Как добраться до Музея занимательных наук Экспериментаниум. Музей "Экспериментаниум" готов снова радовать посетителей своими интерактивными экспонатами и увлекательными опытами! один из лучших музеев, который открыт в Москве для детей.
Экспериментаниум — музей занимательных наук
Музей занимательных наук «Экспериментаниум», г.Москва | Обзор музея экспериментариум (экспериментаниум). 3 этажа различных экспериментов: вода, свет, визуальные обманы, магнитные свойства, шестеренки и механизмы. |
Музей занимательных наук "Экспериментаниум". | Мы с ребятами отправимся в музей занимательных наук «Экспериментаниум», где нам покажут более 300 интереснейших экспонатов, которые не только можно, но и нужно трогать. |
Музей занимательных наук Экспериментаниум переезжает 30 января | Актуальные события и новости из жизни музея. |
Музей занимательных наук Экспериментаниум | Естественные науки для детей: мероприятия, кружки, наборы. |
Музей занимательных наук "Экспериментаниум".: anothercity — LiveJournal | Музей занимательных наук «Экспериментаниум» — это самый большой в Москве интерактивный музей науки. |
"Экспериментаниум" музей занимательных наук
Музей "Экспериментариум" советуют всем родителям в Москве, чьи дети уже стали школьниками или близки к этому. "Экспериментаниум" музей занимательных наук. Лаборатория музея "Экспериментаниум" показывает научные фильмы, а также проводит различные мастер-классы и шоу для детей и их родителей. "Экспериментаниум" помогает в доступной интерактивной форме узнать больше о науке, законах физики, принять участие в опытах и экспериментах. Многолетний партнер агентства «МОСГОРТУР» и самый занимательный научный музей Москвы Экспериментаниум переезжает в новое здание на Ленинградском. Многолетний партнер агентства «МОСГОРТУР» и самый занимательный научный музей Москвы Экспериментаниум переезжает в новое здание на Ленинградском. «Экспериментаниум» – музей занимательных наук, где вы можете изучить законы физики и явлений окружающего мира.
При поддержке:
- 10 лучших музеев занимательной науки и техники
- Как создавался Музей занимательных наук «Экспериментаниум»
- 10 лучших интерактивных музеев Москвы
- Описание музея
Топ-15 самых неординарных музеев и развлечений Москвы
Список российских интерактивных музеев, конечно же, был бы не полным без московского Экспериментаниума, о нем сегодня и пойдет речь. Об Экспериментаниуме мы слышали давно, но все никак не могли в него сходить. Во-первых, пугало количество посетителей почти все отзывы говорят о том, что очень много детей по выходным , во-вторых, мы считали, что Максу еще очень рано посещать музеи. Но после поездки в Гонконг и посещения там многочисленных музеев , в том числе музея науки, мы решили рискнуть и отправиться в Экспериментаниум одни ранним субботним утром. Экспериментаниум - адрес, как добраться Музей занимательной науки в Москве появился в 2011 году и долгое время располагался в районе станции метро Савеловская, но в 2015 состоялся глобальный переезд в более просторное здание у метро Сокол. Кстати, в старом здании Эксперементаниума теперь тоже музей, посвященный телу человека, и мы обязательно о нем тоже расскажем, но в рамках другой статьи. Итак, музей науки в Москве теперь располагается по адресу Ленинградский проспект дом 80, корпус 11.
Проще всего добираться, конечно же, на метро - вам нужен выход на Балтийскую улицу, доходите до нее около пары минут от выхода из метро , и вы почти на месте. На другой стороне улицы вы увидите большую арку, а над ней большую вывеску «Экпериментаниум» - вам туда! Часы работы Экспериментариума, цена билетов, официальный сайт Работает музей в будние дни с 9:30 до 19:00, а в выходные с 10:00 до 20:00. Продажа билетов прекращается за час до закрытия, то есть после 18:00 в будни и после 19:00 в выходные в музей вы уже не попадете. Помимо обычной экспозиции в Экспериментаниуме каждый день проводятся различные тематические шоу, посвященные физическим и химическим процессам. Расписание шоу и мастер-классов есть на официальном сайте музея, причем сделано оно довольно удобно - можно заранее спланировать поход в музей и конкретное шоу.
Цена билетов в будни и выходные отличается, неизменным остается лишь то, что дети до 3-х лет идут бесплатно. Остальные же цены лучше смотреть на сайте музея , скажем лишь что в будние дни ходить дешевле, а еще бюджетнее ходить в понедельник, когда действует акция «Счастливый день», которая позволяет существенно сэкономить на билетах. Кстати, за каждое шоу или мастер-класс придется заплатить отдельно. Очень удобно на официальном сайте музея реализована возможность покупки билетов онлайн, и если у вас есть такая возможность, то лучше ей воспользоваться. Мы, например, в субботу провели в очереди в кассу около 15 минут. Правда мы приехали не к открытию, а примерно в начале двенадцатого.
Экспонаты в Экспериментаниуме Теперь, когда всю практическую информацию о часах работы, цене билетов и том, как доехать до Экспериментаниума мы озвучили, пора переходить к самому музею и его экспозициям. В музее более 300 интерактивных экспонатов и почти все из них можно и нужно трогать. Сделаны они довольно надежно, поэтому сломать их не так просто, хотя некоторые посетители пытаются.
На уникальном электрическом шоу " Тесла" детей и взрослых ждали зрелищные и познавательные научные аттракционы с электричеством. Заряд электрического настроения был обеспечен! Каждый принял непосредственное участие в опытах и экспериментах.
Нам будет казаться, что мы видим симметричный кубик. Но стоит нам повернуть три круга из этого экспоната, как прямые отрезки из разных рисунков не будут лежать на одной прямой. То есть нельзя будет просто соединить между собой отдельные фрагменты в единое целое. Это значит, что наше воображение не сможет увидеть красивого цельного объекта. Эффект домино Каждая костяшка домино изначально обладает некоторым количеством потенциальной энергии. Чем больше костяшка, тем большей потенциальной энергией она обладает. В процессе падения костяшки домино потенциальная энергия переходит в кинетическую энергию. В процессе столкновения первая костяшка передаёт часть своей энергии второй костяшке. Вследствие этого, изначально неподвижная вторая костяшка падает. И так далее. Размер и расстояние должны быть такими, что начальной энергии костяшки достаточно для падения соседней. В 2009 году был установлен мировой рекорд. Тогда упало 4491863 костяшки. Жесткость Встаньте поочередно на каждую пластину и металлическую балку. Посмотрите, насколько сильно они прогибаются. Пластины и балка прогибаются по-разному. Это значит, что жесткости различных пластин и балки неодинаковы. Жесткость - способность конструктивных элементов деформироваться при внешнем воздействии без существенного изменения геометрических размеров. Коэффициент жесткости - основная характеристика жесткости. Коэффициент жёсткости равен силе, вызывающей единичное перемещение в характерной точке. Коэффициент жесткости зависит от вещества, из которого изготовлено данное тело и от геометрических размеров. Хитроумные колеса Все видели колесо. Оно круглое. Оно легко и непринужденно катится по ровной поверхности. А бывают ли "некруглые" колеса? Почему не делают колеса квадратными, шестиугольными? Ответ прост. Колесо как геометрическая фигура - это круг. У него ровный непрерывный край, причем каждая точка края находится на одинаковом расстоянии от центра круга оси колеса. У квадратного же колеса есть углы, которые к тому же удалены от центра дальше, чем края. Вот и получается, что квадратное колесо неустойчиво и требует затрат энергии на подъем своей оси и автомобиля, установленного на такие колеса. Однако решение проблемы есть. Нужна специальная дорога для таких колес. Она представляет собой холмистый путь. Квадрат будет перекатываться по этим холмам. Углы квадрата, попадая в ложбины между холмов, будут иметь достаточную опору, чтобы не опрокинуться назад. Можно даже сказать, что, в некотором роде, не квадрат перекатывается по холмам, а круглые холмики катятся по сторонам квадрата полная аналогия с обычным колесом. Помните советский мультфильм про братьев-пилотов? Как они гнались за поездом на велосипеде? Они сделали из своих колес кресты, которые своими зубцами попадали между шпал железнодорожного пути, и спокойно ехали следом. Зубчатое колесо и шпалы - еще один пример причудливых колес. Таким образом, можно придумать множество необычных колес и подходящих для них путей. Шарик в лабиринте Цель данной игры проста - провести шарик от старта до финиша. При этом надо избегать отверстий в дне лабиринта. Особый момент - управление. Вы управляете движением шарика, наклоняя лабиринт. Шарик будет скатываться по наклонной плоскости. Куда - зависит от того, как вы наклоните лабиринт. Но в одиночку это сделать очень трудно. Поэтому в эту игру лучше играть вдвоем. Стоя с разных сторон, можно точнее и увереннее направлять движение шарика. Чем лучше скоординированы действия игроков, тем лучше будет результат. Если каждый игрок будет играть только для себя, то ничего хорошего из этого не выйдет. Взаимодействие и взаимопонимание - ключ к успеху при прохождении лабиринта. Зеркало с веревками Возьмите веревку в каждую руку. Смотрите только на одну руку и ее отражение, пока другая рука остается скрытой позади зеркала. Начинайте медленно перемещать руку, за которой вы следите, вдоль держателя с веревкой. Создается ощущение, что ваша вторая рука также начинает двигаться. Зрительный образ настолько сильно доминирует над ощущениями, что вы чувствуете движение обеими руками сразу. Если закрыть глаза, то вы сразу почувствуете, что вторая рука покоится! Трение Установите тарелки на исходные позиции внизу горки. Затем поднимите экспонат за край, чтобы привести тарелки в движение! Сравните время, за которое тарелки проходят дистанцию. За торможение предметов при движении вдоль поверхности отвечает сила трения скольжения. Величина трения зависит от того, как сильно прижаты тела друг к другу, и от того, из каких материалов они сделаны. Трение скольжения всегда приводит к диссипации энергии, то есть переводит полную энергию тела в тепло. Арочный мост Арочный мост С помощью данных деревянных частей постройте арочный мост. Люди издавна умели строить арки. Например, для переправы через реку возводились арочные мосты. И делалось это нередко, ведь такие мосты довольно устойчивы. На каждую составную часть арки как и на всё, что нас окружает действует сила тяжести. Сила тяжести направлена вниз. Несмотря на это, каждый элемент арки остаётся в покое. Кроме силы тяжести, на все части арки действуют силы реакции опоры со стороны соседних элементов. С увеличением веса увеличивается сила тяжести. В связи с этим возрастают и силы реакции опоры со стороны соседних брусков. Таким образом, нагрузка распределяется по всем составным частям арки, вплоть до основания. Этот же принцип использовался для строительства сводчатых потолков в средневековых замках и храмах. Волк, баран, капуста... Крестьянину нужно перевезти через реку волка, барана и капусту. Но лодка такова, что в ней может поместиться только крестьянин, а с ним или один волк, или один баран, или одна капуста. Но если оставить волка с бараном, то волк съест барана, а если оставить барана с капустой, то баран съест капусту. Как крестьянину перевезти свой груз? Маятник Максвелла Намотайте ленты, на которых держится колесо, на ось. Отпустите колесо. Ленты будут то разматываться, то обратно наматываться на ось. Колесо при этом будет то опускаться, то подниматься. Наматывая ленты на ось колеса тем самым поднимая маятник , мы запасаем систему потенциальной энергией. Под действием силы тяжести оно опускается вниз. В процессе движения вниз потенциальная энергия уменьшается, а кинетическая увеличивается. Если бы не было вращения, то был бы случай свободного падения тела. При этом колесо достаточно быстро опустилось бы. В нашем же случае колесо еще и вращается. То есть потенциальная энергия переходит в кинетическую энергию вращения колеса и кинетическую энергию поступательного движения. При этом время опускания существенно увеличится. В нижней точке, когда нить размотана, частота вращения максимальна. Нить снова начинает накручиваться на ось, происходит обратное преобразование энергии из кинетической в потенциальную. После чего все повторяется. Стоит отметить, что из-за наличия трения энергия системы уменьшается. Это рано или поздно приведет к остановке колеса в нижнем положении. Блоки Блоки Блок—механическое устройство, представляющее собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для троса. Блок может быть подвижным и неподвижным. Неподвижный блок применяется для подъёма небольших грузов или для изменения направления силы. Подвижный блок предназначен для изменения величины прилагаемых усилий. Существует много различных конструкций из блоков. Например, в случае, показанном на рисунке, для поднятия груза необходимо приложить силу, в два раза меньшую силы тяжести, действующую на груз если, как это обычно предполагается, масса груза много больше массы блоков. Вес металлов Перед вами пять пластинок, которые сделаны из латуни, свинца, титана, дюралюминия, стали. Форма и размер пластинок одинаковы. Поднимите каждую пластинку поочередно. Даже без весов вы заметите, что массы пластинок отличаются. Дело в том, что различные вещества обладают различными плотностями. Плотность вещества зависит от того, насколько тяжелы ядра атомов, и от того, насколько плотно они "упакованы" в веществе. Стул-подъемник Сядьте на стул. Попросите кого-нибудь потянуть за трос и поднять вас. Не позволяйте помощнику резко отпускать вас! Простое подъемное устройство состоит из четырёх блоков: одного неподвижного и трех подвижных. Неподвижный блок не дает выигрыша в силе. Он только меняет направление приложенной силы. Благодаря блокам помощник поднимает только одну восьмую часть вашего веса. Золотое правило механики гласит: "Во сколько раз мы выигрываем в силе, во столько же раз мы проигрываем в расстоянии". Восприятие веса Вам кажется, что массы брусков одинаковы? Попробуйте взять их в руки и проверить, верны ли ваши предположения. Используя весы, сравните их массы. Оценки размера и веса сильно зависят от восприятия внешнего мира. Большие предметы кажутся тяжелее маленьких, а одинаковые по размеру - одинаковыми и по весу. Однако, это далеко не всегда так. Если вы возьмете бруски в обе руки, то неравенство их масс становится очевидным. Все дело в том, что стоит также учитывать материал предмета и его содержимое. Например, брусок железа тяжелее деревянного бруска той же формы. Различные тела обладают различными плотностями. В нашем случае один из брусков обладает большей плотностью, что и объясняет различие масс. Динамометры и центр тяжести Экспонат представляет собой горизонтальную балку, подвешенную на двух динамометрах. На балке находится гиря, которую можно передвигать вдоль балки. Посмотрите на показания динамометров. Если гиря находится не в середине, то показания отличаются. Это связано с тем, что моменты сил реакции динамометров относительно груза равны. Однако плечи этих сил различны. Величина силы реакции равна отношению момента к плечу. Поэтому больше будут показания того динамометра, к которому груз ближе. Под действием силы тяжести! Положите металлический стержень с маховиком на горку сверху. Отпустите стержень. Под действием силы тяжести он скатится вниз. Положите двойной симметричный конус внизу горки, в самой узкой ее части. Отпустите конус. Он начнет подниматься вверх в горку! Почему конус поднимается вверх по горке? Ведь под действием силы тяжести все тела должны притягиваться к Земле. В случае с конусом необходимо рассматривать движение его центра масс. В начале горки рельсы, по которым поднимается конус, узкие. Поэтому в силу своей формы, конус почти весь и находится над горкой. Центр масс при этом находится довольно высоко. Из-за расширения рельс конус будет опираться рельсы в точках, находящихся все дальше от основания. При этом центр масс будет опускаться относительно рельс. Маятник Ньютона Отклоните несколько металлических шаров и отпустите их. Что произойдет с шарами на противоположном конце? Попробуйте проделать то же самое с другим количеством шаров. Как известно, любое движущееся тело обладает импульсом. Импульс равен произведению массы тела на его скорость. При центральном упругом столкновении двух одинаковых шаров они обмениваются импульсами. Таким образом, движущийся шар передает свой импульс следующему шару, который, в свою очередь, передаёт импульс дальше. Так продолжается до тех пор, пока импульс не передастся последнему шару. В итоге последний шар получает импульс, в точности равный импульсу первого шара. При отсутствии внешнего воздействия полный импульс остаётся неизменным. Так гласит закон сохранения импульса. Поэтому, если отклонить два шара, то закон сохранения импульса не запрещает последнему шару приобрести двойную скорость. Однако это запрещает закон сохранения энергии. Энергия движущегося тела пропорциональна квадрату скорости. Таким образом, последний шар будет двигаться с энергией, вдвое большей первоначальной энергии системы. Это запрещено законом сохранения энергии, поэтому в движение придут два последних шара, а их скорости будут равны скоростям первых двух шаров. Вес тела в воде и в воздухе На весах закреплены одинаковые грузы. Один из них погружен в воду. Почему вес тела, погружённого в воду, меньше? Причина заключается в том, что на грузы действуют различные выталкивающие силы. Эти силы также называются архимедовыми. Архимедова сила направлена против силы тяжести. Плотность воды примерно в 1000 раз больше плотности воздуха. Следовательно, в воде архимедова сила больше, чем в воздухе. Поэтому вес груза в воде меньше. Колесо-гироскоп Достаточно сильно раскрутите колесо. Удерживая рукоятку, наклоните вращающееся колесо. Чувствуете, как колесо сопротивляется? Данная модель является иллюстрацией такого понятия как гироскоп - быстро вращающегося твердого тела, в нашем случае колеса. В основе работы любого гироскопа лежит закон сохранения момента импульса. В данной модели важную роль играет явление прецессии, то есть поворачивание оси вращения гироскопа под действием внешних моментов сил. Самой простой иллюстрацией прецессии является юла. Ось вращения юлы начинает поворачиваться под действием момента силы тяжести. Теорема Пифагора и кубики Положите кубики в два маленьких квадрата. Они должны быть полностью заполненными. Переложите все блоки в большой квадрат. Он также окажется полностью заполненным. Пифагор - греческий философ, живший за пять веков до новой эры. Он сформулировал следующую теорему: В любом прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Гипотенузой называют самую длинную сторону прямоугольного треугольника, катетами - оставшиеся две. Эта теорема имеет так же аналогичную формулировку, связанную с геометрией: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Именно это и проверяется с помощью кубиков. Странный аттрактор Расставьте на платформе под маятником магниты в произвольном положении. Отклоните маятник. Маятник начнет совершать непредсказуемые движения. Если бы на платформе не было магнитов, то данный маятник был бы примером обычного математического маятника. Движение такого маятника довольно легко описать математически. При малых углах отклонения такой маятник совершает гармонические колебания относительно положения равновесия.
Попробуйте удержать сумку или другой предмет потяжелее на вытянутой руке. Затем прижмите руку поближе к груди. Чувствуете разницу? На вытянутой руке это сложно, так как рука - это как бы рычаг. Прижав руку к груди, мы утрачиваем рычаг, потому и удержать проще. Так думали и создатели двигателя рычаги на шарнирах - полная аналогия с нашими руками. Более длинные рычаги должны перевешивать. При повороте будут подключаться новые шарниры-рычаги, откидываясь под действием своей тяжести. В идеале это должно продолжаться вечно. Причина, по которой данный двигатель работает не вечно, проста. Да, рычаги справа - длиннее. Но слева грузиков-рычагов больше, чем справа. Их количество компенсирует действие длинных рычагов. Именно поэтому колесо не будет вращаться вечно. Подпорка Подпорка Посмотрите на конструкцию. Выглядит прочной? Тогда уберите боковую подпорку и дайте легкий толчок конструкции. Она сложится как карточный домик. Подпорки можно встретить везде в нашей жизни. Это и трость она как бы подпирает пожилых людей, чтобы те не упали. Это и боковые опоры столбов электропередачи. Часто подпорки используют в строительстве для поддержания стен и других конструкций. Подпорки делают из камня, дерева, металла. Строительные подпорки существуют давно, их использовали еще древние римляне. Некоторые подпорки выполняют не только опорные, но и декоративные функции. В величественных соборах и храмах много прекрасных колонн-подпорок. Стальной мост Надавите сверху на стальную пластину. Пронаблюдайте за тем, как она прогнётся. Посредством приложенной силы стальная пластина начнёт прогибаться. В результате этого прикреплённые к нижней стороне пластины кубики раздвинутся. Данный экспонат наглядно показывает процессы, происходящие в балочном мосту. Простейший балочный мост представляет собой балку, находящуюся на двух неподвижных точках опоры. Чем больше расстояние между точками опоры, тем сильнее прогибается балка. Кубики показывают, как сильно деформируются различные части балки. Одинаковые предметы Перед вами два дугообразных предмета. Когда мы говорим о размере предмета, мы сравниваем его с характерными размерами других предметов. Только тогда мы можем говорить о его величине. Даже измерение длины в физическом эксперименте - это сопоставление с эталонным метром. Таким образом, если мы будем по отдельности рассматривать предметы данной модели, то мы не сможем определить, какой из них больше. Более того, если мы положим эти предметы так, чтобы длинная сторона одного соприкасалась с короткой стороной другого, нам покажется, что предметы различаются! Для того, чтобы убедиться, что предметы одинаковы, наложите один на другой. Воображаемый кубик Данный экспонат демонстрирует работу человеческого воображения. На жёлтом фоне находятся восемь отдельных изображений в виде красных кругов с тремя белыми прямыми отрезками внутри. Некоторые из них можно поворачивать вокруг оси, меняя ориентацию белых линий. В начальном положении нам кажется, что в каждом таком круге изображена вершина кубика. Из каждой вершины выходят по три стороны кубика. Только стороны не соединены между собой. Человек устроен так, что он во всем стремится видеть правильные фигуры. Когда мы видим несимметричные объекты, они нам кажутся сложными и некрасивыми. Поэтому в данном случае нашему воображению легко "нарисовать" недостающие прямые, которые объединят восемь независимых рисунков в один. Нам будет казаться, что мы видим симметричный кубик. Но стоит нам повернуть три круга из этого экспоната, как прямые отрезки из разных рисунков не будут лежать на одной прямой. То есть нельзя будет просто соединить между собой отдельные фрагменты в единое целое. Это значит, что наше воображение не сможет увидеть красивого цельного объекта. Эффект домино Каждая костяшка домино изначально обладает некоторым количеством потенциальной энергии. Чем больше костяшка, тем большей потенциальной энергией она обладает. В процессе падения костяшки домино потенциальная энергия переходит в кинетическую энергию. В процессе столкновения первая костяшка передаёт часть своей энергии второй костяшке. Вследствие этого, изначально неподвижная вторая костяшка падает. И так далее. Размер и расстояние должны быть такими, что начальной энергии костяшки достаточно для падения соседней. В 2009 году был установлен мировой рекорд. Тогда упало 4491863 костяшки. Жесткость Встаньте поочередно на каждую пластину и металлическую балку. Посмотрите, насколько сильно они прогибаются. Пластины и балка прогибаются по-разному. Это значит, что жесткости различных пластин и балки неодинаковы. Жесткость - способность конструктивных элементов деформироваться при внешнем воздействии без существенного изменения геометрических размеров. Коэффициент жесткости - основная характеристика жесткости. Коэффициент жёсткости равен силе, вызывающей единичное перемещение в характерной точке. Коэффициент жесткости зависит от вещества, из которого изготовлено данное тело и от геометрических размеров. Хитроумные колеса Все видели колесо. Оно круглое. Оно легко и непринужденно катится по ровной поверхности. А бывают ли "некруглые" колеса? Почему не делают колеса квадратными, шестиугольными? Ответ прост. Колесо как геометрическая фигура - это круг. У него ровный непрерывный край, причем каждая точка края находится на одинаковом расстоянии от центра круга оси колеса. У квадратного же колеса есть углы, которые к тому же удалены от центра дальше, чем края. Вот и получается, что квадратное колесо неустойчиво и требует затрат энергии на подъем своей оси и автомобиля, установленного на такие колеса. Однако решение проблемы есть. Нужна специальная дорога для таких колес. Она представляет собой холмистый путь. Квадрат будет перекатываться по этим холмам. Углы квадрата, попадая в ложбины между холмов, будут иметь достаточную опору, чтобы не опрокинуться назад. Можно даже сказать, что, в некотором роде, не квадрат перекатывается по холмам, а круглые холмики катятся по сторонам квадрата полная аналогия с обычным колесом. Помните советский мультфильм про братьев-пилотов? Как они гнались за поездом на велосипеде? Они сделали из своих колес кресты, которые своими зубцами попадали между шпал железнодорожного пути, и спокойно ехали следом. Зубчатое колесо и шпалы - еще один пример причудливых колес. Таким образом, можно придумать множество необычных колес и подходящих для них путей. Шарик в лабиринте Цель данной игры проста - провести шарик от старта до финиша. При этом надо избегать отверстий в дне лабиринта. Особый момент - управление. Вы управляете движением шарика, наклоняя лабиринт. Шарик будет скатываться по наклонной плоскости. Куда - зависит от того, как вы наклоните лабиринт. Но в одиночку это сделать очень трудно. Поэтому в эту игру лучше играть вдвоем. Стоя с разных сторон, можно точнее и увереннее направлять движение шарика. Чем лучше скоординированы действия игроков, тем лучше будет результат. Если каждый игрок будет играть только для себя, то ничего хорошего из этого не выйдет. Взаимодействие и взаимопонимание - ключ к успеху при прохождении лабиринта. Зеркало с веревками Возьмите веревку в каждую руку. Смотрите только на одну руку и ее отражение, пока другая рука остается скрытой позади зеркала. Начинайте медленно перемещать руку, за которой вы следите, вдоль держателя с веревкой. Создается ощущение, что ваша вторая рука также начинает двигаться. Зрительный образ настолько сильно доминирует над ощущениями, что вы чувствуете движение обеими руками сразу. Если закрыть глаза, то вы сразу почувствуете, что вторая рука покоится! Трение Установите тарелки на исходные позиции внизу горки. Затем поднимите экспонат за край, чтобы привести тарелки в движение! Сравните время, за которое тарелки проходят дистанцию. За торможение предметов при движении вдоль поверхности отвечает сила трения скольжения. Величина трения зависит от того, как сильно прижаты тела друг к другу, и от того, из каких материалов они сделаны. Трение скольжения всегда приводит к диссипации энергии, то есть переводит полную энергию тела в тепло. Арочный мост Арочный мост С помощью данных деревянных частей постройте арочный мост. Люди издавна умели строить арки. Например, для переправы через реку возводились арочные мосты. И делалось это нередко, ведь такие мосты довольно устойчивы. На каждую составную часть арки как и на всё, что нас окружает действует сила тяжести. Сила тяжести направлена вниз. Несмотря на это, каждый элемент арки остаётся в покое. Кроме силы тяжести, на все части арки действуют силы реакции опоры со стороны соседних элементов. С увеличением веса увеличивается сила тяжести. В связи с этим возрастают и силы реакции опоры со стороны соседних брусков. Таким образом, нагрузка распределяется по всем составным частям арки, вплоть до основания. Этот же принцип использовался для строительства сводчатых потолков в средневековых замках и храмах. Волк, баран, капуста... Крестьянину нужно перевезти через реку волка, барана и капусту. Но лодка такова, что в ней может поместиться только крестьянин, а с ним или один волк, или один баран, или одна капуста. Но если оставить волка с бараном, то волк съест барана, а если оставить барана с капустой, то баран съест капусту. Как крестьянину перевезти свой груз? Маятник Максвелла Намотайте ленты, на которых держится колесо, на ось. Отпустите колесо. Ленты будут то разматываться, то обратно наматываться на ось. Колесо при этом будет то опускаться, то подниматься. Наматывая ленты на ось колеса тем самым поднимая маятник , мы запасаем систему потенциальной энергией. Под действием силы тяжести оно опускается вниз. В процессе движения вниз потенциальная энергия уменьшается, а кинетическая увеличивается. Если бы не было вращения, то был бы случай свободного падения тела. При этом колесо достаточно быстро опустилось бы. В нашем же случае колесо еще и вращается. То есть потенциальная энергия переходит в кинетическую энергию вращения колеса и кинетическую энергию поступательного движения. При этом время опускания существенно увеличится. В нижней точке, когда нить размотана, частота вращения максимальна. Нить снова начинает накручиваться на ось, происходит обратное преобразование энергии из кинетической в потенциальную. После чего все повторяется. Стоит отметить, что из-за наличия трения энергия системы уменьшается. Это рано или поздно приведет к остановке колеса в нижнем положении. Блоки Блоки Блок—механическое устройство, представляющее собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для троса. Блок может быть подвижным и неподвижным. Неподвижный блок применяется для подъёма небольших грузов или для изменения направления силы. Подвижный блок предназначен для изменения величины прилагаемых усилий. Существует много различных конструкций из блоков. Например, в случае, показанном на рисунке, для поднятия груза необходимо приложить силу, в два раза меньшую силы тяжести, действующую на груз если, как это обычно предполагается, масса груза много больше массы блоков. Вес металлов Перед вами пять пластинок, которые сделаны из латуни, свинца, титана, дюралюминия, стали. Форма и размер пластинок одинаковы. Поднимите каждую пластинку поочередно. Даже без весов вы заметите, что массы пластинок отличаются. Дело в том, что различные вещества обладают различными плотностями. Плотность вещества зависит от того, насколько тяжелы ядра атомов, и от того, насколько плотно они "упакованы" в веществе. Стул-подъемник Сядьте на стул. Попросите кого-нибудь потянуть за трос и поднять вас. Не позволяйте помощнику резко отпускать вас! Простое подъемное устройство состоит из четырёх блоков: одного неподвижного и трех подвижных. Неподвижный блок не дает выигрыша в силе. Он только меняет направление приложенной силы. Благодаря блокам помощник поднимает только одну восьмую часть вашего веса. Золотое правило механики гласит: "Во сколько раз мы выигрываем в силе, во столько же раз мы проигрываем в расстоянии". Восприятие веса Вам кажется, что массы брусков одинаковы? Попробуйте взять их в руки и проверить, верны ли ваши предположения. Используя весы, сравните их массы. Оценки размера и веса сильно зависят от восприятия внешнего мира. Большие предметы кажутся тяжелее маленьких, а одинаковые по размеру - одинаковыми и по весу. Однако, это далеко не всегда так. Если вы возьмете бруски в обе руки, то неравенство их масс становится очевидным. Все дело в том, что стоит также учитывать материал предмета и его содержимое. Например, брусок железа тяжелее деревянного бруска той же формы. Различные тела обладают различными плотностями. В нашем случае один из брусков обладает большей плотностью, что и объясняет различие масс. Динамометры и центр тяжести Экспонат представляет собой горизонтальную балку, подвешенную на двух динамометрах. На балке находится гиря, которую можно передвигать вдоль балки. Посмотрите на показания динамометров. Если гиря находится не в середине, то показания отличаются. Это связано с тем, что моменты сил реакции динамометров относительно груза равны. Однако плечи этих сил различны. Величина силы реакции равна отношению момента к плечу. Поэтому больше будут показания того динамометра, к которому груз ближе. Под действием силы тяжести! Положите металлический стержень с маховиком на горку сверху. Отпустите стержень. Под действием силы тяжести он скатится вниз. Положите двойной симметричный конус внизу горки, в самой узкой ее части. Отпустите конус. Он начнет подниматься вверх в горку! Почему конус поднимается вверх по горке? Ведь под действием силы тяжести все тела должны притягиваться к Земле. В случае с конусом необходимо рассматривать движение его центра масс. В начале горки рельсы, по которым поднимается конус, узкие. Поэтому в силу своей формы, конус почти весь и находится над горкой. Центр масс при этом находится довольно высоко.
Выходные с пользой
Описание: Музей занимательных наук Экспериментаниум — это небольшой, но интересный музей наук, находящийся в Москве. Он создан для того, чтобы дети и взрослые могли познакомиться с интересными научными фактами, принять участие в экспериментах и наблюдениях, а также просто провести время с пользой. Музей состоит из трех залов, каждый из которых посвящен своей тематике. В первом зале можно познакомиться с физическими законами, а также произвести некоторые опыты по их демонстрации.
В "Экспериментаниум" можно смело отправиться всей семьей на весь день.
Участвуя в увлекательных экспериментах, вы, скорее всего, напрочь забудете о времени. Но на случай, если вы или дети проголодаетесь, в музее к вашим услугам открыто кафе, правда, цены там не самые дружелюбные, а еда не самая вкусная. Это, кстати, самое слабая сторона в работе музее. Его ложка дегтя в бочке с мёдом.
Фото: группа музея "ВКонтакте" На память о посещении музея, в его магазине можно найти забавные игрушки, сувениры, наборы юных ученых, а также литературу научно-популярного характера. Музей "Экспериментаниум" таит в себе особое волшебство, которым наделены наука и явления природы. Прикоснувшись к нему, можно навсегда забыть про школьные уроки физики и химии. Никакой сухой теории!
Никаких скучных экскурсоводов! Никаких статичных экспонатов! Никаких запретов! Теперь вы сможете наглядным образом убедиться в том, что наука — это весело и интересно.
Что: Музей "Экспериментаниум".
Музей для детей в Москве Экспериментариум. Музей занимательных наук «Экспериментаниум». Сокол музей Экспериментариум. Экспериментариум Ленинградский проспект 80. Музей Экспериментаниум Москва. Музей науки в Москве Экспериментариум. Эксперементариум в Москве на Соколе.
Музей Экспериментариум в Москве на Соколе. Музей метро Сокол Экспериментариум. Музеи науки эксперементариум в Москве. Музей физики в Москве. Научный музей в Москве Экспериментариум. Музей занимательных наук экспер. Музей на Соколе эксперементариум. Экспериментариум музей занимательных наук Москва.
Узей занимательных наук «Экспериментаниум». Московский музей Экспериментариум. Музей Экспериментариум в Москве официальный сайт. Музей эксперементариум в Москве. Московском музее "Экспериментаниум". Музей занимательных наук Экспериментаниум здание. Интерактивный музей в Москве Экспериментаниум. Экспериментальный музей в Москве.
Мы рады, что наши дети имели возможность стать участниками такого уникального образовательного опыта.
Музей занимательных наук "Экспериментаниум".
Экспериментаниум Москва фото | "Экспериментаниум" — частный музей науки в Москве, открывшийся в 2011 году. |
Музей Экспериментаниум в Москве: описание, фото | Музей занимательных наук Экспериментаниум – научно-развлекательный центр, созданный для изучения законов науки и явлений окружающего мира, был открыт 6 марта 2011 года. |
Топ-15 самых неординарных музеев и развлечений Москвы | в 2023 году мы представляем 18 уникальных экспонатов от ГК ЭКСПОНИ! |
Экспериментаниум – музей занимательных наук | В музее «Экспериментаниум» представлена интерактивная экспозиция, которая охватывает основные области науки. |
Музей занимательных наук "Экспериментаниум". | музей занимательных наук - 4. |
Музей Экспериментаниум в Москве
Экспериментаниум, научно-развлекательный центр: адреса со входами на карте, отзывы, фото, номера телефонов, время работы и как доехать. Вчера были с классом ребенка на экскурсии в музее занимательных наук «Экспериментаниум». 25 апреля наши ученики посетили увлекательный мир Экспериментаниума! Музей занимательных наук «Экспериментаниум». «Экспериментаниум» – интересный частный музей и центр семейного отдыха, где дети и их родители принимают непосредственное участие в научных экспериментах и опытах.
Экспериментаниум
Московский музей занимательный наук «Экспериментаниум». Музей для детей в Москве Экспериментариум. Музей занимательных наук "Экспериментаниум" создан для увлекательного изучения законов науки и явлений окружающего мира. Вчера были с классом ребенка на экскурсии в музее занимательных наук «Экспериментаниум».
Как создавался Музей занимательных наук «Экспериментаниум»
Это устройство для намотки нитки на катушку. Посетители, придя в музей, вспоминают собственные научные опыты. И через какое-то время, через несколько дней, мы обнаружили, что кристаллик вырос по размерам». Провести через них лазер — получится змейка». Музей открылся год назад. Но еще в начале прошлого века российский ученый Яков Перельман реализовал аналогичную идею, открыв Дом занимательной науки.
Наталья, не сторонница запретов детям, предлагает, прежде всего, дать им выбор и показать, что деревянно-оловянно-стеклянный мир может быть не менее увлекателен, чем ipad. И это действительно работает: в Музее мной не было замечено ни одного ребёнка или взрослого, постоянно проверяющего на телефоне все свои социальные сети, абсолютно все были «здесь и сейчас» и наслаждались этим. Говоря о взрослых, нужно заметить, что папы и мамы стоят и крутят рычаги и пускают облака с не меньшим, а, может, даже большим увлечением, чем их дети. Пространства в 2500 квадратных метров уже не хватает, а так как коллекция экспонатов постоянно пополняется, и в разработке всегда находятся несколько новых чудес, есть планы открыть ещё один центр в Москве с немного измененной тематикой экспозиции.
В течение всего нашего разговора ни на секунду не прекращается детский смех и гул, доносящийся из залов Музея, и я спрашиваю у Натальи, тяжело ли работать в таком полном отсутствии тишины. Наталья смеётся, что она-то уже привыкла, но очень переживает за своих молодых экскурсоводов, которые после такой работы никогда не решатся завести детей. Когда «Экспериментаниум» закрывает свои двери, Наталья ходит по залам. Но не ради романтики пустых сцен и гулких музейных коридоров, у Натальи и её помощников есть более важная задача, чем в этих залах мечтать — нужно проверить все экспонаты и убедиться, что ничего не сломалось и всё готово к завтрашнему дню. А ломаются экспонаты регулярно, и также регулярно и без задержек меняются на новые, у «Эксперементаниума» своё производство, свои учёные и разработчики, и абсолютно точно своя непередаваемая атмосфера. Атмосфера, которую Наталья описывает в трёх ёмких словах «занимательный», «объединяющий» родителей и детей и «дружелюбный». А я бы добавила ещё «удивительный», ведь в нём ни на секунду не перестаёшь удивляться всему происходящему вокруг. Наталья говорит, что каждой маме просто необходимо иметь медицинское и педагогическое образование, а вот третье, для души, было бы у неё архитектурным.
Музей физики в Москве. Музей Экспериментариум в Москве. Музей занимательных наук экспер. Музей науки Экспериментаниум. Музей Экспериментариум в Москве на Соколе. Узей занимательных наук «Экспериментаниум». Музей метро Сокол Экспериментариум. Музей Экспериментариум в Москве официальный сайт. Московском музее "Экспериментаниум". Музей экспериментальных наук в Москве. Экспериментариум музей занимательных наук Москва. Экспериментальный музей в Москве. Экспериментаниум зал магнетизм. Интерактивный музей в Москве Экспериментаниум. Музей занимательных наук Экспериментаниум фото. Музей эксперементариум в Москве. Экспериментариум на Соколе. Музей познавательных наук Экспериментаниум. Экспериментаниум Ленинградский проспект.
Но я смотрел, как взрослые мужчины не хотят из него уходить, увлекшись головоломкой по составлению квадрата из геометрической фигуры деревяшек. Головоломки нашлись очень разной сложности. Место для детей и взрослых технического склада ума, естествоиспытателей, инженерных, логиков. Увлекательный физмат.
Экспериментаниум официальный сайт — музей занимательных наук
На трех этажах музея установлены более 300 интерактивных экспонатов, каждый из которых приглашает посетителей в увлекательное путешествие в мир науки. В музее представлены аппараты, способные имитировать зарождение торнадо и облаков. Посетители могут наблюдать, как вихревые движения формируются и преображаются перед их глазами. Механизмы, объясняющие принцип образования водоворота и морских волн.
Так что набирайте команды, регистрируйтесь сами и приводите друзей и родителей!
А если самостоятельно собрать команду не удастся, мы поможем собрать её на месте. Если вы пока не уверены, что хотите принять участие, или хотите потренироваться, приходите посмотреть, как играют другие, но для просмотра тоже нужно зарегистрироваться.
Для школьников 6-12 лет приготовлены Новогодние квесты — интерактивные увлекательные игры, в которых задействованы самые интересные экспонаты музея. У гостей будет возможность... Увидеть планеты Солнечной системы в объеме позволит новый удивительный экран, который используется во время проведения экскурсии-лекции. Программы рассчитаны на школьников...
Музей Экспериментариум в Москве зал акустика. Экспериментаниум акустика. Экспериментаниум зал акустики. Музей Экспериментариум в Твери. Музей занимательных наук Тверь. Экспонаты Экспериментаниума. Экспериментариум выставка. Экскурсия в Экспериментаниум. Экскурсия в Экспериментариум для школьников. Музей Экспериментаниум комната. Экспериментариум Ленинградский проспект. Музей науки в Москве. Экскурсия Экспериментариум Москва. Московский детский музей Экспериментариум. Музей для детей на Соколе в Москве. Музей Экспериментариум. Экспериментаниум Москва. Экспериментариум для детей. Музей науки в Москве для детей.
Расположение на карте
- Музей занимательных наук экспериментаниум
- Экскурсия в Музей занимательных наук Экспериментаниум | Экскурсии для школьников | Мос-Тур
- Экспериментаниум – музей занимательных наук
- Музей занимательных наук «Экспериментаниум» в Москве: фото, цены, история, отзывы, как добраться
Музей «Экспериментаниум»
- Музей занимательных наук Экспериментаниум ‹ Классные экскурсии
- Музей занимательных наук «Экспериментаниум» в Москве: фото, цены, история, отзывы, как добраться
- Sciencely. Москва
- Топ-15 самых неординарных музеев и развлечений Москвы | Blog Fiesta
- Музей экспериментариум в москве
Обзор музея занимательных наук в Москве
2. Музей занимательных наук «Экспериментаниум» Метро: Сокол Возраст: от 5 лет Цены: от 550 рублей, до 3 лет – бесплатно. "Экспериментаниум" — частный музей науки в Москве, открывшийся в 2011 году. Купить билеты в «Музей занимательных наук «Экспериментаниум»» на Яндекс Афише: расписание интересных выступлений, полная афиша на 2024 год с возможностью покупки билета онлайн. Музей занимательной науки в Москве появился в 2011 году и долгое время располагался в районе станции метро Савеловская, но в 2015 состоялся глобальный переезд в более просторное здание у метро Сокол.