Новости водородная бомба принцип действия

Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер.

Курсы валюты:

  • Последние материалы
  • Немного истории
  • Водородная бомба
  • Как Сахаров и Теллер чуть не взорвали мир

Принцип работы водородной бомбы

Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд — сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок. Последовательность термоядерного взрыва Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение поток нейтронов , которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине. На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива. Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд. Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства.

Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь. В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда. Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы. Операция Плющ Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония.

Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже. Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны.

Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы. Что мощнее: ядерная или водородная бомба? Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термо ядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз. Даже трудно представить, что было бы с Хиросимой да и с самой Японией , если бы в брошенной на нее 20-ти килотонной бомбе был водород. Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн: Огненный шар : диаметр в 4,5 -5 километра в диаметре. Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров. Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.

Приходится чистить от примесей старый — а это процесс не без потерь. Плутоний у США «усыхает», как шагренева кожа. Впрочем, судя по информации открытых источников, пока ядерная начинка в В61 еще не совсем до конца «протухла». Лет 15—20 изделие еще кое-как срабатывать будет — но про установку на максимальную мощность можно забыть. Значит, что? Значит, надо придумать, как ту же бомбу можно класть точнее. По поводу точности и дальности применения. Серийный комплект оборудования для переоснащения сопоставимой по размеру и весу обычной фугасной авиабомбы типа GBU в высокоточную в США стоит всего 75 тыщ долларов. Несложно догадаться, что с точки зрения этого комплекта никакой пронципиальной разницы между бомбой обычной и атомной нет. Но знаете, сколько будет стоить модернизация B61? Эксперты из NNSA прогнозируют размер расходов на переделку всего текущего боезапаса В61 в сумме, по меньшей мере, в 8,1 млрд. Это если ничто никуда к тому моменту не подорожает, что для американских военных программ есть ожидание абсолютно фантастическое. Если этот бюджет поделить на 600 изделий, предполагающихся к модернизации, то калькулятор мне подсказывает, что денег понадобится как минимум по 13,5 млн. Ощущаете размер гешефта и распила бабла? Впрочем, существует весьма ненулевая вероятность, что вся программа В61-12 полностью так и не будет реализована. Названная сумма уже вызвала серьезное недовольство Конгресса США, серьезно занятого поиском возможностей секвестра расходов и сокращения бюджетных программ. Включая оборонные. Источник материала Настоящий материал самостоятельно опубликован в нашем сообществе пользователем Proper на основании действующей редакции Пользовательского Соглашения.

Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия. Это была сверхбомба, проект которой получил название Super. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер. В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему. Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу. В этом документе рассматривалась возможность использования бомбы с дейтерием. Данное выступление стало началом советской ядерной программы. В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6. Подрыв произошел на атолле Энивотек, в Тихом океане. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета. Испытание первой водородной бомбы было проведено советскими учеными. После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента. Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади множества островов и Тихого океана , что привело к скандалу и пересмотру ядерной программы. План был написан выдающимся физиком Андреем Сахаровым. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16. Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений. Семипалатинский эксперимент был уникальным не только из-за нового вида оружия. Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super. В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов. От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов. Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен. Взрыв первой термоядерной бомбы Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва. Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16. Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии. Этот проект будет реализован в СССР через два года, в 1955-м. Водородная бомба была его детищем - именно он предложил революционные те технические решения , которые позволили успешно завершить испытания на Семипалатинском полигоне. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама. Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность. Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше. Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее. Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе.

Зачем Хрущеву бомба?

  • Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы
  • 50 лет назад была испытана водородная бомба - CNews
  • «Отец» водородной бомбы
  • Последствия взрыва водородной бомбы | Плюсы и минусы
  • Принцип действия водородной бомбы
  • Угроза №1. История создания водородной бомбы в СССР

Водородная бомба. История создания мощного оружия

В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно. Кобальтовая бомба — это в сущности та же водородная бомба, но в качестве материала для корпуса, внутри которого находятся активные вещества, вместо стали, превращающейся при взрыве в слабо радиоактивное облако пара, используется кобальт. Принцип действия водородной бомбы. vodorbombaShema. Основой термоядерного взрыва является энергия, которая выделяется при реакции термоядерного синтеза легких ядер. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов.

«Отец» водородной бомбы

Как устроена водородная бомба По первым оценкам, создание водородной бомбы казалось чисто инженерной задачей.
Как работает водородная бомба | Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце. Чем водородная бомба отличается от атомной.
Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твёрдый дейтерид лития. Такой выбор позволял сделать компактный заряд – вполне «по плечу» самолёту.

«Отец» водородной бомбы

используют ядерное деление. Принцип действия водородной бомбы. Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. В отличие от взорванной в 1953 году советской атомной бомбы с водородным усилением, где лишь 20% мощности обеспечивалось термоядом (а 80% — взрывом запала), водородная бомба в принципе может быть сколь угодно мощной. Водородная (термоядерная) бомба – оружие большой разрушительной силы (измеряющейся в мегатоннах в тротиловом эквиваленте), принцип действия которого основан на реакции ядерного синтеза легких элементов в более тяжелые.

Какая бомба мощнее: ядерная или водородная

Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. Такой принцип действия ОДАБ называется двухтактным. Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка.

Принцип водородной бомбы

Разработка и первые испытания водородной бомбы В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок атолл в Тихом океане было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза. Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы 15 Мт на испытательном полигоне на атолле Бикини Тихий океан.

Таков принцип действия водородной бомбы. При подрыве термоядерного заряда формируется горячая светящаяся сферическая масса, более известная как огненный шар. По мере формирования масса расширяется, охлаждается и устремляется вверх.

В процессе охлаждения пары в огненном шаре сгущаются в облако с твёрдыми частицами, влагой и элементами заряда. Образуется воздушный рукав, который втягивает с поверхности полигона подвижные элементы и переносит их в атмосферу. Нагретое облако поднимается на высоту 10-15 км, затем остывает и начинает расплываться по поверхности атмосферы, принимая грибовидную форму. В 7:30 утра на полигоне Семипалатинска была подорвана водородная бомба РДС-6.

Стоит сказать, что это было четвёртое тестирование атомного оружия в Советском Союзе, но первое термоядерное. Масса бомбы составляла 7 тонн. Она могла бы свободно разместиться в бомболюке бомбардировщика Ту-16. В сравнение приведём пример Запада: американская бомба Ivy Mike весила 54 тонны, и для неё был построен 3-этажный корпус, схожий на дом.

Советские учёные пошли дальше американцев. Чтобы оценить силу разрушения, на полигоне был построен городок из жилых и административных зданий. Разместили по периметру военную технику от каждого рода войск. Всего в зоне поражения разместилось 190 различных объектов недвижимого и движимого имущества.

Вместе с этим учёные подготовили более 500 видов всевозможной измерительной аппаратуры на полигоне и в воздухе, на самолётах наблюдателях. Были установлены кинокамеры. Бомбу РДС-6 установили на 40-метровой железной башне с возможностью дистанционного подрыва. Все следы прошлых испытаний, радиационный грунт и т.

Наблюдательные бункеры усилили, а рядом с башней, всего в 5 метрах, соорудили капитальное укрытие для аппаратуры, регистрирующей термоядерные реакции и процессы. Ударная волна снесла всё, что было установлено на полигоне в радиусе 4 км. Такой заряд смог бы свободно превратить в пыль 30-тысячнй городок. Это зашкаливающие показатели радионуклидов.

Этот взрыв соответствовал почти 12 500 тоннам тротила. Японский город Нагасаки стерла плутониевая бомба такой же массы, но эквивалентная уже 20 000 тонн тротила. Будущий советский академик А. Сахаров в 1948 году, основываясь на своих исследованиях, представил конструкцию водородной бомбы под наименованием РДС-6.

Его исследования пошли по двум ветвям: первая имела название «слойка» РДС-6с , а ее особенностью был атомный заряд, который окружался слоями тяжелых и легких элементов. Вторая ветвь - «труба» или РДС-6т , в ней плутониевая бомба находилась в жидком дейтерии. Впоследствии было сделано очень важное открытие, доказавшее, что направление «труба» является тупиковым. Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка.

При этом процесс сопровождается высвобождением высокой температуры, которая нужна для дальнейшего термоядерного синтеза. Нейтроны начинают бомбардировку вкладыша из дейтерида лития, а он в свою очередь под непосредственным действием нейтронов расщепляется на два элемента: тритий и гелий.

Исследования продолжались и в Штатах, где была начата разработка проекта «Таллера-Улама». Станислав Улам с конца 50-го и до начала 51 года 20 века думал над решением усовершенствования деления ядерных зарядов и пришел к выводу, что усилить мощность термоядерного оружия можно увеличив компрессию делящегося материала, а этого можно добиться при помощи обжатия одного атомного заряда при помощи другого. Были проведены испытания, в результате которых удалось получить из емкости с термоядерным горючим отдельную капсулу для второй ступени заряда. Таллер сомневался в том, что из-за компрессии материала можно будет произвести поджег топлива, но расчеты Улама доказали обратное и Америка готова была приступить к изготовлению бомбы на практике. Несмотря на идею создания капсулы термоядерного топлива Улам не знал, как правильно использовать ее для создания бомбы и за решение этой проблемы взялся Таллер.

Он заметил, что в ходе реакции деления выделяется небольшое количество кинетической энергии и много излучения, при этом излучение действует эффективнее механического обжатия. Эта идея Таллера ныне известна под названием Схема радиационной имплозии. Сжатое топливо в 1000 раз и разогретое до 1000000 градусов все равно не вызовет термоядерное горение, поэтому было решено еще расположить в центр плутониевый стержень, который будет переходить в критическое состояние, а при делении будет вызывать нужное повышение температуры. Это была финишная прямая на пути создания термоядерного оружия неограниченной мощности. К идее применения обжатия с помощью радиационной имплозии пришли и ученые СССР в 1954-1955 гг. Испытания термоядерного оружия Первые испытания термоядерного оружия был проведены Соединенными Штатами Америки 1 ноября 1952 года. Заряд был взорван на атолле Эниветок в Тихом океане.

Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

Та страна, которая имела ее в своем арсенале, фактически становилась всемогущей и могла диктовать свои правила. Водородная бомба имеет свою историю создания, в основу которой легли физические законы, а именно термоядерный процесс. Изначально ее неправильно назвали атомной, а виной тому была неграмотность. В 1938 году ученый Бете, впоследствии ставший лауреатом Нобелевской премии, работал над искусственным источником энергии - делением урана. Это время было пиком научной деятельности многих физиков, а в их среде было такое мнение, что научные секреты не должны существовать вовсе, так как изначально законы науки интернациональны.

Теоретически водородная бомба была изобретена, теперь же с помощью конструкторов она должна была приобрести технические формы. Оставалось только упаковать ее в определенную оболочку и испытать на мощность. По распоряжению Гарри Трумэна, на то время президента США, над этой проблемой работали лучшие ученые страны, они создавали принципиально новое оружие уничтожения. Причем, заказ правительства был на бомбу мощностью не меньше миллиона тонн тротила.

Водородная бомба Теллером была создана и показала человечеству в Хиросиме и Нагасаки свои безграничные, но уничтожающие способности.

Принцип термоядерной бомбы Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века: вариант Теллера, известный как "классический супер"; более сложные, но и более реальные конструкции из нескольких концентрических сфер; окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия. Он, по-видимому, вполне самостоятельно и независимо от американцев чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США прошел все вышеперечисленные этапы проектирования.

Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей".

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже.

В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд — сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок. Последовательность термоядерного взрыва Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение поток нейтронов , которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине. На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива. Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.

Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства.

Общая схема ядерного боеприпаса. Взрыв водородной бомбы схема.

Схема водородной бомбы физика. Схема реакции в водородной бомбе. Устройство атомной бомбы схема. Схема работы ядерной бомбы.

Механизм действия водородной бомбы. Механизм действия водородной бомбы кратко. Сахаров водородная бомба чертежи. Водородная бомба чертеж.

Формула ядерной бомбы в химии. Сахаров водородная бомба схема. Назовите принцип действия ядерного оружия. Принцип действия ядерного оружия основан на.....

Принцип действия ядерного атомного оружия. Водородная бомба для стратегической авиации. Водородная бомба это химическое оружие. Чертежи водородной бомбы схема.

Схема ядерного заряда. Устройство термоядерного заряда. Схемы термоядерных зарядов. Ядерный заряд.

Как устроена атомная бомба схема. Как устроена водородная бомба схема. Оружие объемного взрыва презентация. Радиус взрыва водородной бомбы.

Принцип действия атомной бомбы кратко. Ядерный заряд имплозивного типа схема. Устройство ядерной бомбы имплозивного типа. Атомная бомба Пушечная схема.

Имплозивная схема атомной бомбы. Чистый заряд. Чистый заряд ядерное оружие. Виды ядерных зарядов.

Конструкция атомной бомбы. Принципиальная схема ядерной бомбы. Схема действия ядерной бомбы. Устройство атомной бомбы.

Конструкцияаьомной бомбы. Из чего состоит водородная бомба. Ядерная и атомная бомба разница. Термоядерная бомба и ядерная отличия.

Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии.

В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.

Популярные

  • «Дитя не плачет — мать не разумеет»
  • Немного истории
  • Принцип действия водородной бомбы
  • Как работает водородная бомба, последствия ее взрыва. Инфографика
  • ВОДОРОДНАЯ БОМБА | Энциклопедия Кругосвет

Уроки водородной бомбы для мирного термоядерного синтеза

Водородная (термоядерная) бомба – оружие большой разрушительной силы (измеряющейся в мегатоннах в тротиловом эквиваленте), принцип действия которого основан на реакции ядерного синтеза легких элементов в более тяжелые. Американская водородная бомба была большой и не поддавалась транспортировке, а советский вариант помещался в бомбардировщик. Первая водородная бомба SHRIMP имела массу в 10 тонн и длину 4,5 м. Это позволяло разместить ее внутри бомбардировщика, поэтому опытная SHRIMP стала предсерийным образцом Mark 21, произведенной в количестве 275 штук.

Как работает водородная бомба

Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. ВОДОРОДНАЯ БОМБА — оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Принцип действия водородной бомбы. Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Принцип действия водородной бомбы РДС-6С "СЛОЙКА". Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. Принцип действия и устройство.

Похожие новости:

Оцените статью
Добавить комментарий