Новости задачи генетика егэ биология

За 7 занятий разбираем все необходимые для сдачи ЕГЭ по биологии материалы по генетике, закрепляем на практике и учимся решить на 3 балла задачу 29 из второй части. Интеллектуальный и эстетичный кабинет для подготовки к ЕГЭ. Задачи и методы генетики человека.

Линия заданий 28, ЕГЭ по биологии

Не имеющая указанных заболеваний женщина, у отца которой была гемофилия, а у дигомозиготной матери - куриная слепота, вышла замуж за мужчину, не имеющего этих заболеваний. Родившаяся в этом браке моногомозиrотная здоровая дочь вышла замуж за мужчину, не имеющего этих заболеваний, в этой семье родился ребёнок-гемофилик. Составьте схемы решения задачи.

Сравниваем с условием: «… в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами. Все совпало. Вопрос: «Объясните фенотипическое расщепление во втором скрещивании. Ответ: В бланк выписываем таблицу «ген-признак», схемы скрещиваний из пунктов 5 и 6 и ответ на теоретический вопрос из пункта 7.

Группа крови контролируется тремя аллелями одного гена: i0, IA, IB. В браке женщины с первой группой крови, положительным резус-фактором и мужчины с третьей группой крови, положительным резус-фактором родился ребёнок с отрицательным резус-фактором. Составьте схему решения задачи. Определите генотипы родителей, возможные генотипы и фенотипы потомства.

Женщина с пигментной ксеродермой и ихтиозом вышла замуж за гетерозиготного мужчину без этих заболеваний. Родившаяся в этом браке дочь без указанных заболеваний вышла замуж за мужчину с пигментной ксеродермой и отсутствием ихтиоза. У человека аллели генов атрофии зрительного нерва и ихтиоза заболевание кожи находятся в одной хромосоме и наследуются сцепленно с полом.

Женщина, не имеющая этих заболеваний, у матери которой был ихтиоз, а у отца - атрофия зрительного нерва, вышла замуж за мужчину без этих заболеваний. Родившаяся в этом браке гомозиготная здоровая дочь вышла замуж за мужчину, не имеющего этих заболеваний. В их семье родился ребенок, страдающий ихтиозом. Составьте схемы решения задачи. Укажите генотипы, фенотипы родителей и генотипы, фенотипы, пол возможного потомства в двух браках. Возможно ли в первом браке рождение ребенка, страдающего двумя названными заболеваниями? У человека аллели генов куриной слепоты ночной слепоты и атрофии зрительного нерва находятся в одной хромосоме и наследуются сцепленно с полом.

Женщина, не имеющая этих заболеваний, у матери которой была атрофия зрительного нерва, а у отца - куриная слепота, вышла замуж за мужчину без этих заболеваний. В их семье родился ребенок с атрофией зрительного нерва. У человека аллели генов куриной слепоты ночной слепоты и ихтиоза заболевание кожи находятся в одной хромосоме и наследуются сцепленно с полом. Женщина, не имеющая этих заболеваний, у матери которой был ихтиоз, а у отца - куриная слепота, вышла замуж за мужчину без этих заболеваний. У человека аллели генов мышечной дистрофии и атрофии зрительного нерва находятся в одной хромосоме и наследуются сцеплено с полом. Женщина, не имеющая этих заболеваний, у матери которой была атрофия зрительного нерва, а у отца — мышечная дистрофия, вышла замуж за мужчину, не имеющего этих заболеваний. Родившаяся в этом браке гомозиготная здоровая дочь вышла замуж за мужчину без этих заболеваний.

У человека аллели генов мышечной дистрофии и куриной слепоты ночной слепоты находятся в одной хромосоме и наследуются сцепленно с полом. Женщина, не имеющая этих заболеваний, у матери которой была куриная слепота, а у отца — мышечная дистрофия, вышла замуж за мужчину без этих заболеваний. В их семье родился ребёнок с куриной слепотой.

Все потомки имели яркие венчики и усы. С гибридами первого поколения провели анализирующее скрещивание, получили следующее расщепление: 90 ярко окрашенных без усов, 94 бледно окрашенных с усами, 190 с яркими венчиками и усами, 201 — с бледными венчиками и без усов. Гены А и В, а и b — попарно сцеплены, поэтому гамет, содержащих такие сочетания, будет продуцироваться значительно больше, чем кроссоверных: Ab и aB. Складываем количество особей в малых фенотипических группах и делим на общее количество особей в потомстве, так мы получаем расстояние между генами. Данную задачу тоже можно оформить иначе: Второе скрещивание будет выглядеть следующим образом: Задача 3 При скрещивании высоких растений томата с грушевидными плодами и карликовых растений с шаровидными плодами, все растения первого поколения были высокими и имели шаровидные плоды. При анализирующем скрещивании было получено 146 растений высоких с шаровидными плодами, 154 карликовых растений с грушевидными плодами, 633 — высоких с грушевидными плодами, 567 — карликовых с шаровидными плодами.

Версии задач по генетике (ЕГЭ биология) | Задачи 12-23

  • Оформление задач
  • ЕГЭ 2024. Биология. Открытый вариант ФИПИ - разбор заданий.
  • Решутест. Продвинутый тренажёр ЕГЭ
  • Новая школа: подготовка к ЕГЭ с нуля
  • НОВЫЕ задачи по ГЕНЕТИКЕ. ТОЧНО БУДУТ НА ЕГЭ 2023|ЕГЭ БИОЛОГИЯ|Freedom| - YouTube
  • Задание 28. Генетика: Решение задач: теория ЕГЭ-2024 по Биологии — NeoFamily

Все задачи по генетике | Задание №28 | ЕГЭ-2024 по биологии смотреть трансляцию бесплатно от 2 June

Новых задач по генетике не будет. Положительного контроля не будет. Все возможные варианты будут учитываться. Обратите на них внимание.

Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека.

Периоды онтогенеза человека. Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза.

Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени. Механизмы регуляции онтогенеза у растений и животных 3.

Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический 3. Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя — закон расщепления признаков.

Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет. Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании.

Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков. Цитологические основы дигибридного скрещивания. Сцепленное наследование признаков. Работы Т.

Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности. Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы.

Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом. Генотип как целостная система. Плейотропия — множественное действие гена.

Множественный аллелизм. Взаимодействие неаллельных генов. Полимерия 3. Изменчивость признаков. Качественные и количественные признаки.

Виды изменчивости: ненаследственная и наследственная. Модификационная изменчивость. Роль среды в формировании модификационной изменчивости. Норма реакции признака. Вариационный ряд и вариационная кривая В.

Свойства модификационной изменчивости. Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная. Комбинативная изменчивость.

Мейоз и половой процесс — основа комбинативной изменчивости. Роль комбинативной изменчивости в создании генетического разнообразия в пределах одного вида. Мутационная изменчивость. Виды мутаций: генные, хромосомные, геномные. Спонтанные и индуцированные мутации.

Ядерные и цитоплазматические мутации. Соматические и половые мутации. Причины возникновения мутаций. Мутагены и их влияние на организмы. Закономерности мутационного процесса.

Закон гомологических рядов в наследственной изменчивости Н. Внеядерная изменчивость и наследственность 3. Международная программа исследования генома человека. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, популяционно-статистический, молекулярно-генетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа.

Наследственные заболевания человека. Генные и хромосомные болезни человека. Болезни с наследственной предрасположенностью. Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека. Стволовые клетки 3.

Зарождение селекции и доместикации. Учение Н. Вавилова о Центрах происхождения и многообразия культурных растений. Роль селекции в создании сортов растений и пород животных. Сорт, порода, штамм.

Вавилова, его значение для селекционной работы. Методы селекционной работы. Искусственный отбор: массовый и индивидуальный. Этапы комбинационной селекции. Испытание производителей по потомству.

Отбор по генотипу с помощью оценки фенотипа потомства и отбор по генотипу с помощью анализа ДНК. Искусственный мутагенез как метод селекционной работы. Радиационный и химический мутагенез как источник мутаций у культурных форм организмов. Использование геномного редактирования и методов рекомбинантных ДНК для получения исходного материала для селекции. Получение полиплоидов.

Внутривидовая гибридизация. Близкородственное скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Гетерозис и его причины. Использование гетерозиса в селекции.

Отдалённая гибридизация. Преодоление бесплодия межвидовых гибридов. Достижения селекции растений и животных 3. Традиционная биотехнология: хлебопечение, получение кисломолочных продуктов, виноделие. Микробиологический синтез.

Объекты микробиологических технологий. Производство белка, аминокислот и витаминов. Искусственное оплодотворение. Реконструкция яйцеклеток и клонирование животных. Метод трансплантации ядер клеток.

Хромосомная и генная инженерия. Искусственный синтез гена и конструирование рекомбинантных ДНК. Достижения и перспективы хромосомной и генной инженерии. Медицинские биотехнологии. Использование стволовых клеток 4 Система и многообразие органического мира 4.

Принципы классификации организмов. Основные систематические группы организмов 4. Движение одноклеточных организмов: амёбоидное, жгутиковое, ресничное. Диффузия газов через поверхность клетки. Питание организмов.

Выделение у организмов. Сократительные вакуоли. Защита у одноклеточных организмов. Раздражимость у одноклеточных организмов. Цисты простейших 4.

Споры бактерий. Колониальные организмы 4. Типы растительных тканей: образовательная, покровная, проводящая, основная, механическая. Особенности строения, функций и расположения тканей в органах растений. Органы растений.

Вегетативные и генеративные органы растений. Транспортные системы растений. Дыхание растений. Питание растений. Поглощение воды, углекислого газа и минеральных веществ растениями.

Выделение у растений. Раздражимость и регуляция у растений. Ростовые вещества и их значение. Движение многоклеточных растений: тропизмы и настии. Защита у многоклеточных растений.

Средства пассивной и химической защиты. Опора тела организмов. Каркас растений 4. Типы животных тканей: эпителиальная, соединительная, мышечная, нервная. Особенности строения, функций и расположения тканей в органах животных и человека.

Органы и системы органов животных. Функции органов и систем органов 4. Скелет многоклеточных животных. Наружный и внутренний скелет. Защита у многоклеточных животных.

Покровы и их производные. Внутриполостное и внутриклеточное пищеварение. Транспорт веществ у животных. Кровеносная система позвоночных животных. Эволюционные усложнения строения кровеносной системы позвоночных животных.

Дыхание животных. Дыхание позвоночных животных. Дыхательная поверхность. Механизм вентиляции лёгких у птиц и млекопитающих. Эволюционное усложнение строения лёгких позвоночных животных.

Питание позвоночных животных. Органы выделения. Связь полости тела с кровеносной и выделительной системами. Выделение у позвоночных животных. Нервная система и рефлекторная регуляция у животных.

Нервная система и её отделы. Отделы головного мозга позвоночных животных. Эволюционное усложнение строения нервной системы у животных 4. Гуморальная регуляция и эндокринная система человека. Железы эндокринной системы и их гормоны.

Действие гормонов. Взаимосвязь нервной и эндокринной систем. Гипоталамо-гипофизарная система. Рефлекс и рефлекторная дуга.

Составьте схемы решения задачи. Укажите генотипы, фенотипы родителей и генотипы, фенотипы, пол возможного потомства в двух браках. Возможно ли в первом браке рождение больного этими двумя заболеваниями ребёнка?

Но, повторюсь, мы боремся не за баллы, а за справедливость, — добавляет мама девушки.

В Министерстве образования и науки Челябинской области 74. RU сообщили, что в этой ситуации надо разбираться предметно, заседание конфликтной комиссии по биологии состоится 6 июля. Если есть сомнения по результатам ЕГЭ, нужно подавать апелляцию, — прокомментировали в Минобре. Сегодня мы рассказывали историю выпускницы, которую лишили золотой медали за три балла ЕГЭ. О том, как грамотно оспорить результаты Единого госэкзамена, читайте в этом материале. Что еще почитать про ЕГЭ «Кто-то говорит, что пойдет повесится». Как школьникам и родителям справиться со стрессом из-за ЕГЭ ; «Топик был обычный, без декольте»: за что аннулируют результаты ЕГЭ — 3 истории из регионов.

Задание №28 ЕГЭ по биологии

В родословной 2 женщины и 2 мужчины имеют изучаемый признак. Можно считать, что изучаемый признак с приблизительно равной частотой встречается и среди мужчин, и среди женщин. Это характерно для признаков, гены которых расположены не в половых хромосомах, а в аутосомах. Поэтому можно сделать второй предварительный вывод: изучаемый признак является аутосомным. Таким образом, по основным особенностям наследование изучаемого признака в этой родословной можно отнести к аутосомно-доминантному типу. Кроме того, эта родословная не обладает набором особенностей, характерных для других типов наследования.

Определим возможные генотипы всех членов родословной: По схеме родословной мужчина болен, а женщина здорова, у них родилось трое детей - один здоров, а двое больны, это говорит о том, что все особи с изучаемым признаком гетерозиготны.

Это характерно для признаков, гены которых расположены не в половых хромосомах, а в аутосомах. Поэтому можно сделать второй предварительный вывод: изучаемый признак является аутосомным.

Таким образом, по основным особенностям наследование изучаемого признака в этой родословной можно отнести к аутосомно-доминантному типу. Кроме того, эта родословная не обладает набором особенностей, характерных для других типов наследования. Определим возможные генотипы всех членов родословной: По схеме родословной мужчина болен, а женщина здорова, у них родилось трое детей - один здоров, а двое больны, это говорит о том, что все особи с изучаемым признаком гетерозиготны.

Тогда генотипы членов родословной: детей 1-го поколения: дочь Аа, дочь аа, сын Аа; детей 2-го поколения: дочь Аа; мать аа, отец Аа. Задача 23 По изображенной на рисунке родословной установите характер проявления признака доминантный, рецессивный , обозначенного черным цветом.

Количество генотипических классов - 3n Число возможных комбинаций, сочетаний гамет — 4n Вторая часть экзаменационной работы включает задания со свободным развернутым ответом. С их помощью наряду со знаниями проверяются умения четко, логично и кратко письменно излагать свои мысли, аргументировать ответ, обосновывать и доказывать изложенные в ответе факты, правильно делать вывод. Вывод к задачам, в которых действует закон единообразия гибридов первого поколения: Единообразие гибридов первого поколения наблюдается потому, что родители - гомозиготные, и образуют по одному типу гамет.

Вот с какими форматами вы столкнетесь: Шесть заданий — на выбор нескольких ответов из списка. Еще в четырех нужно установить соответствие между элементами. Три задания — на установление последовательности. Два — на дополнение информации по таблице. Еще в двух заданиях необходимо решить задачу по цитологии и генетике. Три задания — на поиск ответа по изображению на рисунке. И в одном проанализировать информацию в табличной или графической форме. Вторая часть Вторая часть ЕГЭ по биологии — это задания с развернутым ответом, который нужно самостоятельно сформулировать и записать. У каждого задания свои особенности. В заданиях 22 и 23 задание обсуждаются биологические эксперименты: планирование, проведение и анализ. Номер 24 — нужно проанализировать рисунок и ответить на вопросы В задачах 25 и 26 требуются развернутые ответы по блокам «Система и многообразие органического мира», «Организм человека и его здоровье» и «Эволюция живой природы» 27 и 28 — прикладные задания, где нужно решать задачи по цитологии и генетике. Для 27-го вопроса необходимо научиться решать задачи на закон Харди — Вайнберга, а в 28-м номере советую обратить внимание на решение заданий с голандрическим типом наследования и с псевдоаутосомным наследованием Как видите, обе части экзамена важны. Готовиться к ним нужно вдумчиво и последовательно.

3 задание ЕГЭ по биологии: генетическая информация

Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ; При обращении указывайте id этого вопроса - 20918. У человека между аллелями генов атрофии зрительного нерва и красно-зелёного дальтонизма происходит кроссинговер. Не имеющая таких заболеваний женщина, у матери которой был дальтонизм, а у отца - атрофия зрительного нерва, вышла замуж за мужчину, не имеющего таких заболеваний. Родившаяся в этом браке моногомозиготная здоровая дочь вышла замуж за мужчину, не имеющего таких заболеваний, в этой семье родился ребёнок-дальтоник. Составьте схемы решения задачи. Укажите генотипы, фенотипы родителей и генотипы, фенотипы, пол возможного потомства в двух браках. Возможно ли в первом браке рождение больного двумя заболеваниями ребёнка? Ответ поясните. Показать подсказку 1 Схема 1: женщина, не имеющая этих заболеваний, у матери которой был дальтонизм, а у отца - атрофия зрительного нерва, вышла замуж за мужчину, не имеющего этих заболеваний 2 Схема 2: брак между женщиной моногомозиготная здоровая дочь и мужчиной, не имеющим указанных заболеваний Моногомозиготная - означает, что один ген у нее в гомозиготном состоянии AA , а другой в гетерозиготном Dd 3 в первом браке возможно рождение сына-дальтоника с атрофией зрительного нерва XadY. В генотипе этого ребёнка находятся материнская, образовавшаяся в результате кроссинговера X-хромосома с двумя рецессивными аллелями и отцовская Y-хромосома, не содержащая аллелей этих двух генов.

Ниже проиллюстрировано сцепление генов на примере первого брака. Пожалуйста, сообщите о вашей находке ; При обращении указывайте id этого вопроса - 20917. У человека между аллелями генов куриной слепоты ночная слепота и дальтонизма красно-зелёного происходит кроссинговер. Женщина, не имеющая этих заболеваний, у матери которой был дальтонизм, а у отца - куриная слепота, вышла замуж за мужчину, не имеющего этих заболеваний. Родившаяся в этом браке моногомозиготная здоровая дочь вышла замуж за мужчину, не имеющего этих заболеваний. В их семье родился ребёнок-дальтоник. Возможно ли в первом браке рождение больного этими заболеваниями ребёнка? Показать подсказку 1 Схема 1: женщина, не имеющая этих заболеваний, у матери которой был дальтонизм, а у отца - куриная слепота, вышла замуж за мужчину, не имеющего этих заболеваний 2 Схема 2: брак между женщиной моногомозиготная здоровая дочь и мужчиной, не имеющим указанных заболеваний 3 В первом браке возможно рождение сына-дальтоника с куриной слепотой ХadУ. В генотипе этого ребёнка находятся материнская, образовавшаяся в результате кроссинговера Х-хромосома Хad и отцовская У-хромосома, не содержащая аллелей этих двух генов.

Возможные комбинации таких гамет определяются с помощью решетки Пеннета. Остается только сопоставить явствующее из решетки теоретическое расщепление 9:3:3:1с условиями задачи; хорошее совпадение подтверждает справедливость сделанного в ходе решения предположения о характере генетического определения окраски цветков люцерны. Другая аллель этого гена соответствует рыжей масти. Ни одна из этих аллелей не доминирует, так как гетерозиготные животные имеют пятнистую окраску ее называют иногда «черепаховой». Почему черепаховые коты встречаются крайне редко? Какими будут котята от скрещивания черепаховой кошки с черным котом? А с рыжим? Для возникновения черепаховой окраски необходимо одновременно наличие двух генов: «Рыжего» и «черного». Но гены эти находятся в Х-хромосомах, в хромосомном же наборе самца — всего одна Х-хромосома, так что одновременное присутствие указанных двух генов заведомо исключено встречающиеся все-таки крайне редко черепаховые коты имеют ненормальный набор половых хромосом XXY. Черепаховая кошка образует гаметы с «черной» Хч-хромосо-мой Ч и гаметы с «рыжей» Хр-хромосомой Р. А спермин чер ных котов содержит либо «черную» Хч-хромосому, либо же Y-хромосому, которая не несет никакого гена окраски. Две первые соответствуют черной и черепаховой кошкам, а две вторые — черному и рыжему коту. Теория возникновения жизни на Земле А. Опарин, Дж. Хол-дейн, С. Фокс, С. Миллер, Г. Жизнь на Земле возникла абиогенным путем. Органические вещества сформировались из неорганических под действием физических факторов среды. Они взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся ферментные системы — свободные гены. Свободные гены приобрели разнообразие и стали соединяться. Вокруг них образовались белково-липидные мембраны. Из гетеротрофных организмов развились автотрофные. Клеточная теория Т. Шванн, Т. Шлейден, Р. Все живые существа — растения, животные и одноклеточные организмы — состоят из клеток и их производных. Клетка не только единица строения, но и единица развития всех живых организмов. Для всех клеток характерно сходство в химическом составе и обмене веществ. Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеточных единиц. Все живые клетки возникают из живых клеток. Теория эволюции Ч. Все существующие ныне многочисленные формы растений и животных произошли от существовавших ранее более простых организмов путем постепенных изменений, накапливавшихся в последовательных поколениях. Теория естественного отбора Ч. В борьбе за существование в естественных условиях выживают наиболее приспособленные. Естественным отбором сохраняются любые жизненно важные признаки, действующие на пользу организма и вида в целом, в результате чего образуются новые формы и виды. Хромосомная теория наследственности Т. Хромосомы с локализованными в них генами — основные материальные носители наследственности.

Гетерозигота — клетка или организм, содержащие разные аллели одного и того же гена Аа. Генотип — совокупность всех генов организма. Фенотип — совокупность признаков организма, формирующихся при взаимодействии генотипа с окружающей средой. Гибридологический метод — изучение признаков родительских форм, проявляющихся в ряду поколений у потомства, полученного путём гибридизации скрещивания. Моногибридное скрещивание — это скрещивание форм, отличающихся друг от друга по одной паре изучаемых контрастных альтернативных признаков, которые передаются по наследству. Дигибридное скрещивание — это скрещивание форм, отличающихся друг от друга по двум парам изучаемых альтернативных признаков. Полигибридное скрещивание — это сложное скрещивание, при котором родительские организмы отличаются по трём, четырём, и более парам контрастных альтернативных признаков. Раздел 1. Общие рекомендации по решению генетических задач. Техника решения задач Алгоритм Символика 1. Краткая запись условий задачи. Введение буквенных обозначений генов, обычно А и В. Определение типа наследования доминантность, рецессивность , если это не указано. Запись фенотипов и схемы скрещивания словами. Определение фенотипов в соответствии с условиями. Запись генотипов символам генов под фенотипами. Определение гамет. Выяснение их числа и находящихся в них генов на основе установленных генотипов. Составление решетки Пеннета. Анализ решетки согласно поставленным вопросам.

Дарвин делал свои открытия в середине XIX века, Дженкин бурчал в то же самое время. Мендель же свой горох стал изучать уже во второй половине XIX века, а законы так вообще только в 1900 записали. То есть на момент написания Дарвином его знаменитых книг никто ещё не догадывался ни о каких законах наследственности. Никто не знал и о хромосомах, а о генах так и подавно о них стало известно лишь в ХХ веке. Поэтому тогда вполне логично было предположить, что можно передать ребёнку половину признака. Вопрос третий: «Какая биологическая теория начала XX века помогла решить противоречие между Дженкином и Дарвином? Вот это и есть тот самый коварный пункт, который дополнялся на протяжении всего экзамена — на основе тех ответов, которые давали ученики. Подсказка есть в самом вопросе: теория должна быть начала ХХ века. Здесь по смыслу лучше всего подойдет хромосомная теория наследственности, которую Морган опубликовал в 1915 году. Сперва в ответы был заложен только этот вариант, но потом составители смилостивились и добавили к нему ещё синтетическую теорию эволюции и мутационную теорию. Дело в том, что мутационная теория здесь действительно самая ранняя — 1903 год, но она вроде не так хорошо подходит под задачу.

Решаю все типы заданий по теме: «Генетика» | Биология ЕГЭ – Ксения Напольская

Количество генотипических классов - 3n Число возможных комбинаций, сочетаний гамет — 4n Вторая часть экзаменационной работы включает задания со свободным развернутым ответом. С их помощью наряду со знаниями проверяются умения четко, логично и кратко письменно излагать свои мысли, аргументировать ответ, обосновывать и доказывать изложенные в ответе факты, правильно делать вывод. Вывод к задачам, в которых действует закон единообразия гибридов первого поколения: Единообразие гибридов первого поколения наблюдается потому, что родители - гомозиготные, и образуют по одному типу гамет.

Перейти к характеристикам Книга «ЕГЭ. Раздел "Генетика".

Теория, тренировочные задания. Учебно-методическое пособие» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене.

Например, аллель карих глаз один альтернативный признак поменяется местами с аллелью голубых глаз второй альтернативный признак. Незнание результата кроссинговера на уровне генов и хромосом Неаллельные гены получают новые сочетания в паре гомологичных хромосом. Отсюда рождается комбинативная изменчивость хотя у нее еще есть минимум две причины.

Например, аллель голубых глаз, перелетев на другую хромосому, образует новое сочетание с другой аллелью абсолютно другого гена, к примеру, с аллелью темных волос. В итоге хромосома получит новое сочетание признаков, и, попав, в половую клетку, может стать причиной рождения голубоглазого темноволосого ребенка. Незнание фактора усиления кроссинговера Частота кроссинговера имеет один определяющий фактор. Если большое расстояние между неаллельными генами в хромосоме, кроссинговер легко идет. Если гены рядом, его частота падает.

Итог в том, что два неаллельных гена разорвутся и попадут в совершенно разные половые клетки. Не будут наследоваться вместе.

Во втором скрещивании самки мыши с чёрной окраской тела, укороченным хвостом и самца с чёрной окраской тела, укороченным хвостом в потомстве получено расщепление по генотипу 1:2:1:2. Составьте схемы скрещиваний, определите генотипы и фенотипы родительских особей и потомства в скрещиваниях.

Подготовка к ЕГЭ. Решение генетических задач

Генетика: Решение задач» по Биологии: раздел — «Генетика». Задача на гибель эмбрионов Текст задачи: У уток признаки хохлатости и качества оперения аутосомные несцепленные. Приступая к решению генетических задач, необходимо помнить, что в основе всех заданий лежит знание основных законов наследования признаков, а также понимание того, что все законы генетики носят статистический характер. Генетика. вопросы 10-11 класс.

Задание 28. Генетика. ЕГЭ 2024 по биологии

Задание С6 на ЕГЭ по биологии: основные виды задач и способы их решения. Задача по генетике. Решение задачи по генетике. Кроссворд по биологии 9 класс «Скелет человека» Задания по теме «Отдел папоротниковидные» Задачи по теме «Биосинтез белка» Творческие задания как средство развития интереса к биологии в классах коррекционного обучения Задания по теме. Решение задачи по генетике.

Решение генетических задач

Новый тип генетических задач 2023 «Сложные задания второй части ЕГЭ по.
Подготовка к ЕГЭ. Решение генетических задач Генетика — наука, изучающая наследственность и изменчивость организмов.
Решение задач по генетике на ЕГЭ по биологии Главная» Новости» Решу егэ биология 2024.
Решутест. Продвинутый тренажёр ЕГЭ Генетика. вопросы 10-11 класс.
Биология 2023, обсудим? Новые задачи по генетике на ЕГЭ по биологии. Задачи на картирование хромосом и морганиды на экзамене в 2024 году.

Задачи по генетике ЕГЭ по биологии с ответами и решениями

Генетика к ЕГЭ по биологии с решениями 2023 год. Большая практика по НОВЫМ типам задач на ЕГЭ по биологии! Пару дней назад я обещал разобрать задачи 28 линии на голандрический тип наследования. Задача по генетике. Список заданий Московской олимпиады школьников по генетике 2023 года. Открытый банк заданий ЕГЭ | Биология. В 2024 году в ЕГЭ по биологии есть небольшие изменения: количество заданий первой части сократилось с 22 до 21.

Похожие новости:

Оцените статью
Добавить комментарий