Новости обучение нейросетям и искусственному интеллекту

Одной из основных причин, по которой родители и учителя скептически относятся к нейросетям и чат-ботам, является страх, что искусственный интеллект лишит детей способности размышлять, анализировать и самостоятельно искать ответы.

В России стартовал прием заявок на курсы по искусственному интеллекту

Нейросеть также является обучаемой системой и даже может быть самообучаемой. Она может обучаться как с помощью заданных человеком алгоритмов распознавания или команд, так и на основе прошлого опыта — то есть самостоятельно, используя ранее полученные данные. Буквально как вы сами в детстве: сперва вам помогали родители, обучали вас и направляли, а потом вы сами начали разбираться, как что устроено, делать на основе этого собственные выводы и находить пути решения проблем. Звучит жутковато, правда? Кажется, что искусственный интеллект вот-вот выйдет из-под контроля и захватит мир — как в известных кинофильмах. Но до полноценного искусственного интеллекта существующим нейросетям еще очень далеко — как минимум потому, что они пока еще не умеют программировать и создавать сами себя, а также представляют собой множество различных программ, никак не связанных между собой. Зачем нам нужны нейросети Основные принципы работы нейронных сетей были сформированы в 1943 году американцами Уорреном Маккаллоком и Уолтером Питтсом — нейролингвистами и нейрофизиологами, стоявшими у основ кибернетики и заложившими революционную идею о том, что человеческий мозг — это компьютер. В 1958 году американский нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть, хоть это и слишком громкое название для первой математической модели восприятия информации человеческим мозгом.

На протяжении почти 50 лет математические модели усложнялись и совершенствовались, но только после 2007 года большие объемы данных открыли возможность использовать нейронные сети для машинного обучения. Так зачем же нам нужны нейросети? Сегодня их чаще всего используют для анализа больших объемов данных, прогнозирования, сопоставления, классификации и распознавания образов в самых широких сферах научных и социально-экономических исследований — от управления предприятиями и распознавания изображений до прогнозирования международных конфликтов и поиска следов жизни на других планетах. Ранее мы рассказывали: По какому принципу работают нейросети Современные нейросети работают по нескольким основным принципам. Если описывать их максимально простым языком, то получится примерно следующее: В нейросеть загружается некоторое количество конкретных, необходимых для эксперимента или исследования, данных. Информация передается с помощью искусственных синапсов от искусственного нейрона к нейрону, от слоя к слою, каждый нейрон может иметь несколько входящих синапсов с данными. Данные, полученные каждым нейроном, представляют собой сумму всех данных, умноженных на коэффициент веса каждого искусственного синапса.

Полученные значения формируют выходные сигналы, которые передаются до тех пор, пока информация не достигнет конечного выхода. Все равно звучит сложно? Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее.

Отправить запрос на коммерческое использование контента из Шедеврума можно через форму обратной связ и — ответ придет в течение 5 рабочих дней.

Как вообще работает Шедеврум? В первую очередь сеть понимает, что хочет изобразить пользователь. Для этого мы используем отдельную нейросеть. Она обучалась на датасете текстов, понимает, как устроен язык и какие в нём взаимосвязи. Её задача — представить данные для другой нейросети в виде вектора чисел. Туда она кодирует информацию, о чём фраза, как взаимосвязаны слова.

Вторая нейросеть в процессе обучения видела 330 млн изображений и текстов, связанных с ними. Предполагается, что она сформировала своё представление о мире: каким визуальным образам соответствуют те или иные слова, как устроен мир изображений, как надо рисовать. Её задача — понять из сжатого представления текста, чего от неё хотят, и создать изображение. Если данных мало или вовсе нет, решение о генерации она принимает случайным образом. То есть додумывает сама: если не указать локацию, где лежит кот, она выдаст нам его изображение, например, на диване, а может — в вакууме или на пляже. Над чем команда работает прямо сейчас?

Что необходимо Шедевруму для развития? В первую очередь — над улучшением качества. Работаем над архитектурными улучшениями и анализом ошибок. Это не финальный вариант нейросети, у нас есть новые наработки и много идей. Сетка будет обновляться всегда. На этапе создания Шедеврума мы попрототипировали — и нам захотелось поделиться этим.

Пользователям понравилось, поэтому у нас много мотивации двигаться дальше. В целом всегда можно улучшать качество изображений, их красоту, естественность. Есть сложные штуки вроде пальцев и лиц людей: сейчас сгенерированное изображение человека сразу видно по тому, как плохо нарисованы пальцы. Нейросеть в датасете видит руки в разных ракурсах, и где-то видно два пальца, а где-то — все пять. И поэтому она рисует что-то среднее между всеми изображениями, которые видела. Вообще, всё, что важно для людей, сложно изобразить.

Это не только части тела, но и животные, знакомые людям предметы. Пока ещё нейронки делают это не идеально, но всё впереди! Как считаешь, стоит ли бояться нейросетей?

В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей.

Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами.

Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия.

И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным. Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров.

А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей. Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA.

Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели. Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам?

Я сомневаюсь. Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали. Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок. Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures.

Здесь могут появиться очень интересные решения.

Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным.

Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей.

Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA.

Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели.

Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь.

Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали. Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок.

Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures. Здесь могут появиться очень интересные решения. Такие модели способны конвергировать с архитектурами, основанными на других принципах.

Сейчас есть все предпосылки для развития в этом направлении. Развитие опенсорсных моделей и демократизация ИИ Что случилось за год Параллельно с закрытыми проприетарными моделями развились нейросети с открытым исходным кодом. Если в 2022 году анонс свободной языковой модели BLOOM BigScience large open-science open-access multilingual language model стал громким событием, то в 2023 году IT-комьюнити представило сотни опенсорсных нейронок.

Начало этому процессу положила представленная в феврале 2023 года цукерберговская модель LLaMA , а затем её более продвинутый вариант LLaMA 2 , разработанный совместно с Microsoft. Нейросетка, представленная в типоразмерах на 7, 13, 33, 65 и 70 миллиардов параметров, по ряду показателей показала результаты, сопоставимые с GPT-3. Цукерберг решил сыграть против тренда на закрытость и объявил, что LLaMA будет доступна с рядом ограничений для научных организаций, которые его компания посчитает заслуживающими доверия.

Но модель вскоре «утекла» в интернет , где её начали распространять и «допиливать» энтузиасты ИИ и свободного ПО. Она стала основой для множества проектов, развивающих модель за счёт экспериментов с архитектурой, вариантами тонкой настройки и обучения. Следующий прорыв случился, когда учёные из Стэнфорда провели тонкую настройку модели и научили один из вариантов LLaMA следовать инструкциям пользователя, затратив на это всего лишь 600 долларов.

Нейросеть получила название Alpaca. Сейчас таких проектов стало больше и не все они основаны на LLaMA. Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных.

Отечественная ruGPT-3.

2. Специалист по нейронным сетям на Python от Skillfactory

  • Почему сейчас важно изучать искусственный интеллект?
  • Расширяем географию AIJ
  • ЕГЭ будет проверять нейросеть: как искусственный интеллект стал частью госэкзаменов в России
  • ЦПСО всегда под рукой
  • Нужны домашние задания и обратная связь?
  • Россиян массово обучат пользоваться нейросетями - Ведомости

Как изменится искусственный интеллект в 2024 году?

На этих выходных в космос отправился навигационный спутник Galileo, а SpaceX вместе с этим повторила рекорд повторного использования первых ступеней ракет-носителей Falcon 9. Задействованная в рамках этой миссии первая ступень использовалась при проведении орбитальных пусков в 20-й раз. Ажиотаж вокруг гаджета спал быстрее, чем ожидалось, а владельцы перепродают топовую модель очков Apple с ощутимыми скидками. В их числе работники колл-центров. Уже сейчас некоторые компании заменяют персонал служб поддержки по телефону генеративным ИИ и буквально через год в отрасли, возможно, будут использоваться только чат-боты на базе ИИ. Согласно данным Gartner в 2022 году в индустрии центров поддержки клиентов работало около 17 млн человек. Перед стартом состоялся показательный соревновательный заезд между Даниилом Квятом на обычном болиде и беспилотником. Выручка Intel больше не снижается, и компания остаётся крупнейшим производителем процессоров для ПК и ноутбуков. Но продажи в I квартале не оправдали ожиданий аналитиков, и собственный прогноз Intel на текущий квартал отражает слабый спрос. Это непростой момент для гендиректора Пэта Гелсингера Pat Gelsinger который находится у руля уже четвёртый год. Проблемы Intel накапливались десятилетиями.

Уязвимость затрагивает неисчислимое множество процессоров, а её устранение грозит катастрофическим снижением производительности.

Посторонним тогда были видны чужие сообщения, личная информация и даже данные банковских карт. После этого в Италии использование нейросети вовсе решили запретить местные программисты теперь массово пользуются VPN для обхода блокировки. Такое же решение приняли и власти Китая, но с другой мотивировкой: информация, которую выдает чат-бот, может противоречить законодательству. Угрозу признаёт и один из создателей ChatGPT — в недавнем интервью Сэм Олтмен заявил, что возможность применения системы злоумышленниками пугает. Ведь она запросто может написать и вирус. Опасений по поводу нейросетей становится всё больше: многие боятся остаться без работы.

Компьютер выполняет задачи быстрее, не делает перерывов на обед и обходится работодателю куда дешевле. Наш постоянный эксперт — кандидат физико-математических наук Кирилл Болдырев — настоящий фанат нейросетей. Он даже сделал себе татуировку, сгенерированную искусственным интеллектом, а также вместе с коллегами разработал собственную «умную» систему, которая помогает в работе. С её помощью можно делать биохимический анализ крови и выявлять болезни на ранних стадиях. И, собственно, она нам прямо сказала, что да, будет потери во многих, в огромном количестве задач, которые сейчас выполняет человек», — говорит Кирилл. Судя по опросам, больше всего за свои места беспокоятся программисты и дизайнеры. Есть опасения и у фотографов: некоторые нейросети так продвинулись в создании снимков, что жюри престижных конкурсов уже не могут отличить, что сделано человеком, а что машиной.

Опасения выразили дикторы озвучки — синтезированные голоса, порой украденные у реальных людей, звучат как настоящие и стоят копейки. Кажется, угроза нависла и над нашими коллегами-журналистами. Искусственный интеллект научился неожиданно неплохо писать тексты.

Он самостоятельно обучается, поэтому ученик может выбрать правильные версии редких слов и фраз, чтобы сервис в будущем делал правильный перевод. Первое и самое очевидное, что пришло на ум многим учителям, — вернуть практику устных экзаменов. Это могло бы сработать, но одно дело — проверить стопку контрольных, другое — вызвать каждого ученика к доске: времени урока на это точно не хватит. Разумеется, они используют те же принципы, что и нейросети, — самосовершенствующиеся алгоритмы определения. Так называемые контент-детекторы представили уже несколько компаний. Правда, все они в разной степени несовершенны.

Несомненно, в будущем показатели будут лучше, но пока рассчитывать на помощь нейросетей в распознавании сгенерированного текста не приходится. Аналогичное решение приняли в Японии. В Италии нейросеть запретили полностью , то же самое хотят сделать в Германии , Испании и ряде других развитых стран. Когда молодой человек рассказал, как он на самом деле выполнил работу, его не наказали — и даже пригласили в Комитет Госдумы по информационной политике , чтобы обсудить перспективы применения ИИ в системе образования. Он просто проверил систему на прочность. Как минимум наталкивают на мысль, что надо менять подход к заданиям». Если чиновники образования готовы видеть в новой технологии не опасность, а возможности, значит, у отечественной школы есть шанс измениться к лучшему. Искусственный интеллект уже кардинально меняет рынок труда и сферу услуг, так что трансформация нынешней системы образования всего лишь вопрос времени. Однако существуют некоторые проблемы, которые могут возникнуть при использовании нейросетей в образовании.

Хотя он эффективен в решении определённых задач, ИИ может приводить и к негативным последствиям для обучения. Например, преподаватели могут использовать его для оценивания знаний учащихся, но это может привести к предвзятости и дискриминации. Например, создание индивидуальных учебных программ с помощью нейросети может привести к тому, что учащиеся будут получать только те материалы, которые соответствуют их интересам и уровню знаний. Это может нивелировать разнообразие в учебном процессе и снизить мотивацию. Использование нейросети в образовании может привести к утечке персональных данных учащихся, если учителя не будут должным образом защищать данные или если станут применять ИИ для сбора данных без согласия ребят. Однако необходимо осторожно подходить к внедрению нейросетей в образование в целом и в рутину каждого ученика, учитывая позитивные аспекты и потенциальные риски этих технологий. Баланс между инновациями и традиционными методами обучения — ключевой фактор для успешного влияния ИИ на развитие и обучение детей.

Фирменный курс издательства Лекториум Отзывы В первую очередь хочется выразить благодарность Сомову Якову за этот интенсив, я люблю форматы где теории меньше, а больше нужно работать руками, а это именно то. Особенно понравилась часть где мы разбирали дополнительные инструменты помимо ChatGPT — программу по нарезке видео, майндмапам и презентациям, такого в жизни не видел и это было огромным открытием Также было полезно познакомится с 4-й версией ChatGPT, ранее я работал в 3. Из идей по улучшению предложу увеличить время тренинга таким образом, чтобы программам на основе ИИ уделялось больше времени и подумать над тем, какой материал можно отдать после интенсива, чтобы он остался «на руках» — список полезных ИИ с разбивкой на вид инструмента например и т.

Я под большим впечатлением — и очень полезный семинар, и увлекательный! Было много практики, в прекрасной компании соучеников. Не терпится начать работать с нейросетью. Елена Участие в интенсиве Якова Сомова «Нейросети в образовании» оказалось захватывающим опытом. Я действительно получила новые знания и навыки. Особенно ценно мне было получить ответы на вопросы, которые долго оставались без решения. Приятное интеллектуальное общение с коллегами, разделяющими интерес к использованию ИИ, добавило особый шарм этому опыту. Обмен идеями создало прекрасное сообщество единомышленников. Мероприятие проходило в офлайн формате, что создало уникальную возможность для профессионального взаимодействия.

Нейронные сети и компьютерное зрение

Мы уже не обращаем внимания, как точно попадают в наши вкусы видео и посты в рекомендательных лентах, как четко работает поиск по изображениям, не удивляемся, когда видим релевантную и полезную рекламу — все это возможно благодаря ИИ. Искусственный интеллект используют и в бизнесе: например, в небольшой пекарне на основе данных за несколько лет можно рассчитать, сколько хлеба и выпечки производить, чтобы не выкидывать лишнее, а в крупном банке ИИ за 5 минут принимает решение о выдаче кредита без участия менеджера. Помните новости о том, что скоро многих работников заменит искусственный интеллект? Это происходит уже сейчас, но точно не с AI-разработчиками — специалистами по работе с ИИ, спрос на которых растет каждый год. Чтобы нейросеть работала правильно, ее нужно обучать: загружать в нее миллионы строк данных, в которых она будет находить закономерности и распределять объекты по определенным признакам. Обучением и моделированием нейросетей занимаются люди. Специалистом по машинному обучению легко стать даже с минимальными знаниями математики и языка Python, знакомых еще с вуза, если знать, как выстроить процесс обучения. В этой статье рассмотрим путь специалиста по нейросетям и искусственному интеллекту, который хочет в будущем работать в этой сфере. Нейросети: с чего начать Нейросети и ИИ — это узкая специализация Data Scientist , специалиста по большим данным. Поэтому сначала нужно изучить науку о данных, а потом выходить на следующий уровень. Обучение Data Science начинается с основ: математика, статистика, математический анализ и теория вероятности.

Есть опасения и у фотографов: некоторые нейросети так продвинулись в создании снимков, что жюри престижных конкурсов уже не могут отличить, что сделано человеком, а что машиной. Опасения выразили дикторы озвучки — синтезированные голоса, порой украденные у реальных людей, звучат как настоящие и стоят копейки. Кажется, угроза нависла и над нашими коллегами-журналистами. Искусственный интеллект научился неожиданно неплохо писать тексты. Мы провели опыт, для которого пригласили коллег по НТВ — смогут ли профессионалы распознать работу, сделанную электронным автором? Это оказалось на удивление непросто! Значит ли это, что человек в журналистике больше не нужен, действия тут механические и им легко научить компьютер? Британская газета Guardian уже тестирует подобную систему, чтобы оценить её возможности и понять реальную угрозу.

Нечто похожее сделали и мы в редакции: взяли три темы и попросили нейросеть написать на каждую из них небольшую заметку. Конкуренцию пробовала составить корреспондент «Чуда техники» — выпускница факультета «Высшая школа телевидения» МГУ им. Ломоносова Лиза Шполянская. С первой темой всё было понятно, со второй — более-менее тоже, хотя сомнения присутствовали: в некоторых интернет-изданиях люди пишут хуже, чем нейросеть. Третья тема уже далась не так легко: Лиза написала, как всегда, хорошо, но искусственный интеллект тоже не лил воды и гладко соединял слова. В итоге голоса разделились. Это сходство с человеком испугало не только нас — недавно Илон Маск, Стив Возняк и ещё более тысячи IT-экспертов призвали приостановить обучение систем , более мощных, чем нынешняя GPT-4. По той причине, что роботы стремительно заменяют людей, и это представляет угрозу для общества.

Юристы используют нейросеть для анализа документов или судебных дел. Бизнесмены, в свою очередь, используют нейросеть для анализа рынка и конкурентов. Искусственный интеллект — бот [2024] Бот — искусственный интеллект полезен в образовании.

Его можно использовать для разработки курсов и тренировок, а также для перевода статей на русский и другие языки. ИИ на русском языке стал настоящим прорывом в сфере нейронных сетей. Он может существенно упростить жизнь людей, помочь им быстрее и точнее принимать решения.

Это только начало, и в будущем можно ожидать еще больших достижений и использование нейросети во все больших сферах деятельности.

Разработка успешно применяется банками и даже пограничниками, помогая выявить поддельные паспорта. Чтобы натренировать систему, Владимир с командой создали ещё одну модель, которая сгенерировала образцы для обучения — всё, даже фотографии, личные данные и подписи компьютер выдумал сам. И это не предел возможностей. Но главная причина успеха именно ChatGPT — универсальность. Ей легко воспользоваться, определённое число запросов в день разработчики предоставляют бесплатно, а дальше просят всего 20 долларов в месяц.

Экономить на сотрудниках с помощью нейросети тут же бросились специалисты по соцсетям, рекламщики, программисты. Однако эксперты предупреждают — тут есть опасность. Впитывая всё как губка, нейросеть постоянно обучается: любую информацию, которую загружает один пользователь, она запоминает, обрабатывает и хранит, а потом может выдать по запросу и другому человеку. В марте разработчики ChatGPT сами признались в случаях утечки и даже ненадолго отключали систему для исправлений. Посторонним тогда были видны чужие сообщения, личная информация и даже данные банковских карт. После этого в Италии использование нейросети вовсе решили запретить местные программисты теперь массово пользуются VPN для обхода блокировки.

Такое же решение приняли и власти Китая, но с другой мотивировкой: информация, которую выдает чат-бот, может противоречить законодательству. Угрозу признаёт и один из создателей ChatGPT — в недавнем интервью Сэм Олтмен заявил, что возможность применения системы злоумышленниками пугает. Ведь она запросто может написать и вирус. Опасений по поводу нейросетей становится всё больше: многие боятся остаться без работы. Компьютер выполняет задачи быстрее, не делает перерывов на обед и обходится работодателю куда дешевле.

Что умеет самая умная нейросеть на Земле и почему недовольны разработчики искусственного интеллекта

Студенты также планируют подать коллективный иск по статье мошенничество к создателю УИИ Дмитрию Романову. Об этом CNews рассказала Юлия Ильяшевич, координатор группы студентов, обратившихся в суд. Согласно сайту, компания обещает за девять месяцев обучить профессии ИИ-разработчика и за четыре — Middle Python-разработчика. Цены на обучение составляют от 99,9 тыс. По окончании курса университет гарантирует трудоустройство. После расторжения договора студентам обещают вернуть деньги в течение трех месяцев. После окончания этого срока — еще через три месяца. На сегодняшний день деньги никому не вернули и все подали иски в суд, говорит Ильяшевич. Иски бывшие студенты стали подавать с января 2022 г.

Суд уже принял решения по четырем делам. Сейчас с УИИ взыскано 952,9 тыс. Всего подано не менее 20 исков. Общая сумма только по восьми из них составила 2,7 млн руб.

Проект нацелен на применение: федеральными и региональными органами исполнительной власти, осуществляющими государственное управление в сфере образования, в целях достижения ключевых государственных ориентиров в области цифровой экономики. План март-апрель Анализ существующей отечественной и зарубежной практики реализации учебных курсов, направленных на изучение основ систем искусственного интеллекта в системе общего образования. Октябрь Доработка типового учебно-методического комплекса по реализации в системе общего образования учебных курсов, направленных на изучение основ систем искусственного интеллекта.

Это «тип ИИ, который способен выполнять различные задачи, взаимодействовать с человеком и самостоятельно без участия человека адаптироваться к изменяющимся условиям». На их основе будет создан специальный реестр. В него будут собраны прошедшие проверку технологии ИИ, которые госслужащие и организации смогут брать на платформе «Гостех». Это позволит увеличить эффективность работы пользователей. Также в документе прописано создание конструктора, единых каталогов и справочников для появления информационных систем обработки данных органов власти и организаций.

Кроме того, разработчики смогут получать доступ к наборам данных для обучения ИИ по принципу «данные как сервис». Сейчас в сравнении с зарубежными странами Россия уступает по объемам инвестиций в ИИ.

В терминах обучения ИИ в качестве базовых понятий используются языки программирования и инструменты для изучения языков. Если нейросеть обучена, то она будет знать языки программирования, если нет — то нет. Без учителя Данный вид процесса обучения предполагает только ввод данных. В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы.

Когда учитель полностью отсутствует, то НС выстраивает целую цепочку, которая состоит из логических решений, также образует определенное понимание, основанное на вводных данных. Такое устройство машинного обучения без учителя применимо в отношении статистических моделей. Базовый язык нейросети— это язык, на котором система будет осуществлять взаимодействие с человеком. Библиотека языков программирования — это набор операторов языка, которые будут использоваться для обработки данных, поступающих от ИИ. Способность к обучению у нейронных сетей Способность и технология обучения нейронных сетей имеет свои особенности. Так, одним из наиболее распространенных методов считается Backpropagation, в основе которого заложен алгоритм вычисления градиентного спуска. Если говорить проще, то во время движения по градиенту происходит расчет минимального и максимального значения функции. Для осознания такого способа функцию переводят в график.

Образуется кривая, на которой определяют точки с наименьшим и наибольшим показателем. В это же время графически отображают все веса, и для каждого из них рассчитывают глобальный минимум. Также обучение может происходить по другому направлению — Resilientpropagation. Альтернатива предыдущей технологии. Если результат нужен здесь и сейчас, то данный способ считается не самым эффективным и удобным. Но в ряде случаев обучение происходит именно по Rprop. Он основан на принципах epoch, то есть только знаки производного случая применяют с целью корректировки значимых коэффициентов. Другой распространенный метод — генетический алгоритм.

По своей сути он напоминает процессы, которые происходят в окружающей среде. Простыми словами — эволюционные изменения. Это целая наука.

Первая ступень ракеты SpaceX Falcon 9 утонула после 20-го успешного запуска

Инженеры ИИ и эксперты в области машинного обучения будут востребованы в программировании, физике, биологии и других отраслях с высокой долей автоматизации. Сфера информационных технологий динамично развивается — важно быстро адаптироваться к актуальным изменениям и применять новейшие научно-технические разработки в исследовательской и профессиональной практике. Разработка программ глубокого и комплексного технического образования на всех уровнях, от младшей школы до курсов повышения квалификации, необходима для ускорения процесса подготовки профессионалов сферы и достижения высоких результатов в инновационной отрасли. Проект направлен на создание единого федерального учебно-методического комплекса, включающего: образовательную программу методические рекомендации для педагогических работников Реализация проекта позволит: обеспечить методические условия для повышения общей технической подготовки учащихся повысить эффективность преподавания учебного предмета «Информатика» в общеобразовательных организациях использовать успешный кейс для дальнейшего развития технического образования в России ЗАДАЧИ Обсуждение концепции и структуры учебно-методического комплекса по реализации в системе общего образования учебных курсов об основах ИИ.

К этапу выбора кейсовых заданий допускаются участники уже сформированных команд.

Выбрать кейс может любой член команды. Важно: количество команд на каждом кейсе ограничено. Не позднее чем за 5 дней до старта хакатона, в личном кабинете участника появятся данные о емкости кейса в процентах. По результатам выбора, зафиксированного на сайте в момент закрытия данного этапа, каждой команде автоматически присваивается кейс для решения на хакатоне.

Могу ли я принимать участие в других проектах платформы «Россия — страна возможностей»? Участвовать в других проектах платформы не только возможно, но и приветствуется! Победители, призеры и участники хакатонов могут зарегистрироваться на платформе «Другое дело». Это проект, в котором можно получить бонусы за то, что ты развиваешься сам и улучшаешь жизнь других!

При предъявлении диплома ты сможешь получить бонусные баллы, которые можно будет обменять на доступ в онлайн-сервисы, стажировки и многое другое. Подробности по ссылке.

Какое будущее нас ждёт?

Посмотрите видео полностью, чтобы узнать ответы на эти вопросы. В дополнение к теме Сегодня часто можно услышать такие термины, как «нейронные сети», «искусственный интеллект». Эти слова уже довольно прочно вошли в русскую речь.

ИИ по принципу работы схож с тем, как работает человеческий мозг. Однако ИИ нуждается в обучении. Есть специальные алгоритмы обучения нейронных сетей.

Алгоритмы обучения нейронной сети: наиболее распространенные варианты Известно несколько разновидностей алгоритмов машинного обучения. Каждый из алгоритмов обладает уникальными преимуществами и недостатками. Но в каждом случае, независимо от алгоритма, достигается конечная цель — НС обучается.

Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека. Основа для функционирования neural была взята из нейробиологии. Суть в том, что нужно было получить модель и программное решение, способное имитировать работу головного мозга.

Только относительно недавно развитие нейросетей стало демонстрировать результаты. Нейронная сеть и возможность ее обучения Ученые понимают, что для успешной работы интеллект должен быть самостоятельным. Если система функционирует как человек, то ее нужно обучать.

Но как учить компьютер? Сегодня с этой целью задействуют алгоритмы обучения нейронных сетей. Но все они основаны на одном из двух известных принципов:с наставником или без такового.

Мы можем провести аналогию с процессом обучения человека: он может получать знания как самостоятельно, так и вместе с наставником. С учителем В данном случае нейросеть получает выборку из обучающих примеров. Данные поступают на «вход», после чего происходит ожидание правильного ответа на «выходе».

Это ответ, который должна дать нейронная сеть. Конечный результат сопоставляют с эталонным значением. В том случае, когда НС выдает неверный ответ, производят коррекцию, дальше процесс повторно запускают, тем самым пытаются добиться снижения процента неправильных ответов.

И команда сделала всё за новогодние праздники. Первая версия названия проекта была «Шедеврус», ещё был «Им-Ям» Yimg-Yamg , но это плохо воспринималось на слух. В итоге победил вариант «Шедеврум» — это классное многослойное название. Приложение генерирует шедевры внутри room — «своей комнаты». У этой нейросети есть и другие применения. Миссия моей команды — в разработке достаточно общих технологий, которые используются в разных продуктах компании и касаются большей их части. Шедеврум — это интересная, фановая B2C-история, но наша цель — расти дальше.

Есть планы внедрения в B2B, рекламу и много ещё куда. Например, Яндекс использует в рекламе иллюстрации, созданные той же нейросетью, что работает в Шедевруме. Если у рекламодателя нет собственной картинки для объявления, он может выбрать из предложенных нейросетью. Нейросети можно использовать как для решения бизнес-задач, так и для развлечения. Мы постоянно в поисках новых применений. Уже сейчас нейросеть может придумать костюмы и декорации, разработать креативные концепции — помогать людям в их профессиональной деятельности. Отправить запрос на коммерческое использование контента из Шедеврума можно через форму обратной связ и — ответ придет в течение 5 рабочих дней.

Как вообще работает Шедеврум? В первую очередь сеть понимает, что хочет изобразить пользователь. Для этого мы используем отдельную нейросеть. Она обучалась на датасете текстов, понимает, как устроен язык и какие в нём взаимосвязи. Её задача — представить данные для другой нейросети в виде вектора чисел. Туда она кодирует информацию, о чём фраза, как взаимосвязаны слова. Вторая нейросеть в процессе обучения видела 330 млн изображений и текстов, связанных с ними.

Предполагается, что она сформировала своё представление о мире: каким визуальным образам соответствуют те или иные слова, как устроен мир изображений, как надо рисовать. Её задача — понять из сжатого представления текста, чего от неё хотят, и создать изображение. Если данных мало или вовсе нет, решение о генерации она принимает случайным образом. То есть додумывает сама: если не указать локацию, где лежит кот, она выдаст нам его изображение, например, на диване, а может — в вакууме или на пляже. Над чем команда работает прямо сейчас? Что необходимо Шедевруму для развития? В первую очередь — над улучшением качества.

5 бесплатных курсов, чтобы научиться применять нейросети в работе и жизни

совместно с факультетом компьютерных наук Высшей школы экономики и Яндексом запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение». Вадим Ветров: Конечно же, задания по искусственному интеллекту — последняя и предпоследняя задачи, направленные на машинное обучение и на рекомендательные системы. База знаний по ИИ и нейросетям: обучение, инструкции, промты ChatGPT, DALL-E, Midjourney, SD итд. Машинное обучение искусственного интеллекта сейчас бывает трех типов: обучение с учителем (Supervised learning) — алгоритм учится распознавать закономерности в данных и затем может делать прогнозы или принимать решения на основе новой. получат уникальную возможность погрузиться в мир искусственного интеллекта, освоить навыки промт-инжиниринга и научиться эффективно взаимодействовать с нейросетями в повседневной жизни.

Нейронные сети: принцип работы, перспективы и 159 современных нейронок

Помимо этого, помочь в решении проблемы может сам искусственный интеллект, а точнее — ИИ-детекторы сгенерированного контента. Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени. Почему стоит начать изучение машинного обучения и нейронных сетей с нашего курса? Вадим Ветров: Конечно же, задания по искусственному интеллекту — последняя и предпоследняя задачи, направленные на машинное обучение и на рекомендательные системы. Учим работе с нейросетями, применению искусственного интеллекта и новым профессиям в Вышке Онлайн. » предлагает обучение по теме искусственного интеллекта в искусстве.

Яндекс Образование

Нейросеть онлайн [34 режима] сервис Университета искусственного интеллекта, который позволяет создавать нейросети без единой строчки кода.
Яндекс, ВШЭ и Сириус запустили бесплатный курс по ИИ для школьников Вадим Ветров: Конечно же, задания по искусственному интеллекту — последняя и предпоследняя задачи, направленные на машинное обучение и на рекомендательные системы.
Яндекс Образование сервис Университета искусственного интеллекта, который позволяет создавать нейросети без единой строчки кода.
Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса» Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека.

ChatGPT, Lexica и другие нейросети: мнение учителей о новых инструментах в руках школьников

Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом. Очень интересно сравнивать выводы искусственного интеллекта с классическими критиками и строить своего рода нейросеть. Конечно, это мотивирует учащихся построить план обучения нейросети. Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека. Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование. Проходят обучение программированию нейронных сетей.

Похожие новости:

Оцените статью
Добавить комментарий