Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме.
Из Википедии — свободной энциклопедии
- Популярно о теории струн
- Теория струн простым языком
- Вы точно человек?
- Что такое теория струн и может ли она открыть дверь в другие измерения
Космический эксперимент поставил под сомнение теорию струн
При помощи сложного математического механизма эти колебания можно связать с энергией, а значит и с массой, другими словами любая частица возникает в результате того или иного типа колебания квантовой струны. Читайте также: Находка в Арктике перевернула представление об истории с ног на голову Проблемы и особенности Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. В число этих проблем входит, к примеру, таковая — в результате вычислений математически был новый тип частиц, которые не могут существовать в природе — тахионы, квадрат массы которых меньше нуля, а скорость перемещения превышает скорость света. Другой же важной проблемой, или скорее особенностью есть существование теории струн лишь в 10-мерном пространстве. Почему же мы воспринимаем другие измерения?
Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3.
Вам будет интересно: Восход и закат теории струн Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы. Издание SciTechDaily приводит слова авторов исследования о том, что для последней части этого процесса ученые использовали программное обеспечение Maple и специализированный пакет дифференциальной геометрии, который оптимизировал вычислительные усилия. Наша Вселенная очень странная и возможно состоит из струн Отметим, что начиная с 1980-х гг. И хотя каждая из них построена на струнах и дополнительных измерениях все пять версий объединены в общую теорию суперструн, о чем подробно писал мой коллега Илья Хель , в деталях эти версии довольно сильно расходились. Еще больше увлекательных статей о нашей удивительной Вселенной читайте на нашем канале в Яндекс.
Более того, теория струн предсказывает существование одиннадцати измерений. Причина, по которой мы не видим эти измерения в повседневной жизни, заключается в том, что они слишком малы, чтобы их обнаружить. Тем не менее, дополнительные измерения играют жизненно важную роль. Конфигурация размеров определяет, как вибрирует струна и, следовательно, какая частица образуется. Струны вибрируют в одиннадцати измерениях, и частота, с которой вибрирует струна, зависит от того, как струна ориентирована в одиннадцати измерениях. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Будь то сила гравитации или электромагнитная сила, все это связано с вибрирующими струнами. В теории струн одно из многих колебательных состояний струны соответствует гравитону, квантовомеханической частице, которая несет гравитационную силу.
У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата. Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами. Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить. Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка: Теория суперструн, популярным языком, представляет вселенную как совокупность вибрирующих нитей энергии — струн. Они являются основой природы. Гипотеза описывает и другие элементы — браны. Все вещества в нашем мире состоят из колебаний струн и бран. Естественным следствием теории является описание гравитации. Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями. Концепция развивается Теория единого поля, теория суперструн, — сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы. Сегодня никто не знает точно, каким будет окончательный вариант этой теории. Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить хотя и опровергнуть тоже. Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную. Теория суперструн для начинающих В основе гипотезы положены пять ключевых идей. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Она пытается совместить общую теорию относительности гравитации с квантовой физикой. Теория суперструн позволит объединить все фундаментальные силы вселенной. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной. Струны и браны Эти суперструны теория делит на два вида — замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы.
Струны Вселенной: суть теории
- Теория струн — узнай главное на ПостНауке
- Краткая история теории струн
- Предсказания теории струн.
- Новости по тегу теория струн, страница 1 из 1
- Теория суперструн популярным языком для чайников
Теория струн
Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов. Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Антропный принцип в теории струн. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений.
Теория струн и квантовая механика
Плюс существует стандартная модель, основы которой, теория квантового поля про взаимодействие между частицами и общая теория относительности объясняющая гравитацию , никак не могли подружиться между собой. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Со временем для объяснения некоторых задач современной физики уже пришлось создать теорию суперструн, в которой были такие загадочные вещи, как десятки измерений или симметричные частицы даже не спрашивайте. Теория обновлялась , будто компьютерная игра, но множественные опыты, в том числе и в большом адронном коллайдере, пока не дали никаких значительных результатов.
Главная » Статьи и полезные материалы » Телескопы » Статьи » Теория струн простыми словами Теория струн простыми словами Как известно, во Вселенной существует четыре измерения — время и три, связанные с пространством. Но теория струн, одна из самых популярных и сложных в современной физике, гласит, что измерений на самом деле может быть больше. Струны Вселенной: суть теории В основе теории струн Вселенной — попытки физиков найти универсальную силу, которая объединяла бы основные взаимодействия, существующие в природе — гравитацию, сильные и слабые ядерные силы, электромагнетизм. Теория струн вполне может претендовать на роль такой силы. Согласно ей, элементарные неделимые частицы, из которых состоят все предметы и вещества, — это не точки, а струны, вибрирующие по определенным шаблонам. В процессе этой вибрации они, в отличие от музыкальных струн, не издают звук, а вырабатывают новые частицы.
Причем не только частицы-участники, но и частицы-переносчики взаимодействий предстают «на равных» в теории струн. Абсолютно все частицы могут быть описаны через единый объект — струну. Это же самое полное воплощение мечты о единстве мира!
Все известные нам частицы и переносчики взаимодействий — колебательные моды с наименьшей энергией. Хотя число различных колебательных мод бесконечно, лишь немногим из них соответствуют малые массы и заряды. Остальные должны иметь гигантские массы порядка 10-5 грамм — это огромная величина в масштабах микромира! На наших ускорителях родить таких гигантов мы еще долго не сможем. Но они рождались на ранних стадиях Вселенной , когда энергия была в избытке.
Оказывается, не получится. Теория относительности и Квантовая теория вообще не совместимы, и во многом даже противоречат друг другу!
Так чтогравитация для стандартной модели - та ещё боль. Стандартная модель не даёт ответа, что такое тёмная материя? Ну и что такое "тёмная энергия"? Почему частиц во Вселенной больше, чем античастиц? Теория струн - это дальнейшее развитие, чтобы описать в единых терминах все наблюдаемые явления. Теория струн В теории струн элеиентарные частицы, из которых состоит абсолютно всё - это не точечнын объекты, а имеющие кототорую длину. Они могут быть замкнутыми, размкнутыми, размеры из ОЧЕНЬ малы, ничтожны, порядка 10-35 метра, то есть в сотни квинтиллионов раз меньше электрона.
Струны могут колебаться, прчём на строго определённых частотах. И каждой частотет соответствует своя частица. Именно колебательным состоянием струны и определяется масса, заряд и все другие параметры абсолютно всех частиц. Струны могут сливаться друг с другом, разрываться - поглощение и излучение частиц соответственно. Почему до этого нельзя было так сделать? Причина - в структуре Пространства и Времени. В Теории Относительности - оно гладкое и ровное на любых масштабах.
И раз у них есть масса и энергия, то они... Из-за чего оно становится искривлённым и неровным. На самом деле есть и другая причина. В квантовой теории поля силы возникают благодаря обмену частицами, а в теории относительности - из-за кривизны Пространства-Времени.
Обнаружено новое доказательство теории струн
Новости науки, высокие технологии и научные открытия. Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. Просто о сложном_ структура Вселенной, квантовая физика, теория относительности. Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки.
Что такое Теория струн и существует ли 10-ое измерение
Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки.
Обнаружено новое доказательство теории струн
Если поставить рядом с ней еще одну точку и провести линию, то можно создать модель первого измерения. Для создания полноценного двумерного пространства надо уместить оба эти объекта в выбранные координаты. А для создания трехмерности потребуется присоединить к этой системе третью ось координат и так далее. Замечание 2 Пока все измерения и теоретические результаты никак не могут быть подтверждены и содержатся только на бумаге в форме анализов и промежуточных математических моделей. Исследователи не могут объяснить, почему человек в объективном мире может перемещаться только через три известных измерения, а остальные остаются недоступными. На квантовом уровне они представляют собой некие математические модели, выполненные в форме сфер. Всего таких вариантов моделей может быть сотни миллионов и пока не удалось просчитать, как выглядит наиболее вероятная схема теории струн. Есть вероятность, что этой структуры человек не сможет понять никогда, даже на теоретическом квантовом уровне. История создания теории струн Замечание 3 Первыми предпосылками к созданию новой современной теории, объясняющий все великое разнообразие взаимодействий в объективном мире, стали труды математика, жившего двести лет назад.
Тогда Леонард Эйлер сформулировал в математических целях бета-функцию, названную в его честь. На нее обратил пристальное внимание физик-теоретик, который работал в середине прошлого века в научном центре в Швейцарии.
Объяснение тому нашли простое: по расчётам, суперсимметричные фермионы должны обладать огромной для микромира массой, и потому в обычных условиях их хрен получишь. Для того, чтобы зарегистрировать их, нужны огромные энергии, которые достигаются при столкновении лёгких частиц на почти световых скоростях. Физики, осознав, в какой жопе они оказались, стали плакаться в жилетку всем, кому ни попадя, и причитать «бида-бида, канец науке». Неизвестно, кому они продали душу , но в итоге им удалось разжалобить больших дядь на серьёзные бабки для строительства Большого адронного коллайдера и пары коллайдеров поменьше. Да-да, именно так, Анон — одной из целей воздвижения этой НЁХ было именно получение суперсимметричных фермионов. Доводы школолофизика о 9-и измерениях, часть рас часть два Итак, теорию струн заменили теорией суперструн, но легче не стало: не успели физики прийти в себя от бодуна после празднования новой теории, как во все дыры полезли новые глюки. В итоге помощь пришла оттуда, откуда совсем не ждали.
Ещё в далёком 1919 году никому тогда не известный немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию: наша Вселенная, вполне может статься, не трехмерная, а измерений может иметься более 9000. В своих работах Калуца делал допущение, что на самом деле Вселенная может быть четырехмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Эйнштейна письмо не впечатлило ещё бы, он только что придумал охуительно сложную теорию, хочется дать продохнуть мозгам, а тут ещё какой-то укуренный немец лезет со своим атсралом , и он ответил лишь « Окей ». В 1926 году физик Оскар Клейн заинтересовался работами Калуцы и усовершенствовал его модель. По Клейну получалось, что дополнительное измерение действительно может существовать, но оно находится в «свёрнутом» и зацикленном на самом себе виде. Причём свернуто четвёртое измерение очень туго — до размеров элементарных частиц, поэтому мы его и не замечаем. Вспомнили о Калуце в восьмидесятых годах, когда теория струн в очередной раз оказалась в жопе. Воспалённые мозги физиков в попытке объяснить несоответствия теории струн с квантовой механикой докатились до того, что было выдвинуто предположение — вся хуйня в расчётах была в том, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная. Вот если бы струны могли бы колебаться в четырёх измерениях… О, да тут же был какой-то Калуца, кстати, где он?
Расчёты показали, что и в этом случае следует неиллюзорный фейл, но зато число противоречий в уравнениях вроде уменьшилось. Взбодренные физики продолжали увеличивать число измерений, пока не ввели все 9!!! И тогда физики громогласно провозгласили, что на самом деле мы живём в десятимерной Вселенной, в том числе одно измерение во времени, три знакомых нам измерения развернуты до космических размеров, а остальные шесть свернуты в микроскопических масштабах и потому незаметны. Такие дела. Причём ни подтвердить, ни опровергнуть это на эксперименте практически никак нельзя, ибо речь идёт о таких малых масштабах струн и свернутых измерений, что современная аппаратура ничего не найдёт. Физики были счастливы, общественность охуевала и окончательно утвердилась в мысли, что физика — бесполезная наука. Рождение M-теории[ править ] Двумерная проекция трехмерной визуализации пространства Калаби-Яу Окрыленные новыми успехами, физики ринулись в бой, но скоро опять стали раздаваться возгласы: « WTF? Основным успехом явилось то, что физикам удалось по крайней мере, на бумаге установить общий вид шести свернутых измерений, необходимый для того, чтобы наш мир при этом оставался таким, какой он есть. Оказалось, что этот вид соответствует некоторым математическим объектам из группы под названием «Многообразия Яу» названа по имени развеселого и улыбчивого китайского математика по фамилии Яу, описавшего ее.
Главный фейл — то, что хотя общий вид этих объектов и вычислили, но точный вид, как оказалось, нельзя установить без эксперимента. Без нахождения точного вида пространства Калаби-Яу нашей Вселенной вся теория струн скатывалась практически в гадание на кофейной гуще. Впрочем, работы продолжались, и постепенно физикам удалось вычленить из общей массы гипотез пять более-менее правдоподобных теорий, которые могли бы описать нашу Вселенную. Ситуация сложилась вообще аховая — теперь теорий стало больше, чем надо, и это было нехорошо. Авторитет теории струн падал, дальнейшие направления для исследований не виделись, учёные пинали хуи целыми месяцами и потихоньку начали тухнуть. Но в середине девяностых годов прошлого века произошла так называемая вторая революция в теории струн. Неизвестно, чем и куда упоролись физики, но путём фатальных разрывов мозга один из них родил гипотезу, что десять измерений — это, конечно, хорошо, но всё выглядит так, будто чего-то не хватаэ. Оказалось, что введение ещё одного измерения со скрипом, но укладывается в ложе квантовой теории и ОТО, и более того — снимает очень многие накопившиеся проблемы в теории струн. В том числе успешно скрещивает все пять недотеорий в одну-единственную убертеорию.
Вот её-то и назвали без фантазии M-теорией, и именно она на сегодня является высшим достижением матанщиков в деле познания Вселенной. Есть, однако, теория, согласно которой мы очень даже наблюдаем многомерные браны и иные измерения, только ещё не догадываемся об этом. Согласно этой теории, загадочная тёмная материя есть вовсе не какие-то несуществующие слабовзаимодействующие частицы, а самая обычная материя - только существующая не в нашем измерении, а в параллельных. Гравитация, согласно этой теории, одна на все измерения, и непонятная гравитация, порождаемая невидимой материей, на самом деле долетает к нам из измерения Зен. О как! Переименование старого брэнда «теория струн» было оправданно, ибо по M-теории получается, что основа Вселенной — не только одномерные струны. К ужасу всего научного сообщества, оказалось, что могут существовать и двухмерные аналоги струн — мембраны , и трёхмерные, и четырёхмерные… Эти конструкции были названы бранами струна — 1-брана, мембрана — 2-брана, и так далее. На то, что эти самые браны нигде не были экспериментально зарегистрированы, физики дружно положили болт — хули, не впервой, и вообще мы тут делом заняты, а вы мешаете своими претензиями. Браны у нас на данном этапе принципиально ненаблюдаемы.
Что имеем в итоге? Не проходит и пары месяцев, как объявляется о каком-либо очередном серьёзном успехе. Неудивительно, ибо туева хуча физиков по всему глобусу денно и нощно занимаются изучением и развитием теории струн. Большинство из них ведёт голубая мечта — что в один прекрасный день теория струн таки станет Единой теорией всего. Профита от теории струн пока вроде как не намечается, а вот бабла хавает будь здоров один БАК чего стоит. Зато, если окончательный вин таки будет достигнут, то человечество поднимет своё ЧСВ до поистине заоблачных высот; будет что предъявить перед Б-гом. Но вот будет ли вин — ещё большой вопрос: вспоминаем, как физики ещё после Ньютона полагали, что все законы природы познаны, и больше ловить на этом поле нечего. Как бы то ни было, мозголомка по всему миру продолжается, пока ты сидишь в интернетах. Вины[ править ] Mузыкальное произведение, популяризирующее теорию струн и демонстрирующее какие проблемы привели к её появлению Ясен пень, что никто не стал бы мучиться с этой вашей непонятной теорией, если бы она не обладала большими плюсами в глазах физиков.
И таковые действительно есть, причём какие! Прекращение борьбы бобра с ослом.
В этом случае мы сможем оценить всю безумную малость этой энергетической колеблющейся струны. Другая особенность суперструн — они, по мнению ученых, существуют в одиннадцатимерном пространстве.
Что такое одиннадцать измерений, представить наглядно невозможно. Я могу объяснить, что такое пять измерений. Если представить водопроводный шланг, по которому насекомое спокойно может передвигаться вдоль и поперек — это нормальное наше измерение. Представьте, что эта трубочка свернута до планковской длины волны.
С точки зрения любого наблюдателя, это будет одномерная линия.
Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся.
Теория струн. Теория всего
Это означает, что при помощи чувствительной рентгеновской обсерватории можно обнаружить подобную конвертацию. Наиболее удобным местом для поиска аксионов оказались галактические кластеры - крупные скопления галактик, которые обладают мощными магнитными полями и зачастую содержат яркие источники рентгеновского излучения. В данном случае исследователи изучили скопление галактик в созвездии Персея. В течение пяти дней они изучали спектр рентгеновских лучей, которые движутся по направлению к сверхмассивной черной дыре в центре этого кластера. Длительное наблюдение и яркий источник рентгеновского излучения дали спектр с чувствительностью, достаточной для того, чтобы зафиксировать искажения. Если бы эти искажения были найдены, то можно было бы с большой долей уверенности заявить, что существование аксионов подтверждено экспериментально. Однако таких искажений астрофизики не зафиксировали.
Это поставило под сомнение теорию струн.
Теория обновлялась , будто компьютерная игра, но множественные опыты, в том числе и в большом адронном коллайдере, пока не дали никаких значительных результатов. Теория суперструн и следующие за ней настолько сложны, что математики не могут помочь физикам в расчетах, а новые возможные эксперименты требуют гигантских, в прямом смысле слова вселенских, масштабов. Так что теперь подобные исследования потеряли былую популярность, но заняли определенную нишу и продвинули науку еще на маленький шажок к постижению истины мироздания.
Дамир Зарипов Профи 683 , закрыт 6 лет назад Арсений Енин Мыслитель 5536 10 лет назад Теория струн — направление теоретической физики, изучающее динамику и взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени.
Говоря кратко, ОТО постулирует о космическом пространстве и его искривлении, а СТО об относительности пространства-времени со стороны человека. Говоря о теории струн, мы затрагиваем конкретно ОТО. Общая Теория Относительности говорит о том, что в космосе под действием массивных объектов пространство искривляется вокруг него а вместе с ним и время, ведь пространство и время — это совершенно неразделимые понятия.
Понять, как это происходит, поможет пример из жизни ученых. Недавно был зафиксирован подобный случай, поэтому все рассказанное можно считать «основанным на реальных событиях». Ученый смотрит в телескоп и видит две звезды: одна находится впереди, а другая позади нее.
Как мы смогли это понять? Очень просто, ведь та звезда, центра которой мы не видим, а видны только края — большая из этих двух, а другая звезда, которая видна в полном своем виде, является меньшей. Однако, благодаря ОТО, может быть и такое, что та звезда, которая впереди — больше, чем та, что позади.
Но разве такое возможно? Оказывается да.
Вначале был миф
- Где почитать о теории струн?
- Содержание
- Почему обычное представление о частицах не совсем верно
- Обнаружено новое доказательство теории струн — Странная планета
Популярно о теории струн
Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. Теория струн предполагает объединения идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Comments Off on Теория струн кратко и понятно.
Теория струн простым языком
В число этих проблем входит, к примеру, таковая — в результате вычислений математически был новый тип частиц, которые не могут существовать в природе — тахионы, квадрат массы которых меньше нуля, а скорость перемещения превышает скорость света. Другой же важной проблемой, или скорее особенностью есть существование теории струн лишь в 10-мерном пространстве. Почему же мы воспринимаем другие измерения? Развитие Существует два типа частиц: фермионы — частицы вещества, и бозоны — переносчики взаимодействия. К примеру, фотон является бозоном, переносящим электромагнитное взаимодействие, гравитон — гравитационное, или тот же бозон Хиггса, распространяющий взаимодействие с полем Хиггса.
Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений.
В начале XX столетия в нескольких статьях математика Калуцы и физика Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть. На рисунке поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее. Из предложения Калуцы—Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость велика может даже бесконечны.
Однако если дополнительное пространственное измерение скручено и имеет чрезвычайно малый размер, то оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Так начиналась теория Калуцы—Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений. Если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением.
Результат изучения модифицированных уравнений оказался захватывающим. Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее. Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления.
Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием. Однако последующие исследования показали, что программа Калуцы—Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались различные способы обойти эту проблему.
Однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта. Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Теория струн возродила программу Калуцы—Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени, когда теория струн приведёт к полному описанию всей материи и взаимодействий. Большие надежды В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно.
При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам. Теория струн и свойства частиц Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими?
Интерес к этому вопросу непросто академический, он отражает очень важный факт. Если бы у частиц были другие свойства, ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле. Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными.
В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория. Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях.
Колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений. Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби—Яу.
Проблема в том, что нет какой-то одной, выделенной формы Калаби—Яу. Наоборот, эти пространства имеют разные размеры и контуры. Дополнительные измерения, различающиеся по размерам и по форме, порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания. В середине 1980-х годов, было известно небольшое количество пространств Калаби—Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой.
Спустя несколько лет, число пространств Калаби—Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения. Время шло и число страниц в каталоге пространств Калаби—Яу только увеличивалось. Теперь их больше чем песчинок на пляже. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби—Яу то самое, единственное.
Все струны одинаковы, а все наблюдаемые частицы и кванты полей суть различные типы колебаний этих струн. Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована. Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо. Струны бывают открытыми и замкнутыми. И те и другие имеют определённые устойчивые формы колебаний — моды.
Механическая аналогия: зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.
Благодаря зеркальной симметрии физикам удается получить информацию о математике, которая стоит за этими объектами. То есть смотрите, пусть мы знаем, что наша теория описывает именно нашу Вселенную. Мы хотим предсказать результаты экспериментов по рассеиванию частиц. Начинаем считать — офигеть, не получается, слишком сложная математика. Тут мы вспоминаем о зеркальной симметрии и говорим себе: «Стоп! Мы же можем заменить одно пространство на другое, ведь физика, как известно, будет той же самой». Мы так поступаем, и оказывается, что в зеркально-симметричной ситуации тот же эксперимент описывается много проще и мы все можем посчитать. И что, есть примеры, когда эта схема работает? И таких примеров множество.
Другое дело, что мы пока точно не знаем, каким параметрам соответствует именно наша Вселенная. Вот в чем проблема. А как устроены эти симметрии, которые дают в результате два пространства? Исходное и зеркальное пространство связаны через подходящий орбифолд — грубо говоря, фактор многообразия по дискретной группе изометрий. А сама симметрия — это, конечно, просто действие Z2. Никаких континуальных симметрий, только дискретные. Вы говорите очень интересные вещи о математике. На первый взгляд математические утверждения можно получать только с помощью самой математики. А вы говорите, что можно что-то узнать с помощью эксперимента... Ну это относится даже не к теории струн, а ко всей физике элементарных частиц.
То есть прямо так: строгие математические утверждения можно получать экспериментально? Не понимаю, что вас смущает. Вот есть теория относительности Эйнштейна — математическая теория. Если наблюдать за движениями космических объектов, то можно много что узнать о геодезических свойствах самой метрики, которая фигурирует в уравнении Эйнштейна в поле тяжести массивного тела объекты малой массы движутся по геодезическим — кривым, являющимся решением подходящей системы дифференциальных уравнений — прим. Строгие математические факты. Так же и в теории элементарных частиц. Вы правы. А приведите примеры, какие факты удается узнать таким образом про компактифицированные пространства? Есть важный геометрический вопрос, касающийся этих компактифицированных пространств — сколькими вариантами в эти пространства можно вложить сферы. Речь здесь идет про вложение голоморфным образом — но это детали, они в данном случае не имеют значения.
До вмешательства физиков математики могли ответить на этот вопрос только в случае, когда число вращения — то есть то, сколько раз такая сфера обмотана вокруг себя самой, — достаточно мало. Один, два или три. Для чисел больше ничего известно не было. В теории струн оказалось, что эти числа связаны с амплитудами рассеивания. То есть для их подсчета достаточно было провести опыт, сделать преобразование Фурье, и первые, точно посчитанные коэффициенты в полученном ряду давали ровно то, что было нужно. Нужно больше коэффициентов? Просто проводим дополнительные эксперименты — и все. Сначала математики не поверили, конечно: мол, как так — мы бились, у нас ничего не получалось, а тут какой-то эксперимент и все? Но потом, поглядев на эти числа достаточно долго, они вдохновились и придумали, как решить задачу уже для произвольных чисел вращения. Теория струн не единственная претендует на звание теории всего.
Расскажите про ее основных конкурентов. Пожалуй, лучше всего развита петлевая квантовая гравитация. Чтобы понять основную идею, нужно сделать шаг назад. Необходимо понимать, что изначально физики пытались применить к уравнениям теории относительности стандартный подход квантовой механики, то есть проквантовать их так же, как, например, электромагнитное взаимодействие. Из этого ничего не получилось. Если обратиться к теории струн, то «квантованная» в некотором смысле гравитация там появляется сама собой. Она оказывается следствием фундаментальных свойств самой теории, нам не приходится насильно склеивать теорию относительности и квантовую механику. Петлевая же гравитация занимается именно этим, то есть пытается склеить ТО и квантовую механику. Для этого уравнения Эйнштейна переписываются совсем в другом но эквивалентном исходному, это важно виде, в совершенно других переменных. При этом оказывается, что в таком виде уравнения уже поддаются квантованию, пусть и не совсем классическому.
Полученные при этом квантовые переменные могут пониматься как петли — отсюда и название. Насколько эти петли связаны с нашими струнами и связаны ли вообще все-таки звучит похоже , мы пока не знаем. Петлевая гравитация, конечно, менее экзотична, чем теория струн. В ней не требуются дополнительные измерения, не нужна суперсимметрия. То есть их можно добавить, но сами по себе они не возникают. Тут, однако, возникает тонкий момент — уверен, что специалисты по петлевой квантовой гравитации со мной не согласятся. Смотрите, стандартная Ньютонова механика получается как предел квантовой при устремлении к нулю некоторого параметра. Традиционно считается, что квантование — это обратный процесс, то есть построение теории, зависящей от параметра, которая, при стремлении этого параметра к нулю, дает нам доквантовую теорию. Так вот, на самом деле не очень понятно, получаются ли из петлевой квантовой гравитации обычная квантовая механика и теория относительности при переходе к некоторому пределу? Специалисты по этой теории считают, что получается и никакой проблемы тут нет.
И возможно, они правы, а я нет — все-таки я не разбираюсь в деталях теории так, как они. Но издалека лично мне кажется, что там все не очень корректно. А есть какие-то предсказания петлевой гравитации, которые отличались бы от предсказаний теории струн? Желательно, чтобы эти предсказания еще и можно было проверить. Я думаю, если бы перед вами сидел специалист по петлевой квантовой гравитации, ответ был бы иным. Я ни в коем случае не утверждаю, что кто-то там нечестен, просто речь идет скорее о том, что у людей есть разные воззрения на то, что считать предсказанием и что считать фальсифицируемостью конкретной теории. Как бы то ни было, но я смею утверждать, что ни у кого из этих специалистов нет утверждения такого уровня: если не выполнено некоторое X, то вся теория не верна.