Новости красноярские ученые использовали наноалмазы

JRSNZ: ученые открыли новый вид ископаемых дельфинов — Aureia rerehua.

«Летим на Марс!»: истории самых громких научных открытий в Красноярске

«Сделать Енисей теплее»: красноярские ученые решают проблему «черного неба». Коллектив ученых из Красноярского научного центра Сибирского отделения РАН (СО РАН) и Сибирского федерального университета разработал недорогой. Как сообщалось, ранее красноярские ученые совместно с канадскими коллегами разработали способ адресного разрушения раковых клеток с помощью модифицированных аптамерами наночастиц золота и теплового воздействия, вызванного лазерным излучением. Следовательно, наноалмазы можно использовать для нейтрализации, например, микотоксинов — метаболитов низших грибов, в частности плесневых. Смотрите свежие новости на сегодня в Любимом городе | Красноярские ученые научились определять токсичность наночастиц.

Ученые из Красноярска разработали способ разрушения раковых клеток наночастицами золота

Происшествия Красноярские ученые синтезировали кристаллы для терапии шизофрении Группа ученых из Красноярского научного центра СО РАН, Туниса, Индии и Саудовской Аравии синтезировали кристаллы на основе органики и азотной кислоты. В будущем их разработка поможет в лечении нейродегенеративных расстройств, в том числе шизофрении, болезней Альцгеймера и Паркинсона. Органическая часть соединения представляет собой диметилпиперазин - это соединение класса пиперазинов, широко используемых в органическом синтезе как предшественник различных соединений, в том числе лекарственных препаратов. Ученые определили, что новый материал высоко стабилен, имеет реакционную способность.

При этом мыши, которым провели терапию с помощью наночастиц и магнитов, прожили от 50 до 100 дней. Также, по словам эксперта, аптамеры можно использовать для блокирования рецептор-связывающих доменов, чтобы предотвратить попадание патогена в клетку, доставки радиофармпрепаратов в клетку - такую работу красноярские ученые ведут совместно с ФМБА, а также для диагностики. Как сообщалось, ранее красноярские ученые совместно с канадскими коллегами разработали способ адресного разрушения раковых клеток с помощью модифицированных аптамерами наночастиц золота и теплового воздействия, вызванного лазерным излучением. Горячие темы:.

После каждого использования необходимо всего лишь промыть композитный диск деионизированной водой для удаления остатков компонентов реакции.

Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров. Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН.

В основе лечения — тепловое воздействие на раковые клетки через наночастицы. Специальные молекулы доставляют наночастицы к злокачественным образованиям.

Их нагревают с помощью лазера, это приводит к разрушению злокачественных тканей. Здоровые клетки при этом не затрагиваются.

Лента новостей

  • Красноярские ученые использовали наноалмазы
  • Биополимеры для искусственных тканей и органов
  • Стволовые клетки для восстановления спинного мозга
  • В Красноярске ученые предлагают проверять воду на яд наноалмазами - Лента новостей Красноярска
  • Красноярские ученые научились находить яды в воде с помощью наноалмазов - Вести. Красноярск
  • Красноярские ученые научились находить яды в воде с помощью наноалмазов - Вести. Красноярск

Читайте еще

  • Читайте также
  • Наноалмазы «в шубе» | Газета СФУ «Сибирский форум. Интеллектуальный диалог»
  • Полезные ссылки
  • Биолюминесцентные тесты откроют дорогу нанометериалам в медицину

Полезные ссылки

  • Покрытые крахмалом магнитные наночастицы помогут в очистке биомедицинских молекул
  • Красноярские учёные нашли новые пути к лечению рака
  • Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков
  • Сообщите свою новость
  • Полезные ссылки
  • Ученые из Красноярска научились определять загрязнение воды с помощью наноалмазов

Ученые из Красноярска изобрели кристаллы для лечения шизофрении

В своей работе исследователи не только определили, от каких структурных особенностей фуллеренолов зависят их свойства, но и разработали принципы подбора наноматериалов для синтеза медицинских препаратов. Для исследования свойств наноматериалов на клеточном и биохимическом уровнях красноярские учёные предлагают использовать два типа биотестов, созданных на основе клеток светящихся морских бактерий и выделенных из них ферментов. Использование таких тестов делает оценку токсичности и антиоксидантной активности крайне простой и быстрой. Если свечение в эксперименте уменьшается, то образец токсичен, так как он подавляет клеточные процессы и замедляет биохимические реакции, отвечающие за него. Если после помещения наноматериала в растворы токсикантов окислительной природы, происходит активизация биолюминесценции, это говорит о проявления антиоксидантных свойств и детоксикации среды. Используя биолюминесцентные тесты, учёные выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей. Если в структуре фуллеренола имеется много таких заместителей, то он проявляет большую токсичность и слабую антиоксидантную активность. Уменьшение количества заместителей снижает токсичность и увеличивает антиоксидантную активность фуллеренола.

К примеру, они рассмотрели модифицированную молекулу фуллеренола с внедрённым внутрь атомом гадолиния и большим количеством кислородосодержащих заместителей.

Учеными красноярского института биофизики и новосибирского института неорганической химии Сибирского отделения РАН получен композитный материал на основе наноалмазов и углеродных нанотрубок. Материал представляет собой слойную конструкцию из прочно связанных между собой вертикальных нанотрубок, на поверхности которых распределен слой наноалмазов. Ученые говорят, что получившийся композит уникален по своим свойствам.

Об этом сообщает журнале Scientific Reports издательства Nature. Для того, чтобы заставить наноалмазы испускать свет, необходимо мощное магнитное поле, которое проблематично создать в обычных условиях. Углеродные нанотрубоки обладают свойством многократного усиления магнитного поля на микроуровне — и это свойство используется в полученном композите.

К примеру, они рассмотрели модифицированную молекулу фуллеренола с внедренным внутрь атомом гадолиния и большим количеством кислородосодержащих заместителей.

Препараты гадолиния перспективны для диагностики онкологических заболеваний благодаря особым парамагнитным свойствам этого металла. Однако токсичность таких лекарств является проблемой для их использования. По оценке ученых, чтобы снизить токсичность фуллеренола, содержащего гадолиний, во время синтеза следует уменьшить количество кислородных заместителей. Выяснилось, что фуллеренолы с меньшим количеством кислородосодержащих заместителей не так токсичны, как фуллеренолы с большим количеством кислородосодержащих заместителей.

Чтобы снизить токсичность мы рекомендуем уменьшить количество кислородсодержащих групп, присоединенных к углеродному каркасу. Наша работа показывает, что биолюминесцентные тесты можно использовать для сравнения и выбора углеродных наночастиц с определенными токсическими и антиоксидантными характеристиками», — рассказала Екатерина Ковель, одна из участниц исследования, аспирант Красноярского научного центра СО РАН. Таким образом, биолюминесцентные методы, используемые красноярскими биофизиками, позволяют изучать токсичные и антиоксидантные эффекты нанормазмерных материалов. Биолюминесцентные тесты просты в использовании, характеризуются высокой скоростью анализа, дают возможность одновременно исследовать большое число проб-образцов.

Ученые отмечают, что такие биолюминесцентные методы помогут предсказывать свойства водорастворимых углеродных наноматериалов на этапе их синтеза, что чрезвычайно важно для создания новых медицинских препаратов на их основе.

Научные сотрудники институтов неорганической химии им. Николаева и биофизики СО РАН смогли прочно увязать вертикально упорядоченные нанотрубки с нанесенными на их поверхность наноалмазами. Таким образом был получен композит с уникальными свойствами: под воздействием даже слабого электрического поля он может светиться люминесцентным голубым светом.

Ученые из Сибири создали светящийся материал на основе наноалмазов

В лечении переломов ученые используют доработанные специалистами наночастицы и слабые магнитные поля, приводит ТАСС слова руководителя «Биомета», доктора биологических наук Анны Кичкайло. Учёные из Красноярского научного центра и Сибирского государственного университета создали новый вид биоразлагаемого пластика, который разлагается в лесной почве всего за семь месяцев. Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов. 7 канал Красноярск. Подписаться. Используя биолюминесцентные тесты, ученые выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей. Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов.

Сибирские ученые создали материал из наноалмазов

Наноалмазы представляют собой серый порошок, который получают при серии коротких взрывов углерода. В Красноярске ученые получили кристаллы, с помощью которых можно будет лечить Альцгеймер, Паркинсон и шизофрению. Красноярские ученые разработали новый композитный материал. Он недорог, прост в производстве и может обнаружить токсичные вещества, в частности фенол, в производственных сточных водах. По словам ученой, применение таких микроорганизмов существенно безопаснее для окружающей среды, чем использование традиционных химических реагентов.

Сибирские учёные разработали новый композит из нановолокон и наноалмазов

Красноярские ученые объяснили успешное применение магнитных наночастиц из оксида железа в лечении злокачественной опухоли карциномы Эрлиха. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Для определения загрязнения используют так называемые детонационные наноалмазы, получаемые при взрыве содержащих углерод взрывчатых веществ (например, смесь тротила и гексогена), в замкнутой камере при недостатке кислорода. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. 7 канал Красноярск. Подписаться.

Ученые из Красноярска научились определять загрязнение воды с помощью наноалмазов

Ученые добавляют, что новый светящийся материал можно использовать в различных отраслях: в медицине, электронике и других. Например, для изготовления дисплеев нового поколения. Напомним, что ранее медики предложили лечить наноалмазами рак.

Использование таких тестов делает оценку токсичности и антиоксидантной активности крайне простой и быстрой. Если свечение в эксперименте уменьшается, то образец токсичен, так как он подавляет клеточные процессы и замедляет биохимические реакции, отвечающие за него. Если после помещения наноматериала в растворы токсикантов окислительной природы, происходит активизация биолюминесценции, это говорит о проявления антиоксидантных свойств и детоксикации среды. Используя биолюминесцентные тесты, учёные выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей. Если в структуре фуллеренола имеется много таких заместителей, то он проявляет большую токсичность и слабую антиоксидантную активность. Уменьшение количества заместителей снижает токсичность и увеличивает антиоксидантную активность фуллеренола. К примеру, они рассмотрели модифицированную молекулу фуллеренола с внедрённым внутрь атомом гадолиния и большим количеством кислородосодержащих заместителей. Препараты гадолиния перспективны для диагностики онкологических заболеваний благодаря особым парамагнитным свойствам этого металла. Однако токсичность таких лекарств является проблемой для их использования.

При этом, если наночастица закрепляется на внешней поверхности клеточной мембраны или на волокнах межклеточных элементов экзоскелета, ее поворот порождает механическую вытягивающую силу, передающуюся на трансмембранные механорецепторы клетки. Именно воздействие на механорецепторы при условии превышения порогового значения силы запускает апоптоз — программируемую гибель клеток» — прокомментировал координатор проекта, профессор, ведущий научный сотрудник Института физики имени Киренского СО РАН и Международного научно-исследовательского центра спектроскопии и квантовой химии СФУ. Сергей Карпов. Исследователи отмечают, что магнитомеханическая противораковая терапия с использованием магнетитовых наночастиц, активирующихся низкочастотным переменным магнитным полем, показала высокую результативность в исследованиях на мышах.

Сейчас биофизики трудятся над созданием индикаторной системы для определения фенола при помощи твердой подложки. Опустив ее, например, в виде палочки в воду, можно сравнить цвет с тестовыми образцами, и узнать, насколько жидкость загрязнена фенолом. Фенолы — ядовитые вещества, которые при попадании в организм человека, способны вызвать тяжелое отравление. По данным министерства природных ресурсов и экологии Красноярского края за последние два года содержание фенола стало больше.

Сибирские учёные разработали новый композит из нановолокон и наноалмазов

красноярские ученые предлагают использовать для этого алмазы. Также красноярские ученые научились выращивать помидоры без солнечного света. По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов.

Похожие новости:

Оцените статью
Добавить комментарий