Новости нильс бор открытия

Главная» Новости» Наследный принц Дании Фредерик отмечает столетие Института Нильса Бора, вручая награды. Бор Нильс — чем известен, биография, открытия и достижения, работы и цитаты — РУВИКИ: Интернет-энциклопедия. В 1921 году Бор открыл институт имени себя, в котором, получив финансирование от датских властей, впервые подверг экспериментальной проверке теорию квантовой бухгалтерии. директора института академика Петра Леонидовича Капицы - проходит в конференц-зал и поднимается на сцену.

100 лет атому Бора, отмеченные на родине знаменитой теории

Нильс Бор с женой Маргарет, 30-е годыВ год празднования столетия теории атома, с которой, как принято считать, началась квантовая механика, мне довелось. Датский физик Нильс Бор 28 февраля 1913 года предложил свою теорию строения атома, в которой электрон в атоме не подчиняется законам классической физики. В 1922 году за работу в области структуры атома и радиации Нильс Бор удостаивается Нобелевской премии по физике. Нильс Бор, которому Фриш сообщил об этом, в первый момент потерял дар речи.

Нильс Бор: молчание о главном

Нильс Хенрик Давид Бор был датским физиком, который внес основополагающий вклад в понимание атомной структуры и квантовой теории, за что получил Нобелевскую премию по физике в 1922 году. Его главное физическое открытие — догадка о квантовании действия в атомах, модель атома Бора (1912). В 1939 году Нильс Бор сделал открытие, изменившее мир навсегда. 1 марта 1869 года русский ученый-энциклопедист Дмитрий Иванович Менделеев открыл периодический закон и составил систему химических элементов. В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества.

Последние новости:

  • Нильс Хенрик Давид Бор
  • Нильс Бор: деятельность физика – лауреата нобелевской премии
  • Нильс Бор | Наука | Fandom
  • Новость детально
  • Бор Нильс. Большая российская энциклопедия
  • Бор, Нильс — Абсурдопедия

Откройте свой Мир!

Эти черные дыры намного тяжелее обычных, но не такие массивные, как в центрах галактик, хотя всё равно смертоносные из-за того, что поглощают всё вокруг. И одна такая чёрная дыра промежуточной массы была обнаружена в момент ужасающего разрыва звезды в далёкой галактике. Учёные из института Нильса Бора Дания смоделировали обнаруженное ими разрушение звезды, и эта модель показала, что масса чёрной дыры составляет от 50 000 до 800 000 масс Солнца, что является колоссальным масштабом по сравнению с обычными чёрными дырами. Более того, благодаря этому открытию теперь астрономы смогут лучше изучить и понять эту неуловимую группу чёрных дыр средней массы.

Язык религии родственнее скорее языку поэзии, чем языку науки. Люди слишком склонны думать, что если дело науки — информация об объективном положении вещей, а поэзии —пробуждение субъективных чувств, то религия, раз она говорит об объективной истине, должна подлежать научным критериям истинности. Однако мне все это разделение на объективную и субъективную стороны мира кажется здесь слишком насильственным. Если религии всех эпох говорят образами, символами и парадоксами, то это, видимо, потому, что просто не существует никаких других возможностей охватить ту действительность, которая здесь имеется в виду. Но отсюда еще вовсе не следует, что она не подлинная действительность. И расщепляя эту действительность на объективную и субъективную стороны, мы вряд ли здесь далеко продвинемся. А далее Бор затронул и этический аспект: «Необходимо осознать, что существует отношение дополнительности между критическим анализом вероучительного содержания той или иной религии и поведением, предпосылкой которого является решительное принятие духовной структуры данной религии.

Такое сознательно принятое решение придает индивиду силу, которая руководит его поступками, помогает преодолеть моменты неуверенности, а когда ему приходится страдать, дарит ему утешение, порождаемое чувством укрытости внутри великого миропорядка. Таким путем религия помогает гармонизации жизни в обществе, и в число ее важнейших задач входит напоминание о великом миропорядке на языке образов и символов. Но в отличие от Канта, Бор предпочитал о Боге молчать. В том же самом разговоре с Гейзенбергом, Бор упоминает Витгенштейна, с его знаменитой заповедью молчать, если нельзя сказать ясно: «представляется замечательным, как бескомпромиссно Поль Дирак относится к вещам, допускающим ясное выражение на логическом языке; то, что вообще может быть сказано, считает он, может быть также и ясно сказано, а о чем нельзя говорить, о том, по выражению Витгенштейна, нужно молчать. Так что представляется разумным понять боровскую отсылку к Витгенштейну как пояснение позиции самого Бора — позиции апофатического молчания. Эта гипотеза представляется согласующейся со всем тем, что о Боре известно. Она весьма органична сочетанию двух дополнительных качеств великого физика: неустанного, вдохновляющего стремления к полной ясности и, в то же время, глубокого понимания недостижимости последних истин о «вещах в себе». Как писал Бор, «Наша задача — не проникать в суть вещей, смысла которых мы не знаем в любом случае, а разрабатывать концепции, которые позволят нам продуктивно рассуждать о явлениях природы». Переход на язык теологии и мистики мог казаться Бору чем-то недопустимым из-за неизбежной профанации непостижимого, о котором потому и следует молчать.

Возвращение домой и смерть В конце Второй мировой войны Бор вернулся в Копенгаген, где он снова стал директором Северного института теоретической физики и всегда выступал за применение атомной энергии с полезными целями, всегда добиваясь эффективности в различных процессах. Эта склонность объясняется тем фактом, что Бор осознавал огромный ущерб, который может быть нанесен тем, что он открыл, и в то же время он знал, что этот тип мощной энергии имеет более конструктивную полезность. Итак, с 1950-х годов Нильс Бор посвятил себя проведению конференций, посвященных мирному использованию атомной энергии. Как мы упоминали ранее, Бор не упускал из виду величину атомной энергии, поэтому, помимо защиты ее правильного использования, он также оговорил, что именно правительства должны гарантировать, что эта энергия не используется разрушительным образом. Это понятие было введено в 1951 году в манифесте, подписанном более чем сотней известных исследователей и ученых того времени. Как следствие этого действия и его предыдущей работы в пользу мирного использования атомной энергии, в 1957 году Фонд Форда наградил его премией «Атом для мира», присуждаемой личностям, которые стремились способствовать позитивному использованию этого типа энергии. Нильс Бор умер 18 ноября 1962 года в своем родном городе Копенгагене в возрасте 77 лет. Вклады и открытия Нильса Бора Бор и Альберт Эйнштейн Модель и строение атома Атомная модель Нильса Бора считается одним из его величайших вкладов в мир физики и науки в целом. Он был первым, кто показал атом как положительно заряженное ядро, окруженное вращающимися электронами. Бору удалось открыть внутренний рабочий механизм атома: электроны могут независимо вращаться вокруг ядра. Количество электронов, присутствующих на внешней орбите ядра, определяет свойства физического элемента. Чтобы получить эту модель атома, Бор применил квантовую теорию Макса Планка к модели атома, разработанной Резерфордом, получив в результате модель, которая принесла ему Нобелевскую премию. Бор представил атомную структуру как маленькую солнечную систему. Квантовые концепции на атомном уровне Что привело к тому, что модель атома Бора стала считаться революционной, так это метод, который он использовал для ее достижения: применение теорий квантовой физики и их взаимосвязь с атомными явлениями. С помощью этих приложений Бор смог определить движения электронов вокруг атомного ядра, а также изменения их свойств. Таким же образом, с помощью этих концепций, он смог получить представление о том, как материя способна поглощать и излучать свет из своих самых незаметных внутренних структур. Открытие теоремы Бора-ван Левена Теорема Бора-ван Левена - это теорема, применяемая в области механики. Эта теорема, впервые разработанная Бором в 1911 году, а затем дополненная ван Левеном, помогла отделить классическую физику от квантовой физики. Теорема утверждает, что намагниченность, возникающая в результате применения классической механики и статистической механики, всегда будет равна нулю. Бору и ван Левену удалось получить представление о некоторых концепциях, которые можно было разработать только с помощью квантовой физики. Сегодня теорема обоих ученых успешно применяется в таких областях, как физика плазмы, электромеханика и электротехника. Принцип дополнительности В рамках квантовой механики сформулированный Бором принцип дополнительности, который представляет собой теоретический и результирующий подход одновременно, утверждает, что объекты, подверженные квантовым процессам, имеют дополнительные атрибуты, которые нельзя наблюдать или измерять одновременно. Этот принцип дополнительности порожден другим постулатом, разработанным Бором: копенгагенской интерпретацией; фундаментальный для исследования квантовой механики. Копенгагенская интерпретация С помощью ученых Макса Борна и Вернера Гейзенберга Нильс Бор разработал эту интерпретацию квантовой механики, которая позволила выяснить некоторые элементы, которые делают механические процессы возможными, а также их различия.

В 1912 году он женился на Маргрете Норлунд, в семье родилось шестеро сыновей. В 1913-м он опубликовал свою знаменитую работу, посвященную структуре атома. В теории Бора можно выделить два основных компонента: общие утверждения постулаты о поведении атомных систем, сохраняющие свое значение сегодня, и конкретную модель строения атома, представляющую в наше время лишь исторический интерес. Вклад Бора в теорию квантовой механики был по достоинству оценен научным сообществом и привел к присуждению ему в 1922 году Нобелевской премии. Примерно в то же время ученому удалось убедить руководство Копенгагенского университета в необходимости создания Института физики. Институт был учрежден в 1921 году, и Бор стал его первым директором. Исследования, проводившиеся в 20-30-х годах Бором и другими выдающимися физиками — Вернером Гейзенбергом, Вольфгангом Паули — позволили совершить революционный скачок в квантовой теории и приблизиться к пониманию природы атома. Бор первым оценил значение открытия ядерного деления, осуществленного Лизой Мейтнер и Отто Ганом. Именно великий датчанин объяснил отличие изотопа урана-235 от других видов урана и предсказал, что его можно будет использовать для создания ядерного оружия. После прихода к власти в Германии нацистов Бор устроил нескольких эмигрировавших оттуда ученых на работу в Копенгагенский университет.

Нобелевские лауреаты 2022: кто и за какие открытия получил премию

В 1912 году, во время свадебного путешествия, Бор передал Резерфорду свою подготовленную к печати статью «Теория торможения заряженных частиц при их прохождении через вещество» она была опубликована в начале 1913 года. Вместе с тем было положено начало тесной дружбе семей Боров и Резерфордов. Общение с Резерфордом оставило неизгладимый отпечаток как в научном, так и в личностном плане на дальнейшей судьбе Бора, спустя много лет написавшего: Очень характерным для Резерфорда был благожелательный интерес, который он проявлял ко всем молодым физикам, с которыми ему приходилось долго или коротко иметь дело. По возвращении в Копенгаген Бор преподавал в университете, в то же время интенсивно работая над квантовой теорией строения атома.

Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 года и носящем название «резерфордовского меморандума» [19]. Однако решающие успехи были достигнуты в конце 1912 — начале 1913 года. Ключевым моментом стало знакомство в феврале 1913 года с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов.

Впоследствии сам Бор говорил: Как только я увидел формулу Бальмера , весь вопрос стал мне немедленно ясен [20]. В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [21] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома.

В теории Бора можно выделить два основных компонента [22] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики , на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона.

Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [23]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений.

Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 году Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех [24]. Нильс Бор и Альберт Эйнштейн вероятно, декабрь 1925 В 1949 году Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора: Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу.

Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь.

Это наивысшая музыкальность в области мысли [25]. Весной 1914 года Бор был приглашён Резерфордом заменить Чарльза Дарвина , внука знаменитого естествоиспытателя , в качестве лектора по математической физике в Манчестерском университете Шустеровская школа математической физики [26]. Он оставался в Манчестере с осени 1914 года до лета 1916 года.

В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27].

В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки.

Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели. Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете.

В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой.

Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы.

Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33].

Есть нейтринный детектор и в Антарктиде — Ice Cube говоря упрощенно, кубокилометр чистейшего льда. Все эти физические приборы позволили говорить о свойствах нейтрино. А это, в свою очередь, поставило на повестку дня вопрос точного определения «веса» частицы, что очень важно для физиков-теоретиков и космологов. В китайской провинции Сычуань, что у границ с Тибетом, в январе объявили об открытии подземной лаборатории, в которой наряду с темной материей будут искать и нейтрино, порождаемые в глубинах космоса. С его помощью ученые попытаются с максимальной точностью взвесить нейтрино вернее, антинейтрино , образующееся при бета-распаде трития. Количество выделенной энергии, уносимой электроном и нейтроном, хорошо известно, поэтому остаток будет равен массе нейтрино. Точность определения составляет 0,2 электрон-вольт еV.

Предполагается строительство детектора NuMass, в котором будет использоваться электронный захват в ядро редкоземельного металла гольмия электрона. Еще одно предложение касается детектора «Птолемей», в котором будет использоваться не газообразный, а твердый тритий на графене. Это позволит фиксировать большее число распадов. Чувствительность такого эксперимента оценивается в 0,04 eV. Одна из сложностей, связанных с квантовой физикой, заключается в том, что ее феномены проявляют себя при сверхнизких температурах и на очень малых расстояниях. И вот в лозаннском Институте технологии создали оптомеханическую полость с ультранизким шумом.

Одним из участников был физик Кристиан Кристиансен, который позже контролировал молодого Нильса Бора во время его исследований в Копенгагенском университете. Он был членом исполнительного совета Фонда "Carlsberg" и помог Нильсу получить после защиты докторской диссертации его начальное финансирование исследований, базирующихся в Кембридже и Манчестере, Англия. Когда он преподавал в College of Advanced Technology в Дании, его зарплаты было недостаточно, чтобы сводить концы с концами, поэтому Фонд решил выручить нуждающегося учёного.

На веб-сайте Фонда указано: "Бор получал финансирование из Фонда "Carlsberg" каждый год с момента его назначения преподавателем в 1916 году. В дополнение к финансированию специальных проектов, он также получал регулярный ежегодный грант на ассистентов и жильё". Их отношения были взаимовыгодны; Бор нуждался в поддержке, а "Carlsberg" хотел продвинуть науку и использовать некоторые результаты в своём запутанном процессе производства пива. У "Carlsberg" была специальная лаборатория, посвящённая исследованию в области производства пива. По данным Forbes: "В 1875 году эта лаборатория была первой, изолировавшей Saccharomyces pastorianus, разновидность дрожжей, на которых раньше варили светлый лагер.

На вопрос, понравилось ли ему пиво, Бор хитро ответил: «Главное, что не Tuborg! Поэтому все естественники поддерживают своих благодетелей и пьют только Carlsberg.

Нильс Бор - биография

Ранние работы Бора легли в основу метода, которым физика живет и по сей день, — когда гипотеза, выдвинутая для объяснения каждого известного факта, исследуется, проверяется, нет ли в ней противоречий, и логическая стройность возникающей теории является главным критерием ее истинности, какой бы странной она при этом ни казалась. Так же создавалась и планетарная модель атома. Казалось бы, как замечательно и красиво! Подобно планетам, вращающимся вокруг Солнца, электроны в атоме Бора вращаются вокруг ядра, — кто будет возражать против такого? Да еще после опытов Резерфорда по рассеянию альфа-частиц на ядрах золота, показавших, что материя в основном сосредоточена в компактных ядрах, расположенных на значительных расстояниях одно от другого. Однако возникает противоречие с классической теорией излучения: вращающийся по орбите электрон должен излучать электромагнитную волну и, следовательно, терять энергию, а в результате — «упасть» на ядро. Решение на первый взгляд просто: надо «запретить» электрону излучать при движении по орбите. Но это и есть революция естествознания: признание того, что законы микроуровня отличаются от законов мира больших масштабов!

В этом нужно убеждать, а значит, подбирать доказательства из опытов по электричеству, магнетизму, спектроскопии и так далее, нужно также пояснить, где простирается граница между микро- и макромирами и как законы микромира перетекают в классические законы. Нильс Бор в своем кабинете. Еще один философский принцип Нильса Бора — Принцип Дополнительности. Возник он, в частности, из попыток описать странное поведение света: то как волны в опытах по дифракции, то как частицы в опытах по фотоэффекту. Свет, таким образом, поддается описанию с помощью двух классических образов, но только абсолютно несовместимых! И Бор возводит это в принцип: явление должно быть описано с разных сторон, пусть и противоречивым с точки зрения привычных представлений образом.

Как-то ночью Хоу приснилось, что он попал к дикарям, которые требовали создать швейную машинку для их вождя. Туземцы угрожали ему странными копьями — с дырками на наконечниках, у самого острия. Наутро изобретатель понял, что в машинке игольное ушко должно быть у острого конца иглы, а не у тупого, как раньше. Отто Леви и нервный импульс При помощи нервной системы мозг получает информацию о том, что происходит в теле и в окружающем мире. Немецкий ученый Отто Леви пытался выяснить, как именно передаются эти сигналы от одной нервной клетки к другой. Варианта было два: электрический импульс и химическая реакция. Сам Леви склонялся ко второй идее, но никак не мог придумать эксперимент, который доказал бы его гипотезу. Эксперимент пришел к нему во сне и был поставлен на… сердцах лягушек! Проснувшись, Леви повторил идею из сна. Сердца двух лягушек он поместил в разные емкости с питательным раствором: в нем они продолжали биться отдельно от тела. Затем ученый стимулировал током нерв одного сердца — оно начало биться медленнее. Но самое интересное было дальше: когда Леви добавил раствор из первой колбы во вторую, второе сердце тоже замедлило ритм! Так немец доказал, что нервный импульс рождался с помощью вещества, которое появилось в первом растворе после реакции.

В 1901 году немецкий ученый получил премию за открытие излучения, которое носит его имя. Имена номинантов по физике, их исследования и мнения, связанные с присуждением им премии, по правилам Фонда Нобеля не раскрываются в течение 50 лет. Химия Нобелевская премия по химии присуждена американцам Каролин Бертоцци, Барри Шарплессу и датчанину Мортену Мелдалу за развитие клик-химии и биоортогональной химии. Нобелевский комитет по химии отметил вклад исследователей в функциональный инновационный способ построения молекул. Результаты их работы используют при разработке препаратов для лечения онкологических заболеваний. Мария Кюри была удостоена Нобелевской премии за исследования по физике и по химии, а Лайнус Полинг был Нобелевским лауреатом по химии и обладателем премии мира. Физиология и медицина В 2022 году Нобелевский комитет присудил награду шведскому биологу Сванте Паабо. Ученый доказал с помощью генетических методов, что вымерший так называемый денисовский человек, который обитал в Азии вместе с неандертальцами и людьми современного типа, был отдельной ветвью в эволюции человека. Открытие считается сенсационным в науке. Самая известная Нобелевская премия по медицине была присуждена Александеру Флемингу, Эрнесту Чейну и Говарду Флори в 1945 году за открытие пенициллина и его лечебного эффекта при разнообразных инфекционных заболеваниях.

Прослушав две лекции по физике , Бор решил, что ему толкают лажу, и вообще с такой физикой светлое будущее не построишь. Припомнив манеру игры своей бывшей футбольной команды и её тактические построения, Бор изобрёл квантовую механику , а вспомнив манеру ведения дел в клубе со стороны директора — квантовую бухгалтерию. Не собираясь останавливаться на достигнутом, Бор поехал в лазарет своей любимой команды, где, глядя на то, что оставалось от коллег после жёстких футбольных единоборств, написал статью «О строении атомов и молекул». Научная деятельность[ править ] В 1921 году Бор открыл институт имени себя, в котором, получив финансирование от датских властей, впервые подверг экспериментальной проверке теорию квантовой бухгалтерии. Результатом стало открытие т. Открытие Бора было с радостью встречено всеми научными институтами мира и было признано самым научным из всех научных открытий за всю историю науки. Правительствам пришлось мириться с новой научной парадигмой и учесть её при дальнейшем финансировании научных направлений.

Журнал «ПАРТНЕР»

Датский физик Нильс Бор внес весомый вклад в развитие теории атомного ядра и ядерных реакций. Нильс Бор — датский ученый, стоявший у истоков современной физики. Нильс Хенрик Давид Бор (дат – Самые лучшие и интересные новости по теме: Истории, факты, физики на развлекательном портале В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов. Нильс Бор неоднократно подчеркивал параллель между гносеологическими проблемами квантовой физики и теории относительности.

Похожие новости:

Оцените статью
Добавить комментарий