Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий.
Теория суперструн популярным языком для чайников
Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. 28 апреля - 43672616965 - Медиаплатформа МирТесен.
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия.
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для Стандартной модели, — объясняет Сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со Стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. И тот факт, что ученые смогли проделать такие измерения а ранее они казались слишком сложными , впечатляет.
К Стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену СМ. К примеру, из частиц-суперпартнеров могла бы получиться темная материя», — говорит Уильям Сатклифф, доктор философии Имперского колледжа в Лондоне.
Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны. Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму.
В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели.
Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета в обычной Стандартной модели вводится один хиггсовский дуплет , то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса 2 степени свободы , лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса. В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов.
В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии. SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий. Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии. Одно из её проявлений — величина радиационных поправок к массе бозона Хиггса.
Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе.
Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.
Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами.
Экзамены суперсимметричной модели вселенной 1978
Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta.
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией
С тех пор, как в 1915 году была сформулирована общая теория относительности Эйнштейна, каждый физик-теоретик мечтал примирить наше понимание бесконечно малого мира атомов и частиц с бесконечно большим масштабом космоса. Если последнее отлично описывается уравнениями Эйнштейна, первое с необычайной точностью прогнозируется так называемой Стандартной моделью фундаментальных взаимодействий. Наше нынешнее понимание состоит в том, что взаимодействие между физическими объектами описывается четырьмя фундаментальными силами. Две из них — гравитация и электромагнетизм — проявляются для нас на макроскопическом уровне, мы имеем с ними дело каждый день. Остальные две — слабое и сильное взаимодействие — проявляются на очень малых масштабах и только когда мы имеем дело с субатомными процессами. Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация никак не хочет вписываться в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как поведение планеты на орбите или динамика галактик, общая теория относительности перестает работать на очень коротких дистанциях. Согласно Стандартной модели, все силы опосредуются определенными частицами. В случае с гравитацией работу выполняет гравитон. Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях.
Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего.
Исследование авторов опубликовано на сайте arXiv. Физики полагают, что обнаруженные LIGO волны пространства-времени порождены слиянием не обычных, а первичных черных дыр. Такие гравитационные объекты, согласно наиболее популярной в науке стандартной космологической модели , возникали на ранних стадиях эволюции Вселенной в момент начала ее расширения. Наиболее популярным кандидатом на роль вещества, которое могло бы сформировать первичные черные дыры, выступает темная материя, представляемая суперсимметричными частицами.
Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях. Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего. Конечно, с тех пор, как умер Альберт Эйнштейн в 1955 году, был проделан значительный прогресс в этой области. Наш лучший кандидат сегодня носит имя M-теории. Революция струн Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн энергетических трубочек. Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем. Прежде всего, отдельное колебание струны можно интерпретировать как гравитон. И в отличие от стандартной теории гравитации, теория струн может описывать его взаимодействия математически и не получать странных бесконечностей. Значит, гравитацию можно будет включить в объединенную структуру. После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений.
Кроме этого откровенно фантастического сценария, новая теория включает в себя две новые частицы, которые идут в дополнение к известным частицам, определенным Стандартной Моделью. Существование этих двух частиц позволяет объяснить озадачивающие ученых свойства симметрии сильных ядерных взаимодействий, связывающих кварки в протоны и нейтроны, а протоны и нейтроны — в ядра атомов. Современная теория сильных взаимодействий, известная как квантовая хромодинамика, допускает наличие некоторых разногласий в симметрии фундаментальных сильных взаимодействий, так называемой CP-симметрии, хотя эти разногласия пока еще не наблюдались экспериментальным путем. Существование одной из частиц новой теории позволяет решить проблему CP-симметрии, убирая разногласия и делая сильные взаимодействия полностью симметричными. Более того, эта же дополнительная частица может являться частицей темной материи, загадочной субстанции, на долю которой приходится подавляющая часть материи нашей Вселенной. Естественно, сейчас еще нет и не может существовать единого мнения насчет того, какая именно из теорий, объясняющих малую массу бозона Хиггса или проблему CP-симметрии сильных взаимодействий, является истинной, а какие теории не имеют шанса на существование.
Суперсимметрия
Это должно сильно поднять энергию хиггсовского поля, делая W и Z-бозоны более массивными и приводя к тому, что слабое взаимодействие ослабеет до уровня гравитации. Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы. Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы. Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит. А в качестве бонуса один из неоткрытых суперпартнёров может быть составной частью тёмной материи. Со временем, поскольку суперпартнёры не появились, суперсимметрия стала менее красивой.
По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало. Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии. Но нарушение суперсимметрии — это новая проблема. Большинство специалистов по физике частиц в 1980-х считали, что суперпартнёры будут лишь немного тяжелее известных частиц. Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли. И в то время, как БАК тестирует всё более высокие энергии, не находя и следа суперсимметричных частиц, некоторые физики утверждают, что теория мертва.
Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей.
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS.
SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий. Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии. Одно из её проявлений — величина радиационных поправок к массе бозона Хиггса. В рамках Стандартной модели поправки к массе скалярного поля имеют квадратичную форму и оказываются существенно больше, чем масса поля, входящая в лагранжиан.
Для сокращения таких поправок к массе Хиггса параметры Стандартной модели должны иметь очень точно определённые значения. В рамках MSSM поправки, как к фермионным массам, так и скалярным, имеют логарифмическую форму, и их сокращение происходит более естественно, но требует точной суперсимметрии. Кроме того, данное решение проблемы иерархии предполагает, что массы суперпартнёров не могут быть больше, чем несколько сотен ГэВ. Этот аргумент позволяет ожидать открытие суперсимметрии на коллайдере LHC. Унификация калибровочных бегущих констант.
Рияз Масалимов Рияз Масалим 09-09-2011 16:48 link Отрицательный результат - тоже результат. Всё нормально. Если все "красивые" гипотезы подтверждались, то давно всё было бы открыто, и, естественно, развитие на этом кончилось бы, и всё бы закончилось.
«Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. Многие думают, что даже если большинство теорий суперсимметрии не подтвердились, появятся новые, которые будут включать этот принцип, но в другой концепции.