Деревья, как и многие другие объекты в природе, имеют фрактальное строение. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Смотрите 51 фото онлайн по теме фракталы в природе фото. О природе ков Виталий7 (Высоцкий В С.).
14 Удивительные фракталы, обнаруженные в природе
В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора.
Исследовательская работа: «Фракталы в нашей жизни».
О природе ков Виталий7 (Высоцкий В С.). Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Фрактальная геометрия природы. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock.
Прекрасные фракталы в природе
Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид — С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы. Динамические, или алгебраические фракталы К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций.
Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений вручную такой объем невозможно провести , позволивших построить изображение этих фигур. Человек с пространственным воображением Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех.
Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор.
Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе. Жюлиа — Мандельброт Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность.
Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа.
Примеры природных фрактальных фигур. Слева — лист папоротника.
Справа — капуста романеско. Однако на микроскопическом уровне фрактальные узоры никогда ранее не наблюдались. Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше.
Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского. Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее.
Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник. Листья папоротников являются типичным примером самоповторяющегося ряда. Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации приближения. Например, листья папоротников и некоторых зонтичных растений например, тмин являются самоподобными до второго, третьего или четвертого уровня.
Схожие с папоротником паттерны встречаются также у многих растений брокколи, капуста сорта Романеско, кроны деревьев и листья растений, плод ананаса , животных мшанки, кораллы, гидроидные, морские звезды, морские ежи. Также фрактальные паттерны имеют место в структуре разветвления кровеносных сосудов и бронхов животных и человека. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций например, функция Больцано, функция Вейерштрасса, множество Кантора. Термин «фрактал» введен Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Множество Мандельброта — классический образец фрактала Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры. Многоугольники — инженерный гений При достаточной наблюдательности в живой природе легко обнаружить строгую геометрию. В особом почете оказываются гексагоны — правильные шестиугольники.
Например, соты, в которых пчелы хранят золотистый нектар, — это чудеса инженерного искусства, набор ячеек в форме призмы с правильным шестиугольником в основании. Толщина восковых стенок строго определена, ячейки немного отклоняются от горизонтали, чтобы вязкий мед не вытекал, и соты находятся в равновесии с учетом влияния магнитного поля Земли. А ведь эту конструкцию без чертежей и прогнозов строят множество пчел, которые одновременно работают и как-то координируют свои попытки сделать соты одинаковыми. Если вы подуете на пузырьки на поверхности воды, чтобы согнать их вместе, то они приобретут форму шестиугольников — или, по крайней мере, приблизятся к ней. Вы никогда не увидите скопище квадратных пузырей: если даже четыре стенки соприкоснутся, они немедленно перестроятся в конструкцию с тремя сторонами, между которыми будут примерно равные углы в 120 градусов.
Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом. Фрактал — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.
Фрактальные закономерности в природе
Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией.
Впервые в природе обнаружена микроскопическая фрактальная структура
Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. В данном разделе вы найдете много статей и новостей по теме «фрактал». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых журналов. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Деревья – один из самых квинтэссенциальных фракталов в природе. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только.
Фракталы в природе и в дизайне: сакральная геометрия повсюду
Самый известный фрактальный узор снежинки известен как снежинка Коха, возникающая из одного равностороннего треугольника, образующего другой, третий и так далее. Это один из самых ранних описанных фракталов. По мере их роста от ствола отходят ветви, и каждая из этих ветвей сама по себе похожа на меньшее дерево, развивающее свои собственные ветви и свои собственные ответвления. Если вы посмотрите на сложное дерево, то заметите повторение Y-образной формы на всем его протяжении. Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние. Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь. Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных.
Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении.
Основополагающий вопрос работы: показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Предмет исследования: фрактальная геометрия. Объект исследования: фракталы в математике и в реальном мире. Гипотеза: все, что существует в реальном мире, является фракталом. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.
Ожидаемые результаты: в ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов. Итог работы: создание собственных фракталов вручную и с помощью компьютерных технологий. Одна из причин заключается в её неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - это не конусы, линии берега — это не окружности… Вплоть до XX века шло накопление данных о таких странных объектах, без какой-либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова «фрактал». Постепенно сопоставив факты, он пришёл к открытию нового направления в математике - фрактальной геометрии.
Рисунок 1. Создатель фракталов - Бенуа Мандельброт. Что же такое фрактал? Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый поделенный на части. И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого по крайней мере, приблизительно. Фракталы — это нечто гораздо большее, чем математический курьёз.
Они дают чрезвычайно компактный способ описания объектов и процессов. Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную, размерность структуры. Фрактальная геометрия описывает природные формы изящнее и точнее, чем Еклидова геометрия. Рисунок 2. Книга Мальдеброта.
Фракталы — это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур. Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Овладев языком фракталов, можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии.
Язык — это очень подходящая метафора для концепции, лежащей в основе фрактальной геометрии. Буквы не несут в себе никакого смыслового значения до тех пор, пока они не соединены в слова. Точно так же евклидова геометрия состоит лишь из нескольких элементов прямая, окружность и т. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б. Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться.
Померив берег с помощью километровой линейки, мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки.
Фрактал упорядочивает хаос Картины с изображением фракталов способствуют глубокой медитации От общего к частному: из природы в архитектуру Архитектура обожает прием совершенной геометрии. К примеру, индуистские храмы обладают схожими друг на друга структурами. В их дизайне некоторые части напоминают концепт в целом. Согласно индуистской космологии, центральная башня зачастую олицетворяет бога Шиву, а подобные меньшие — бесконечные повторы вселенной. Не страшно разгадать глубинные секреты Вселенной? Дизайн фракталов также имеет схема линий парижского метрополитена, индийская мандала , соборы и храмы и природные объекты. Дизайн повторяющихся фрагментов отражается в общем облике здания и отдельно взятых деталях фасада. Наиболее чаще они встречаются в западной и отечественной архитектурах: исторический музей в Москве, древние индийские и ацтекские ступенчатые храмы, многофункциональный комплекс Federation Square в Мельбурне, мексиканский бутик Liverpool Insurgentes и другие.
Фракталы прячутся в простых вещах: цветной капусте, суккулентах, кактусах Их изучение развивает множество сфер: от астрономической, социальной до IT и точных наук Фракталы в IT-сфере и литературе — что общего? Фракталы и их геометрия незаметно перебралась в технологический мир. Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети. К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов. Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система. Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур.
Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов. Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе!
На иллюстрации выше изображена картина распределения электрического разряда с размерностью 1,75, известная как фигура Лихтенберга, созданная высоковольтным электрическим разрядом на непроводящем материале. Еще один отталкивающий объект — фрактальный продукт кристаллических структур с размерностью 1,8, сфотографированный через микроскоп. Hartverdrahtet — достойный победитель конкурса демосцены 2012 года по 4-килобайтным файлам. Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев. А вот один из лучших проектов с фрактальными эффектами в демосцене. К сожалению, качество демонстрационного видео крайне плохое из-за давности лет , но демо можно скачать и запустить на компьютере. Для создания подобных или других фрактальных миров особых ухищрений не требуется.
14 Удивительные фракталы, обнаруженные в природе
Фракталы в природе Подготовила Андреева Алина Р-12/9. Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Деревья – один из самых квинтэссенциальных фракталов в природе. Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе.