Новости что такое додекаэдр

это многогранник с двенадцатью гранями, тридцатью ребрами и двадцатью вершинами. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. След от перекатывания додекаэдра по плоскости: отпечатки всех граней во всех возможных ориентациях. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Общие понятия о фигуре Додекаэдр – это слово взято из языка древних греков.

Что такое Додекаэдр простыми словами

Додекаэдр – это правильный многогранник, состоящий из двенадцати граней, которые являются правильными пятиугольниками. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Гипотеза, что додекаэдры являлись подсвечниками, была высказана еще в 1907 году. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу. "что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник". Римский додекаэдр датируется II—III веком н. э. Около сотни додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции.

Геометрия Додекаэдров

Поскольку рассматриваемая фигура является объемной, выпуклой и состоит из многоугольников пентагонов , то для нее справедливо правило Эйлера, которое устанавливает однозначную зависимость между числом граней, ребер и вершин. Углы между соседними гранями этой платоновской фигуры являются одинаковыми, они равны 116,57o. Математические формулы для правильного додекаэдра Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. Объем правильного додекаэдра, как и его суммарная площадь граней, однозначно определяется из знания стороны пятиугольника. Описанную окружность проводят через 20 вершин правильного додекаэдра. Симметрия правильного додекаэдра Как видно из рисунка выше, додекаэдр — это достаточно симметричная фигура. Для описания этих свойств в кристаллографии вводят понятия об элементах симметрии, главными из которых являются поворотные оси и плоскости отражения.

Идея использования этих элементов проста: если установить ось внутри рассматриваемого кристалла, а затем повернуть его вокруг этой оси на некоторый угол, то кристалл полностью совпадет сам с собой. То же самое относится к плоскости, только операцией симметрии здесь является не поворот фигуры, а ее отражение. Современное использование додекаэдра В настоящее время геометрические объекты в форме додекаэдра находят применение в некоторых сферах деятельности человека: Игральные кости для настольных игр. Так как додекаэдр — это платоновская фигура, обладающая высокой симметрией, то объекты этой формы можно использовать в играх, где продолжение событий имеет вероятностный характер. Игральные кости в своем большинстве изготавливают кубической формы, поскольку их сделать проще всего, однако современные игры становятся все сложнее и разнообразнее, а значит, требуют костей с большим количеством возможностей.

Ближайшая параллельная к произвольно выбранной грани плоскость, в которой лежат пять вершин, не принадлежащих выбранной грани, отстоит от этой грани на расстояние радиуса описанной вокруг данной грани окружности. А радиус описанной вокруг этих пяти вершин окружности равен диаметру вписанной в любую из граней окружности.

Эти две величины равны, соответственно, 5.

Когда Гиппас погиб в море во время кораблекрушения, все решили, что это результат проклятия: «Говорят, что само божество разгневалось на того, кто разгласил учение Пифагора». В пифагорейской школе известна идея, согласно которой, додекаэдр образовывал «балки», на которых был возведен свод небес. В диалоге «Федон» Платоном вложено в уста Сократа 12-гранное додекаэдрическое описание более совершенной небесной Земли, существующей над Землей людей: «Рассказывают, что та Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи». Под очевидным влиянием идей Платона, в последующие века философы и ученые стали предполагать, что небеса сделаны из пятого элемента «эфира» или «квинтэссенции». Эту традицию можно увидеть в иллюстрациях к работе Иогана Кеплера Mysterium Cosmographicum, изданной в 1596 году, где космос изображен в форме додекаэдра. Кроме того, додекаэдр считался олицетворением зодиака с его 12 знаками.

На территории Женевы был найден литый свинцовый додекаэдр с гранями длиной 1,5 сантиметров, покрытый пластинками из серебра с названиями знаков зодиака на латыни. Немецкий математик Бенно Артманн в журнале «Mathematical Intelligencer» 1993 г. Известный грекам минерал пирит FeS2 часто образует конкреции в виде додекаэдра. Пирит использовался для добывания огня, о чем говорит само его название по-гречески «pyr» — огонь. Если ударить пиритом о кресало, образующиеся искры не уступают кремню по длине и при этом «живут» дольше, легче зажигая трут. Таким образом, ассоциация между огнем и додекаэдром могла сложиться сама собой. В 1907 году была высказана гипотеза, что додекаэдры являлись подсвечниками, так как они устойчивы в любом положении и имеют отверстия разных диаметров, использовавшихся в зависимости от размера свечей. Внутри одного римского додекаэдра был найден воск, что может подтверждать эту версию.

Согласно G.

Известно, что в обычный додекаэдр можно последовательно вписать другие правильные многогранники — куб, октаэдр и тетраэдр. Подобное свойство присуще и рассматриваемым здесь структурам. Итак, первая структура является аналогом куба, «вписанного» в семислойный «большой додекаэдр», который был представлен в предыдущем разделе.

На представленной анимации для облегчения анализа показаны только верхние четыре слоя и центральный додекаэдр. И прототип — куб, вписанный в додекаэдр, представлен ниже для сравнения. Следующий на очереди — FROIM аналог тетраэдра: Октаэдр, больше похожий на шар и его прототип обычный многогранник: Более изящная версия октаэдра, лишенная большей части додекаэдров четвертого слоя: Еще один вариант октаэдро-подобной FROIM структуры, отличающейся от предыдущей отсутствием додекаэдров пятого слоя: И в завершении, тетраэдро-подобная структура из додекаэдров, на этот раз также четырехслойная: Додекаграфы — атомные ядра Додекаграф это производное от слов «додекаэдр» и «граф» — математическая совокупность множеств. Dodecagraf, or just graf as usual, «f» instead of «ph».

В данном разделе мы представим все слои которые можно образовать из додекаэдров путем постепенного наращивания их количества, начиная с единственного центрального додекаэдра. Мы будем различать жесткие структуры от обычных нежестких. Эти структуры обеспечивают прочность всей конструкции ядра, так как не могут изменить своей формы при соударениях и при приложении внешнего давления. Будем считать, что внешние силы всегда прилагаются центрально симметрично по отношению к атомам.

Это логичное допущение, так как внешними по отношению к атомам могут быть либо другие атомы максимальная разница в размерах атомов составляет менее 3х , либо окружающий атомы эфир прилагающий одинаковое давление со всех сторон, что и обеспечивает стабильность вещества. Внешние силы всегда направлены на сжатие ФРОИМ структур, так как прилагаются перпендикулярно соприкасающимся граням додекаэдров. Додекаэдры нежестких структур могут быть оторваны от ФРОИМов при приложении внешнего давления, или ударов. Так как внешние силы в этом случае направлены на отрыв додекаэдров друг от друга.

Все изображения сделаны с одинакового расстояние от камеры до центрального додекаэдра. Это нужно учитывать при сравнение размеров компонентов. Итак слой 1 — центральный протон: Слой 1 центральный протон Слой 2 12 протонов расположенных на всех 12 гранях центрального протона : Слой 2 12 протонов расположенных на всех 12 гранях центрального протона Так как центральный протон полностью скрыт от внешнего мира боковыми протонами, то во всех последующих структурах мы его не будем учитывать, то есть общее количество протонов будет всегда уменьшено на единицу. Получилась четырехслойная, частично заполненная структура из 104 додекаэдров Слой 4, полностью заполнен — добавлены 20 додекаэдров синие в промежутки между шестьюдесятью додекаэдрами жесткой структуры: Добавлено 20 додекаэдров в четвертый слой.

Получился полностью заполненный четырехслойныйдодекаграф из 124 додекаэдров Предыдущее изображение дополнено первой частью Слоя 5 жесткая структура FROIM состоящая из 30 желтых додекаэдров Добавлено 30 додекаэдров пятого слоя. Получилась пятислойная, частично заполненная структура из 154 додекаэдров Предыдущее изображение дополнено второй частью Слоя 5 жесткая структура FROIM состоящая из 12 разноцветных додекаэдров в центрах пятиугольных розеток Добавлено 12 додекаэдров к пятому слою. Получилась пятислойная, частично заполненная структура из 166 додекаэдров Предыдущее изображение дополнено третьей частью Слоя 5 жесткая структура FROIM состоящая из 60 разноцветных додекаэдров, 12 пятиугольных розеток Добавлено 60 додекаэдров к пятому слою. Получилась пятислойная, частично заполненная структура из 226 додекаэдров Предыдущее изображение дополнено Слоем 6 жесткая структура FROIM состоящая из 12 красных додекаэдров.

Общее количество додекаэдров нуклонов 238 Добавлено 12 додекаэдров шестого слоя. Получился шестислойный додекаграф из 238 додекаэдров… Поделиться ссылкой:.

Введите определение

  • ИКОСАЭДРО-ДОДЕКАЭДРИЧЕСКАЯ СТРУКТУРА ЗЕМЛИ.
  • Додекаэдр. Неразгаданная загадка римского додекаэдра
  • Значение слова «додекаэдр»
  • Зачем в древности был нужен и как использовался «Римский додекаэдр». подробнее на сайте
  • Особенности фигуры, сколько граней и углов у додекаэдра
  • Ответ на вопрос - зачем в древности был нужен и как использовался «Римский додекаэдр». • AB-NEWS

МОЙ ПЕРВЫЙ БЛОГ

  • Додекаэдр - Dodecahedron -
  • Правильные многогранники — подробнее
  • 13 загадок Додекаэдра Земля | betelgas
  • Тайна римских додекаэдров - Цивилизации - додекаэдр, артефакт - Паранормальные новости
  • Что это такое? Ученые бьются над разгадкой древнеримских многогранников – додекаэдров
  • Что такое фигура Додекаэдр, как получила свое название и почему является символом Вселенной

Выбор редактора

  • Что это такое? Ученые бьются над разгадкой древнеримских многогранников – додекаэдров
  • Загадочный 12-гранник: кто и зачем использовал додекаэдры во времена Древнего Рима?
  • Тайна римского додекаэдра | Мир тайн
  • Загадки додекаэдра [60]
  • Додекаэдр - фигура в 12-ю гранями, где применяют, как сделать из картона

Значение слова "додекаэдр"

Существуют и другие разновидности этих бронзовых изделий — с округлыми рёбрами или с треугольными гранями икосаэдры. К началу XXI века на территориях, когда-то входивших в состав северных провинций Римской империи — от Англии до Венгрии и запада Италии, было найдено около сотни этих необычных вещиц, но большинство обнаружено — в Германии и Франции. Никто не знает, для каких целей были предназначены данные предметы. Нет никаких упоминаний о них в исторических текстах или изображениях того времени. Существуют различные версии их использования: подсвечники, игральные кости, инструмент для гадания, детские игрушки, элементы армейского штандарта, какие-то замысловатые приспособления для наблюдений или, к примеру, болванка для вязки перчаток под разные размеры пальцев. Среди этих предположений, некоторые действительно заслуживают внимания. Согласно одной из гипотез, римский додекаэдр использовался на поле боя в качестве дальномера для расчета траекторий метательных снарядов. Это могло бы объяснить наличие разного диаметра отверстий на пятиугольных гранях. Римский додекаэдр, найденный в Бонне, Германия.

Тем не менее, ни одно из этих предположений не было подкреплено какими-либо доказательствами и исчерпывающими объяснениями того, каким образом додекаэдры могли использоваться для этих целей. Известен как минимум один каменный или лепной додекаэдр с отверстиями, но без шариков. Большинство же каменных предметов не имеют полостей. Их грани или не имеют изображений, или снабжены только выгравированными кругами. Количество граней у них различно. Часто они имеют две широкие грани на противоположных сторонах, а между ними оформлено произвольное количество более мелких граней.

Позднее, как и для кубика Рубика появились такие додекаэдрические головоломки с четырьмя деталями при ребре гигаминкс , пятью тераминкс и т. Сложность и время сборки их, как и для кубика Рубика возрастает по мере увеличения числа деталей при ребре. Если за длину ребра принять a , то площадь поверхности додекаэдра равна S.

Астрономический определитель Согласно одной из самых признаваемых теорий, римские додекаэдры применялись в качестве измерительных приспособлений, а именно - в качестве дальномеров на поле боя. Дескать, додекаэдр использовали для расчета траекторий метательных снарядов, и это объясняет наличие разного диаметра отверстий на пятиугольных гранях. По другой теории, додекаэдры использовались в качестве геодезических и нивелирующих приспособлений. Тем не менее ни одна из этих теорий не подкреплена какими-либо доказательствами. Не предоставлено и объяснений того, каким образом додекаэдры могли использоваться для этих целей. Более интересной представляется гипотеза о том, что додекаэдры служили в качестве астрономических измерительных приборов, с помощью которых определяли оптимальный срок посева озимых зерновых культур. Как считает исследователь Вагеман, «додекаэдр был астрономическим измерительным прибором, при помощи которого измеряли угол падения солнечного света, и таким образом точно определяли один особый день весной и один особый день осенью. Определяемые таким образом дни, по-видимому, имели большую важность для сельского хозяйства». Однако противники этой теории отмечают, что использование додекаэдров в качестве измерительных приборов любого рода представляется невозможным из-за отсутствия у них какой-либо стандартизации.

Ведь все найденные предметы имели разные размеры и конструкции. Впрочем, среди множества подобных теорий есть одна весьма правдоподобная. Согласно ей, эти предметы относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших территории Северной Европы и Британии. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными на их поверхности правильными многогранниками. Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до нашей эры, находят в Шотландии, Ирландии и Северной Англии.

Додекаэдр и сакральная геометрия Священная геометрия представляет собой совокупность псевдонаучных религиозных знаний, которые приписывают различным геометрическим фигурам и символам определенное сакральное значение. Значение многогранника додекаэдра в сакральной геометрии заключается в совершенности его формы, которую наделяют способностью приводить окружающие тела в гармонию и равномерно распределять энергию между ними. Додекаэдр считается идеальной фигурой для практики медитации, поскольку он играет роль проводника сознания в иную реальность. Ему приписывают способность снимать стресс у человека, восстанавливать память, улучшать внимание и концентрационные способности. Римский додекаэдр В середине XVIII века в результате некоторых археологических раскопок на территории Европы был найден странный предмет: он имел форму додекаэдра, сделанного из бронзы, его размеры составляли несколько сантиметров, и он был пустым внутри.

Однако любопытно следующее: в каждой его грани было сделано отверстие, причем диаметр всех отверстий был различным. В настоящее время найдено более 100 таких объектов в результате раскопок во Франции, Италии, Германии и других стран Европы. Как римляне использовали эти предметы - не известно, поскольку не найдено ни одного письменного источника, который бы содержал точное объяснение их назначения. Лишь в некоторых трудах Плутарха можно встретить упоминание, что эти объекты служили для понимания характеристик 12-ти знаков Зодиака. Современное объяснение тайны римских додекаэдров имеет несколько версий: предметы использовались в качестве подсвечников внутри них найдены остатки воска ; они применялись как игральные кости; додекаэдры могли служить календарем, который указывал на время посадки сельскохозяйственных культур; могли они применяться в качестве основы для крепления римского военного штандарта. Существуют и другие версии использования римских додекаэдров, тем не менее ни одна из них не имеет точных доказательств. Известно лишь одно: древние римляне высоко ценили эти предметы, поскольку в раскопках они часто обнаруживаются в тайниках вместе с золотом и драгоценностями. Понравилась статья?

Геометрия. 10 класс

Важно проследить за тем, чтобы ширина рамок додекаэдра не была меньше, чем ширина припусков для склеивания. Обнаруженный додекаэдр представляет собой пустотелый многогранник из 12 пятиугольников. Додекаэдр в природе и жизни человека Выполнила студентка группы ИСП-11 Петрова Дарья. Около сотни подобных додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции.

Додекаэдр.

Видеоуроки являются идеальными помощниками при изучении новых тем, закреплении материала, для обычных и факультативных занятий, для групповой и индивидуальной работы. Они содержат оптимальное количест Смотрите видео онлайн «Додекаэдр | Стереометрия. Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы. ДОДЕКАЭДР — один из пяти правильных многогранников, так называемое Платоновское тело. Ромбический додекаэдр можно рассматривать как предельный случай пиритоэдра, и он обладает октаэдрической симметрией. Что такое додекаэдр? Додекаэдр – это многогранник, состоящий из двенадцати граней.

Додекаэдр: двухсотлетняя загадка археологии

Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. Римский додекаэдр датируется II-м или III-м веком нашей эры. Правильный додекаэдр – правильный многогранник, составленный из 12 правильных пятиугольников. Найдите нужное среди 1 756 стоковых фото, картинок и изображений роялти-фри на тему «додекаэдр» на iStock.

Значение слова «додекаэдр»

Оказалось, что их существует бесконечное множество — и что они делятся на 31 класс эквивалентности. На представителей всех этих классов можно посмотреть тут. Вопрос о таких путях связан с общей теорией трансляционных поверхностей также называемых очень плоскими. Такие поверхности получаются из одного или нескольких многоугольников на плоскости, стороны которых разбиты на пары равных и параллельных, и каждая пара сторон которых склеена по совмещающему их параллельному переносу. Простейший пример такой поверхности — тор, и наверняка многим известны видеоигры, где игровые персонажи, покидая экран через одну сторону, сразу же возвращаются обратно с другой. Можно вспомнить задачу о «запутывании ветра в деревьях» и подход к ней через коцикл Концевича—Зорича, можно вспомнить «теорему о волшебной палочке» Эскина—Мирзахани. В общем, получающаяся область вовсе не так проста, как может показаться на первый взгляд.

Но вернемся к исходной задаче. Для описания пути по додекаэдру авторы взяли трансляционную поверхность, которая получается, если на плоскости разместить каждую грань в каждом из возможных положений, в котором она может оказаться при «перекатывании» фигуры. Эти грани объединяются в 10 поворотов одной развертки додекаэдра — с отождествленными соответствующим образом оставшимися сторонами. Получающаяся поверхность огромна: топологически это сфера с 81 ручкой. На ней 20 вершин, которые соответствуют 20 вершинам додекаэдра. Однако — и в этом сила этого подхода — геодезические линии на ней становятся просто прямыми — продолжающимися сквозь «склеенные» пары сторон.

Смоленск, ул. Верхне-Сенная, 4.

В пользу этой версии можно отнести суровую зиму на северо-западе Европы, которая могла оставить народ без урожая и спровоцировать голод. По этой же причине странные изделия находят здесь, а не на юге. Но обе гипотезы вызывают сомнения из-за того, что додекаэдры не унифицированы. Они имеют разные геометрические размеры, что для метрологии неприемлемо. Хотя не исключено, что тогда просто не было цели обеспечивать единство измерений. Могли артефакты быть и частью религиозных обрядов, но опять-таки доказательств этому нет. Но одно известно совершенно точно: загадочные штуковины представляли ценность. Многие их них были обнаружены среди драгоценностей и золотых монет, в местах упокоения богатых господ, среди святилищ и в местах дислокации военных. Такой разброс и вызывает путаницу в гипотезах.

Откуда появилась именно такая форма конструкции, история умалчивает. Однако есть множество доводов в пользу того, что выбор этот был явно неслучайным. Имеется, к примеру, довольно старая тайна, над которой по сию пору безуспешно ломают голову археологи и историки. Каждый такой предмет имеет форму геометрически правильного многогранника додекаэдра — 12 равных пятиугольных сторон, в центре каждой из которых имеется по одному круглому отверстию, ведущему в полую сердцевину. На каждой из граней обычно нанесены борозды-окружности — концентрическими кругами вокруг центрального отверстия. Каждая из 20 вершин додекаэдра увенчана маленьким набалдашником в форме шарика. Никто не знает, каково было предназначение данных предметов. Гипотезы и предположения выдвигаются самые разные — то ли это подсвечники, то ли необычные игральные кости, а может, детские игрушки или какие-то замысловатые инструменты для наблюдений. Все эти догадки, впрочем, абсолютно нечем подкрепить, поскольку загадочные додекаэдры ни словом не упомянуты в письменных источниках и не встречаются ни на одном из изображений того времени. Есть, правда, одна весьма правдоподобная гипотеза, согласно которой предметы эти относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших перечисленные территории. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными по их поверхности правильными многогранниками.

Зачем в древности был нужен и как использовался «Римский додекаэдр».

Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников. Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы. Дескать, додекаэдр использовали для расчета траекторий метательных снарядов, и это объясняет наличие разного диаметра отверстий на пятиугольных гранях. "что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник". Тогда, что же это такое и каково было предназначение додекаэдра?

Похожие новости:

Оцените статью
Добавить комментарий