него какую-то карту выпадения осадков, складываем их с облаками и двигаем их. Такова нынешняя архитектура сети. Она работает, предсказывает, и результаты получаются довольно хорошими — вы их можете увидеть на сайте. Но они довольно хорошие с точки зрения метрик data science, ROC AUC и F1-меры, а бизнесу интересны не абстрактные циферки и кривые, которые мы рисуем. Бизнесу интересна точность этих предсказаний, точность текста о том, что дождь закончится через 10 минут 20 секунд. Перед нами сейчас стоит другая задача. Сейчас нейросеть обучается с какой-то функцией потерь. Она максимизирует вероятность правильной классификации с помощью бинарной энтропии. А на самом деле надо улучшать другие, бизнесовые метрики — не правильность классификации, а правильность определения времени начала и прекращения осадков.
Исследования о том, как из бизнесовых метрик получить loss-функции для обучения нейросетей, — очень важны и интересны. Мы продолжаем развиваться в нужном направлении. Помимо бизнесовых требований, у нас еще есть довольно много планов по развитию текущего решения. Например, в данный момент мы используем только снимки, но у нас есть огромное количество информации. Самое интересное — радиальная скорость. Радар по доплеровскому эффекту определяет не только наличие частиц в воздухе, но и их скорость. По длине отраженной волны он понимает, с какой скоростью движутся, к радару или от него. Результаты тоже можно использовать для прогнозирования векторного поля. Но к несчастью, у нас есть только радиальная скорость и только в местах, где реально находятся какие-то частицы, осадки.
Можно подмешивать векторные поля из метеомоделирования. Там есть ветра, а можно добавлять и еще что-то — например, температуру. В городах осадки ведут себя по-другому, чем над огромным Балтийским морем. Они над ним пролетают и выпадают уже в Питере. Сейчас нейросеть строит прогноз только по одной зоне, вокруг одного радара. Облако, которое подойдет к границе видимости радара, на следующий радар никогда не перетечет, потому что соседний радар не узнает, что где-то там было облако.
Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар. Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако. Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью. Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону. Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически?
Находясь постоянно в одной точке над Землей, он снимает целиком все Восточное полушарие планеты. Космический аппарат этой серии с высоты 35 786 км способен проводить многоспектральную съемку в видимом и инфракрасном диапазонах с разрешением 1 км и 4 км соответственно. Снимки делаются каждые полчаса. Низкоорбитальные спутники «Метеор-1» и «Метеор-2» имеют более низкую орбиту — 825 километров, это позволяет получать более детальную информацию, чем при использовании расположенных на гораздо более высокой орбите геостационарных спутников. Оба космических аппарата выведены на солнечно-синхронную орбиту. Вот только «Метеор-1» тоже не функционирует, на орбите он еще находится, но картинку уже не дает. Таким образом, у нашей страны на сегодняшний день только два действующих метеоспутника. Для сравнения, у США на орбите постоянно работают пять метеоспутников и еще один аппарат находится в резерве. Однако стоить сказать, что еще восемь лет назад российских метеорологических спутников в космосе не было совсем. Даже особо точные военные карты с грифом «совершенно секретно» составлялись на основе данных с американских спутников. Благодаря именно спутниковым наблюдениям удается существенно повысить точность прогнозов погоды. Прибор позволяет создавать трехмерные карты температуры воздуха и поверхности, водяного пара и свойств облаков. Имея 2378 спектральных каналов, AIRS дает разрешение более чем в 100 раз больше, чем предыдущие инфракрасные зонды, и обеспечивает более точную информацию о вертикальных профилях атмосферной температуры и влажности. AIRS также может измерять следовые парниковые газы, такие как озон, угарный газ, двуокись углерода и метан. Если вы слышите о том, что озоновый слой над Антарктидой начал восстанавливаться , то это благодаря AIRS, который и это замечает. Есть и другие способы наблюдения за погодой из космоса. Метод скаттерометрии позволяет дистанционно определять скорость и направление ветра в океанах. Скаттерометр — это микроволновой радар, сканирующий поверхность океана и позволяющий измерять удельную эффективную площадь рассеяния, что дает возможность восстанавливать параметры приводного ветра. Радар «видит» волны и определяет куда и с какой скоростью дует ветер. Первый такой прибор был установлен на борту американского космического аппарата SeaSat в 1978 году и впервые доказал возможность точного измерения скорости ветра с орбиты. На орбите уже работало большое количество спутников-скатеррометров. Подобный инструмент RapidScat был установлен на Международной космической станции и действовал с сентября 2014 года по август 2016 года. Создание полномасштабной группировки спутников-скатеррометров позволит более эффективно осуществлять прогнозирование морских штормов, изучать океаническую циркуляцию, взаимодействие атмосферы и океана и их влияние на погоду и глобальный климат. Суперпомощники «Прогноз погоды — это решение сложной математической задачи. В рамках системы уравнений описываются законы атмосферной циркуляции, притока тепла, вертикальных движений. Это очень сложная система, и решать ее можно только на суперкомпьютерах», — объясняет Роман Вильфанд. Сама идея создания прогноза погоды с использованием динамических уравнений была впервые выдвинута английским математиком Льюисом Фраем Ричардсоном еще в 1922 году. Он понял, что динамику атмосферы можно моделировать, выполняя тысячи уравнений, тем самым имея возможность прогнозировать погоду. Однако в докомпьютерный век существовал единственный вариант применения данного численного метода — вручную. Ричардсон подсчитал, что потребуется 64 тысячи человек для выполнения расчетов, необходимых для своевременного качественного прогноза. И хотя это было непрактично, его теория легла в основу прогнозирования погоды по мере совершенствования технологии. Сегодня по всей планете ежедневно и ежечасно собираются миллиарды метеорологических данных, зарегистрированных наземными метеорологическими станциями, метеозондами, океанскими буями и метеорологическими спутниками. Весь этот поток погодных данных направляется в центры обработки метеорологической информации, оснащенные, как правило, самыми современными компьютерами, так как прогноз на завтра нужен уже сейчас, а не завтра или через неделю. Менее мощные машины были бы не способны обработать такое количество данных в приемлемый срок. По состоянию на ноябрь 2016 года, в списке Top500, рейтинге самых мощных вычислительных систем мира, значилось 23 суперкомпьютера, предназначенных для прогнозирования погоды.
Нужно было сделать приёмником температуры воду и заключить её в герметический резервуар. Исаак Ньютон пытался вывести и использовать формулы, которые помогут рассчитать погоду на несколько дней вперёд, и некоторые его расчёты до сих пор не потеряли актуальности. Уже в XVII веке учёным было очевидно, что погода «делается» с помощью движения холодных и тёплых воздушных масс, которые встречаются между собой, всегда образуют в месте встречи возмущение атмосферы и двигаются вроде в более-менее предсказуемых направлениях. Но раз на раз не приходится — формула по-прежнему даёт сбои. Эффект бабочки, или Почему метеорологи ошибаются с прогнозами Главная проблема, как раньше, так и сейчас, состоит в изменениях, которые с этими массами или атмосферными фронтами происходят после их смешения. Они меняют и температуру, и плотность, а, значит, и двигаться начинают немного иначе. В начале ХХ века считалось, что при смешении воздушных масс холодный фронт наступает на тёплый, а на их границе обычно выпадают осадки. Название атмосферным фронтам дал норвежский ученый Якоб Бьёркнес — он писал свою работу во время Первой мировой войны. С появлением радаров и спутников стало понятно, что движение вихревое или турбулентное и взаимное влияние воздушных потоков настолько сложное, что никаких чётких фронтов в этом движении нет. По сути, это бесконечное и хаотическое смешивание и закручивание воздушных струй. Тем не менее движение и модель взаимодействия этих потоков рассчитываются на суперкомпьютерах с относительно высокой точностью, и в этих расчётах учтены огромные массивы данных BigData — многие сотни параметров. Но всё-таки есть множество случайных факторов, которые климатические модели не учитывают. Один из таких параметров, например, цвет поверхности земли чёрный или белый , а попросту — убрана ли от снега дорога, то есть нагревается она или нет. Если дорога чёрная и нагревается, пусть она шириной всего в несколько метров, над ней появляются интенсивные восходящие тёплые воздушные потоки. В расчётах этого потока нет, потому что он совсем небольшой. Но процессы в атмосфере развиваются нелинейно: маленькое движение в общем потоке может дать большой эффект, который исказит картину погоды где-то далеко. Ведь воздух, которым мы сегодня дышим, три дня назад был за тысячу километров от нас. Разумеется, в расчёте климатических моделей никто не учитывает, почищена ли от снега дорога. Отсюда и ошибки. Просчитать, станет ли маленькое искажение большим, нельзя, как «эффект бабочки» — непредсказуемые последствия. Это выражение было впервые произнесено как раз в связи с прогнозом погоды. Американский математик Эдвард Лоренц сказал, что взмах крыльев бабочки в штате Айова может привести к сезону дождей в Индонезии. Что такое наукастинг Ответить на вопрос, будет ли дождь, вроде бы несложно, если мы видим с вышки метеостанции целое скопление дождевых облаков, которые двигаются в определённом направлении.
Карты погоды в Спутнике
это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения. Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. Наукастинг осадков по данным ДМРЛ на 2 часа. прогноз осадков на ближайшие 2 часа. На сайте сервиса можно также найти «погодные новости» из разных регионов России и мира, метеорологические карты и графики, статьи на тему погоды и детский раздел с познавательно-развлекательной информацией.
Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед
Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Главная» Новости» Гидрометцентр наукастинг.
А можно поточнее? Как делается прогноз погоды и можно ли его улучшить?
GISMETEO: осадки в Европе, прогноз осадков на карте Европы | это.> Анимация текущих данных радарных наблюдений. |
Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды | Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. |
Яндекс научился предсказывать осадки на ближайшие 2 часа | По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. |
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым | Прогноз осадков на 2 часа (наукастинг). На портале "Метеовести" центра погоды "Фобос" сообщается, что на Москву надвигается новая холодная и дождливая волна. |
Цветные осадки: дождь с песком придет на Южный Урал | Сегодня Всемирная метеорологическая организация считает наукастингом прогноз на два часа вперёд. |
Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды
Прогноз осадков на 2 часа (наукастинг). По данным центра «ФОБОС», Ленобласть находится под воздействием активного атлантического циклона, центр которого выходит в акваторию Ботнического залива. Смотрите карты погоды высокого разрешения с центром в Спутнике с почасовыми прогнозами погоды осадков, облачности, анимации ветра, температуры, атмосферного давления и индекса качества воздуха. Наукастинг представляет собой детализированный прогноз погоды на ближайшие время (до 2-6 часов), основанный на численном решении системы уравнений гидротермодинамики с учетом процессов в атмосфере.