Впрочем, от идеи сделать вечную батарейку наши ученые не отказались и сконцентрировали исследования на другом радиоизотопе — никеле-63, период полураспада которого 100 лет. Китайский стартап Betavolt представил новую «вечную» батарею, которая может генерировать электроэнергию в течение 50 лет.
Советско-российские разработки. Вечная батарейка
Российские ученые разработали технологию "вечной" ядерной батарейки. Китайская компания "Betavolt Technology" объявила о разработке компактной батарейки на основе никеля-63. Китайский стартап Betavolt представил новую батарею, которая, по их утверждениям, может генерировать электричество в течение 50 лет без необходимости зарядки или обслуживания. Исследователи и учёные из Технического университета Вены изобрели аккумулятор принципиально нового типа.
В КНР разработали «вечную» батарейку
По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами – и Nano Diamond Battery будет не только питать. — Дело в том, что все эти устройства работают от аккумуляторов, — говорит один из авторов разработки — заместитель начальника отдела биотехнологий и биоэнергетики Павел Готовцев. Год 1775 оказался для физики по-своему судьбоносным: «бессмертные» Парижской академии наук, заваленные проектами вечных двигателей, отказались их.
Дух времени
- Вечная энергия: американская студентка нечаянно изобрела "вечную" батарейку
- Изобретена вечная батарейка
- Без зарядки 50 лет: в Китае разработали ядерную батарею
- «Вечная» батарейка на радиоактивных элементах
- Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
- Публикации
Вечная батарейка? Российские учёные сделали элемент питания со сроком работы 10 лет
Это возможно в том числе из-за стабильного автономного питания удалённых зондов, для которых изотопные батареи будут дополнительным фактором стабилизации питания в комплексе с источниками возобновляемых источников энергии ветра ветрогенераторы и солнца солнечные панели и преобразователи в электрический ток. Долговечность и принцип работы изотопных батарей Чем больше период полураспада активного изотопа, тем больший ресурс имеет источник питания на его основе. Вот почему так важны характеристики материалов: к примеру, период полураспада тория-228 составляет 2 года, а америция-241 — около 400 лет. Выбранный плутоний-238 — элемент с 87-летним периодом полураспада. Гарантированный срок службы изделий обозначен разработчиками в 30 лет. Как и в любом «рукотворном» устройстве со сложными элементами, в том числе в РЭА, отдельные элементы изделия неравномерно сохраняют свойства, а общая надёжность зависит от расчёта «наработки до отказа» самых нестабильных компонентов. Поэтому в расчётах долговременности эксплуатации учитываются риски разрушения проводников в том числе с алмазным напылением , деградация поверхности и кристаллов фотоэлементов, возможная потеря вакуума в капсуле.
При нарушении целостности оболочки и корпуса изотопный источник автономного питания можно переместить в новую оболочку, и сохранённая энергия обеспечит разность потенциалов на полюсах. Таким образом, теоретически ядро, если оно сохранено, можно использовать и далее в других источниках питания РЭА. Но вот что крайне важно: чем меньше живёт активный изотоп, тем выше при одинаковой энергии распада и прочих равных условиях его энергоёмкость и отдаваемая в нагрузку полезная мощность. Как мы отметили выше, изотопный источник тока практически лишён эффекта саморазряда, так как реакция происходит только при наличии «внутреннего тока» и ЭДС, связанной с подключением внешней нагрузки. Применяемый в плутониевой электрической батарее принцип преобразования энергии ядерного распада в электрическую называют термофотовольтаическим [4]. Альфа-источник окружён вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц.
Тепло от ионизирующего излучения нагревает капсулу до 1500 К, заставляя её поверхность светиться. Чувствительные и адаптированные к среде фотоэлементы, окружающие капсулу и способные выдерживать колоссальный нагрев окружающей температуры, улавливают эти изменения спектра. В принципе работы изделий особенности фотогенерации: образование подвижных электронов и дырок при поглощении квантов света, в том числе в органических полупроводниках с изменениями от освещённости и температуры. Это знание способствует созданию разных устройств в сегменте органической фотовольтаики, таких как солнечные панели и батареи. Перенос заряда и энергии в конденсатах квантовых точек описан довольно давно [3, 5]. Однако с появлением изотопных источников тока задача моделирования транспорта носителей заряда, необходимого для оптимизации характеристик оптоэлектронных устройств на основе квантовых точек, решается лучше.
Наногибридные материалы Неупорядоченные органические полупроводники применяются в РЭА даже в производстве кристаллов светодиодов. Активно исследуются возможности применения в тонкоплёночных транзисторах, фотовольтаике, сенсорах и др. Преимущества неупорядоченных органических полупроводников перед другими материалами — гибкость, лёгкость, разнообразие свойств и возможность производства по дешёвой массовой технологии. В связи с относительно малой величиной диэлектрической проницаемости поглощение фотона приводит к образованию пар, в которых электрон и дырка разделены в пространстве, но связаны кулоновским взаимодействием геминальные пары. Вероятность полного разделения геминальной пары определяет фотогенерацию свободных носителей заряда: «электронов» и «дырок». Вот почему увеличение эффективности фотогенерации важно для развития устройств органической фотовольтаики и, в частности, солнечных элементов.
Разъяснение феномена и предтечи открытий связано с физическими свойствами наногибридных материалов. Изготовление конденсатов квантовых точек производится доступными методами, но для получения качественного покрытия необходимо тщательно соблюдать технологию и условия изготовления, а также выбирать тип органических молекул, «сшивающих» квантовые точки между собой [5]. Возможность замены лигандов позволяет менять расстояние между квантовыми точками и оптимизировать перенос энергии и заряда. Технология замены лигандов при комнатной температуре облегчает данный процесс, а наногибридные материалы с квантовыми точками разработчики РЭА используют не только для создания фотовольтаических элементов или светодиодов, но и для сложных полупроводниковых структур как основы новейших высокочувствительных сенсоров. Он работал на бета-частицах стронция-90 по термоэлектрическому принципу, почти как термопара: между холодным и разогретым от активного источника полюсами-контактами возникала разность потенциалов напряжение , при подключении нагрузки создавалась классическая электрическая цепь с постоянным родом тока. Интересно, что для безопасной утилизации последних РИТЭГов с автономных антарктических метеопостов в 2015 году снаряжали полярную миссию.
Пока же необслуживаемые метеостанции в труднодоступных районах питают электроэнергией от возобновляемых источников ветра и солнца. В рассматриваемом прототипе изотопной батареи он в 2,5 раза больше. Специальные термо-фотоэлементы, преобразующие свет ближнего диапазона ИК-спектра в электрический ток, дают такой эффект, что энергии тратится меньше [4]. Можно сказать, батарея «сама себя экономит» и является аккумулятором для своей же энергии. Теплопроводность в сердцевине изделия отсутствует, а в перспективе добиваются, чтобы максимум возможной энергии альфа-распада переходил в излучение. Нагрев рабочей зоны капсулы имитирует ТЭН, поэтому вакуум в рабочей камере нужен для исключения конвекционных потерь.
По теме РИТЭГ уместно вспомнить, что тепло, как неизменный спутник процесса радиоактивного распада, уже является условием возникновения электрического тока после соответствующего преобразования. Для иллюстрации этого тезиса уместно вспомнить принцип работы элементов Пельтье; кроме прочего, ими комплектуются электронные устройства охлаждения: кулеры, пурифаеры и др. Из истории автономных элементов питания История автономных элементов питания по-своему любопытна.
Атомные батарейки на плутонии-238, которого потратили 96 граммов, установили в навигационные спутники военных Transit 4A и 4B. Они выдавали 2,5 Вт электрической энергии тепловая была намного больше. Это был 1961 год.
Спустя еще примерно год Transit 4B и некоторые другие спутники были повреждены из-за проведенных США ядерных испытаний в рамках программы Starfish Prime. Тогда на высоте 400 километров взорвали 1,44-мегатонный заряд, устроив небесный фейерверк, а заодно повредив собственную технику. Ведь ядерную энергию воспринимали как-то не всерьез. После проведения испытаний Starfish Prime во многих точках мира наблюдалось полярное сияние. Ошибок случалось немало, в том числе после того, как в гонку «радиоактивных» спутников включился СССР, который вначале использовал полоний-210, а затем перешел на уран-235. Иногда атомные батарейки падали в океан упоминается несколько случаев , другие горели в атмосфере или были уничтожены при запуске.
Были вопросы и к конструкции советских космических аппаратов: ситуацию можно сравнить с водителем, выбрасывающим весь мусор которого тонны из машины в окно — чего только не оказалось на мусорной орбите вокруг Земли! Собственный опыт и опыт «коллег» подтолкнул американских инженеров к тому, чтобы разработать системы, которые активируются лишь после удаления от Земли. Это было важно, так как мощность батареек планировали нарастить. Однако особенно преуспели в этом Советы, которые быстро перешли на киловаттные установки, но уже в 1970-е. Американцы также запустили экспериментальный вариант на 500 Вт и 30—40 кВт тепловой энергии в 1975 году. В 1979 году началось частичное разрушение объекта.
Причины остались неизвестны, предполагалось столкновение. Также считается, что радиоактивные элементы оказались в космосе. Фото: energy. В рамках проекта NERVA, например, были испытаны ЯРДы ядерные ракетные двигатели, относятся к радиоизотопным источникам энергии, как и РИТЭГ , способные произвести до 4500 мегаватт тепловой энергии и 1,1 млн ньютонов реактивной тяги половина тяги маршевого двигателя шаттла , работая до 90 минут. Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась.
Выращенные в лаборатории синтетические алмазы являются самым теплопроводящим материалом в мире, они не пропускают радиацию и в 12 раз прочнее нержавеющей стали. Поэтому носить в кармане портативный Чернобыль должно быть безопасно для здоровья. Во всяком случае так утверждают разработчики.
При этом главный козырь ядерной батарейки заключается в том, что согласно расчетам, она будет работать в течение 28 тысяч лет! При этом Нано-алмазная батарейка: — Производит в 3,48 раза больше электричества, чем стандартная батарея типа АА. Впрочем, пока на руках у них только концепция нового энергетического чуда.
Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Внутренний стержень «фонит» до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены. Теоретически они могут работать совместно с литий-ионными батареями, установленными на большинстве современных устройств. При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час.
Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер.
Создана первая в мире «вечная» батарейка. Она стоит дешевле литиевых аккумуляторов. Видео
В обзоре рассматриваются уже созданные условно «вечные» элементы питания на основе радионуклидов, а также аспекты развития инженерной мысли в области ядерных электрических батарей, процессоров и элементов питания, накапливающих энергию из внешней среды. Ласорла Андрей Тенденции в разработке автономных источников питания Ядерные батареи — автономные источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электрический ток. Выбор ядра специального источника питания зависит также от режима эксплуатации РЭА и других условий. Пока такие электрические батареи работают в условиях очень малой мощности, но перспективы для совершенствования изделий и технологии огромны.
К слову, все достойные внимания разработчики РЭА в мире конкурируют за создание микроконтроллеров конфигурации RISC-V со сверхнизким энергопотреблением, работающих исключительно за счёт сбора энергии из внешней среды: преобразования энергии тепла, света, радиоволн, химической среды и даже продуктов потовых желёз человека и животных. Да, пока такие источники автономного «самопитания» обладают чрезвычайно малой мощностью, но они уже существуют и применяются, в частности, при взаимодействии с имплантатом в устройствах медицинской микроэлектроники. Иногда батарея, аккумулятор или даже ионистор в качестве элемента питания действительно не подходят, если вы проектируете устройство сверхнизкого энергопотребления.
В этой связи рассмотрение технологий создания электрических батарей на основе изотопов с ядерным принципом действия представляется весьма актуальным. Используется 32-битное ядро RISC-V, специально разработанное для обеспечения супернизкого энергопотребления и встроенной функцией сбора энергии. Среди преимуществ масштабируемая, настраиваемая память с низким энергопотреблением, беспроводной интерфейс с поддержкой Bluetooth Low Energy и радиоканал в формате IEEE802.
Уже несколько лет доступны саморастворяющиеся имплантаты и даже водорастворимые в горячей воде печатные платы, что удобно для безопасной и полной переработки. На фоне этих инноваций прототип радиоизотопной батареи малой и средней мощности на основе бета-распада никеля-63, плутония-238 и других изотопов , а также параллельные разработки по созданию ядерной электрической батареи в КНР представляют огромный интерес. Выбор радиоизотопа и схемы преобразования Области применения ядерных батарей разнообразны: они незаменимы на территориях, удалённых от инфраструктуры, к примеру, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяжённости, в космосе, в устройствах, обеспечивающих специальную связь, и в медицине: везде, где требуется длительный мониторинг без возможности подзарядки или замены источников энергии.
Для изотопных источников применительно к кардиостимуляторам или датчикам артериального давления, электронным анализаторам крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа сужает возможности, поскольку радионуклиды при распаде должны распадаться либо переходить в состояние дочернего ядра. Кроме выбора радионуклида принципиально важным при разработке радиоизотопных источников энергии является выбор схемы преобразователя энергии ядерного распада в электрический ток.
На практике преобразование осуществляется по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в тепловую, химическую, механическую, световую и другие виды энергии, а затем — в электрическую. Концепция оригинальной физической системы на основе 63Ni предложена группой учёных из Института «ЛаПлаза» под руководством Петра Борисюка [7]. Если обеспечить условия эффективной генерации вторичных электронов непосредственно внутри наноструктурированных плёнок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц, на выходе экспериментальной реализации получают относительно простую систему, но довольно результативную с точки зрения состава плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осаждённых на поверхности широкополосного диэлектрика — оксида кремния [7].
Вследствие размерной зависимости энергии Ферми наличие пространственно-неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в электропроводящей системе соприкасающихся друг с другом металлических наночастиц. Их средний размер изменяется в выделенном направлении, что приводит к возникновению разности потенциалов на полярных выходах напряжению. Объяснением этого эффекта с помощью знаний физики ядерной реакции является демонстрация формирования нанокластерных плёнок никеля-63 с градиентным распределением наночастиц.
В процессе реакции достигают двух эффектов. Во-первых, формируются покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, происходит преобразование энергии бета-распада 63Ni в ток электронов электрический ток без использования дополнительных сложных для реализации полупроводниковых систем. Исследование электрофизических свойств формируемой нанокластерной плёнки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество впервые были опубликованы в журнале Applied Physics Letters коллективом авторов [7].
Поскольку наноструктурированные плёнки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределённым спектром излучения в заданном спектральном диапазоне, процесс окисления плёнки приводил к образованию оксидной оболочки поверх металлического ядра нанокластера. Затем происходило формирование совокупности металлических нанокластеров с их пространственным распределением по размерам, но в одном слое оболочке оксида. Относительно малые размеры нанокластеров 2—15 нм способствуют проявлению квантовых свойств полупроводниковых материалов с широким разбросом значений ширины запрещённой зоны, а это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и, следовательно, обеспечивает возможность коррекции спектра излучения под определённый диапазон длин волн.
Это важное отличие перспективного открытия в разработке отечественных ученых, поэтому энергоэффективность и энергосбережение современных тепловых источников электроэнергии может выйти на новый уровень. Понимая конкурентное значение технологии, подобными исследованиями занимаются во всём мире. Китайские успехи Китайский стартап Betavolt из Пекина представил первую в мире миниатюрную аккумуляторную батарею с ядерной начинкой: модель BV-100.
Первенство объясняют тем, что это первый случай, когда атомная энергия реализована в столь миниатюрной модели. Отсюда и название батареи — «ядерная». Миниатюризация — основной отличительный признак инновации.
Батареи можно подключать параллельно и последовательно, создавая модули в электрической цепи для увеличения мощности источника питания и суммарного напряжения. Заявленная мощность одной батареи с изотопом никель-63 и алмазными полупроводниками сравнима с источником автономного питания в 100 мкВт, а напряжение составляет 3 В постоянного тока [6]. Размеры батареи меньше средней монеты.
На рис. Принцип работы батареи основан на преобразовании энергии, выделяемой при распаде изотопов, в электрический ток. Соответственно, речь идёт об источнике энергии, у которого понятие саморазряда отсутствует вообще, а рабочий процесс начинается только после подключения в электрическую цепь при подключении к контактам батареи устройств нагрузки.
Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Отметим, что эта микро-батарея может использоваться во всех имплантируемых медицинских устройствах. Подписывайтесь на нашу страницу новостей "Независимый Красноярск" в telegram. Мы в популярных социальных сетях Загрузка.
Компактный размер позволяет использовать сразу несколько ядерных батарей для производства большего количества энергии При этом смартфоны, в которых используется даже один миниатюрный радиоизотопный генератор, никогда не нужно будет заряжать, а дроны смогут летать без подзарядки в течение всего срока эксплуатации.
Как утверждают в стартапе, многослойная конструкция батареи позволяет избежать возгорания или взрыва из-за внешнего воздействия. Она также способна работать при температуре от минус 60 до плюс 120 градусов Цельсия. Фото: Betavolt Фото: Betavolt Также в компании заявили, что атомная батарея абсолютно безопасна для здоровья человека и окружающей среды, не генерирует ионизирующего излучения и пригодна для использования в медицинских устройствах, таких как кардиостимуляторы и искусственные сердца. После распада 63 изотопа превращаются в стабильный изотоп меди, который нерадиоактивен и не представляет никакой угрозы. США и Европа также работают над созданием миниатюрных ядерных батарей Ядерные батареи или радиоизотопные генераторы — это устройство, в которых энергия распада радиоактивного изотопа преобразуется в электрическую энергию. От ядерных реакторов они отличаются тем, что в них не используется цепная реакция.
Американский стартап показал «вечную» ядерную батарейку
изобретение, родственное скатерти-самобранке и ковру-самолёту. В зависимости от потребляемой мощности аккумулятор, который никогда не требует подзарядки, проработает весь срок службы и дольше. Батарейка, которая проработает в 14 раз больше, чем прошло лет с начала нашей эры. /. В дальнейшем наработки планируется использовать для создания первого прототипа "вечной" ядерной батарейки.
Инженеры КНР готовы выпустить на рынок «вечную» ядерную батарейку для гаджетов
В Китае создали ядерную батарейку, способную проработать 50 лет Грядет революция в мобильной технике Китайский стартап Betavolt представил новую батарею, которая, по их утверждениям, может генерировать электричество в течение 50 лет без необходимости зарядки или обслуживания. Betavolt заявила, что батарея уже находится на стадии пилотного тестирования и в конечном итоге будет массово производиться для коммерческих устройств, таких как телефоны и дроны. Батарея работает, преобразуя энергию, выделяемую при распаде изотопов, в электричество.
Группа самарских ученых подала заявку в Роспатент на регистрацию революционной энергетической технологии. С ее помощью кардиостимулятор будет работать без подзарядки до самой смерти.
А нефтяные компании смогут снизить штат вахтовиков, проверяющих трубопроводы в отдаленных северных районах. Технология представляет собой преобразование энергии, излучаемой радиоактивным источником, в электрическую.
Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер. Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям.
Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции.
История почти забытой технологии 53 577 07 марта 2020 в 8:00 Автор: Ян Альшевский Почему ядерные батарейки так и не стали популярны? История почти забытой технологии Автор: Ян Альшевский В прошлом футуристы видели транспорт будущего движимым за счет энергии от атомных источников питания. Маленькая батарейка обычно светящаяся — так передавали образ художники заменила бы тысячи литров бензина или дизельного топлива. Почти бесконечную энергию могли бы использовать не только машины, но и корабли, отправленные бороздить бескрайние просторы Вселенной. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. Но на деле «атомные батарейки» используются давно — аж с шестидесятых годов прошлого века. Каждая из них заслуживает отдельной истории.
В качестве «движущей» силы они используют нагрев, то есть тепловую энергию. Это одно из основных отличий от атомных реакторов, в которых происходит цепная ядерная реакция. Реакторы используются давно, однако они имеют большие габариты и вес, а ведь мы говорим о «космических батарейках». РИТЭГи планировалось использовать для космических аппаратов, но позже сферу применения расширили в том числе на медицинскую технику, например электрокардиостимуляторы. Первыми новую технологию, по крайней мере официально, внедрили американские военные в спутниках Transit 4A и 4B. Батарею для них разработали в рамках программы SNAP-3. Transit 4A находится в нижней части — это цилиндр. Фото сделано незадолго до запуска в 1961 году.
Это навигационный спутник, позволявший получать данные вне зависимости от погоды на поверхности. Фото: Johns Hopkins University Applied Physics Laboratory Ей предшествовало появление SNAP-1 — тестовой платформы, в которой применяли цикл Ренкина цикл преобразования тепла в работу с использованием изотопа церия и ртути в качестве теплоносителя. Инженеры продолжили работу над проектом, пытаясь решить вопрос с защитой будущих астронавтов и груза от радиации, удержав вес системы в определенных рамках: иначе ракета не взлетит. В итоге «щитом» в SNAP-2 стал усеченный конус, заполненный гидридом лития. Реактор разместили вверху, капсулу с условной командой и грузом — за нижней частью. Последовавшие испытания показали, что идея хороша, да только не работает: в определенных условиях, вероятность появления которых высока, смертельная доза радиации пройдет сквозь защиту.
Представлена «вечная» батарейка на радиоактивных элементах
Вечные батарейки: новые изобретения ученых из Поднебесной очистят планету | Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. |
Представлена «вечная» ядерная батарейка | «Использование биотопливного элемента (БТЭ) позволит предотвратить подобные оперативные вмешательства по замене аккумулятора, так как механизм использует в качестве топлива. |
Американский стартап показал «вечную» ядерную батарейку — Будущее на | Батарейки на основе данной технологии обладают небольшим весом и устойчивостью к радиации. |
Вечная батарейка? Российские учёные сделали элемент питания со сроком работы 10 лет | труднодоступные места очень легко снабдить энергией", - сказал Ковальчук. |
Изобретена вечная батарейка | Батарейки на основе данной технологии обладают небольшим весом и устойчивостью к радиации. |
Как получить тяжёлый никель
- Алмазные батареи, работающие на ядерных отходах, могут прослужить тысячи лет
- Комментарии
- Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии
- Вечная батарейка может прослужить тысячи лет
- В Китае создали «вечную» ядерную батарею для смартфонов: Гаджеты: Наука и техника:
Вечная энергия: американская студентка нечаянно изобрела "вечную" батарейку
Автономный источник питания "Этак" | Специалисты МГУ вместе с коллегами из химико-технологического университета заявили, что создали батарейку, срок годности которой достигнет 100 лет. |
Советско-российские разработки. Вечная батарейка / Александр Эйпур | В КНР разработали «вечную» батарейку 14 января, 17:57. В китайской стартап-фирме Betavolt сообщили о разработке уникального ядерного аккумулятора, способного снабжать. |
Наука РФ - официальный сайт | А сколько процентов емкости потеряет эта "вечная" батарейка после хотя бы пробега? |
Невероятно, но в России создана «Вечная батарейка»!
Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | РБК Тренды | уникальные параметры и широкая востребованность. |
Советско-российские разработки. Вечная батарейка | Не вечная батарейка, наверное, а то сразу захочется и вечного двигателя! |
Ученые разработали вечные батарейки со сроком службы в тысячи лет | Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. |
Ядерные батареи будущего
Украдено в России: китайцы создали «вечную батарейку» для электромобилей Главная беда любой электрической легковушки — необходимость постоянно подзаряжать ее аккумуляторы. Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. И несмотря на то, что новость об атомной вечной батарейке полугодичной давности, я не могу мимо нее пройти и предлагаю ознакомить с ней вас, уважаемый читатель. В Китае изобретели ядерную батарейку со сроком работы до 50 лет. Студентка из МФТИ Екатерина Вахницкая разработала вечную батарейку для кардиостимуляторов.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
«Помещая радиоактивный материал внутрь алмаза, мы превращаем проблему ядерных отходов в батарейку для длительной выработки чистой энергии», — заявил Скотт. В компании NDB (разработчик батарейки) утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты. Специалисты МГУ вместе с коллегами из химико-технологического университета заявили, что создали батарейку, срок годности которой достигнет 100 лет. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. Как сообщил ресурсу New Atlas исполнительный директор Nano Diamond Battery Нима Голшарифи (Nima Golsharifi), одна такая батарейка может работать до 28 тыс. лет. Устройство размерами 15х15х5 миллиметров (меньше рублевой монеты) способно в течение 50 лет выдавать напряжение три вольта — вдвое больше, чем стандартная пальчиковая батарейка.
Изобретена "вечная" батарейка
Углерод можно затем использовать для роста алмазов методами осаждения из газовой фазы. Выбор алмазов связан с тем, что они способны эффективно преобразовывать ионизирующее излучение в заряд. Благодаря этому их даже предлагают использовать в качестве высокопроизводительных детекторов радиации. Для того чтобы обезопасить бета-вольтаический элемент, физики предлагают покрыть алмаз, обогащенный углеродом-14, обычным, нерадиоактивным алмазом. Это позволит сдержать большую часть излучения. Период полураспада углерода-14 составляет 5730 лет — хотя изотоп не обладает высокой активностью, элемент на его основе сможет проработать тысячи лет. Ранее аналогичные системы были предложены на основе в тысячу раз более активного изотопа: никеля-63. Его период полураспада равен 100 годам. Удельная мощность элемента, разработанного в марте этого года в МИСиС, составляла порядка 10-100 нановатт на кубический сантиметр. О своих планах по созданию электрогенератора на основе углерода-14 заявляли физики из Самарского университета, отмечая, что мощности элемента может хватить для питания маломощных датчиков.
К примеру: — в космическом пространстве, в подводной среде или высоко в горах. На данный момент все создатели этой «бесперебойной» батарейки патентуют своё детище. Что вы по этому поводу думаете, друзья? Хотелось бы узнать ваше мнение в комментариях. С уважением Андрей Зимин 03. Поделитесь с друзьями!
Он излучает микродозы бетта-излучения, то есть электронов. Китайская разработка состоит из тончайших слоев никеля, перемежающихся с прослойками алмазного полупроводника. Таким образом выделяемые изотопом электроны «утилизируются» в полупроводниковых пластинах, создавая электрический ток. Прототип выдает напряжение 3В и мощность до 0,1Вт. Плотность энергии в батарейке примерно в 10 раз выше, чем в самом продвинутом современном литиевом аккумуляторе. Расчетный срок работы батареи — порядка 50 лет. Betavolt утверждает, что BV100 абсолютно безвреден для людей.
Каждая из них заслуживает отдельной истории. В качестве «движущей» силы они используют нагрев, то есть тепловую энергию. Это одно из основных отличий от атомных реакторов, в которых происходит цепная ядерная реакция. Реакторы используются давно, однако они имеют большие габариты и вес, а ведь мы говорим о «космических батарейках». РИТЭГи планировалось использовать для космических аппаратов, но позже сферу применения расширили в том числе на медицинскую технику, например электрокардиостимуляторы. Первыми новую технологию, по крайней мере официально, внедрили американские военные в спутниках Transit 4A и 4B. Батарею для них разработали в рамках программы SNAP-3. Transit 4A находится в нижней части — это цилиндр. Фото сделано незадолго до запуска в 1961 году. Это навигационный спутник, позволявший получать данные вне зависимости от погоды на поверхности. Фото: Johns Hopkins University Applied Physics Laboratory Ей предшествовало появление SNAP-1 — тестовой платформы, в которой применяли цикл Ренкина цикл преобразования тепла в работу с использованием изотопа церия и ртути в качестве теплоносителя. Инженеры продолжили работу над проектом, пытаясь решить вопрос с защитой будущих астронавтов и груза от радиации, удержав вес системы в определенных рамках: иначе ракета не взлетит. В итоге «щитом» в SNAP-2 стал усеченный конус, заполненный гидридом лития. Реактор разместили вверху, капсулу с условной командой и грузом — за нижней частью. Последовавшие испытания показали, что идея хороша, да только не работает: в определенных условиях, вероятность появления которых высока, смертельная доза радиации пройдет сквозь защиту. Кроме того, конструкция оказалась весьма взрывоопасной. Transit 4A. Атомные батарейки на плутонии-238, которого потратили 96 граммов, установили в навигационные спутники военных Transit 4A и 4B. Они выдавали 2,5 Вт электрической энергии тепловая была намного больше. Это был 1961 год. Спустя еще примерно год Transit 4B и некоторые другие спутники были повреждены из-за проведенных США ядерных испытаний в рамках программы Starfish Prime.