На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта1979 года примерно в 4:00. Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас. После аварии на Три-Майл-Айленд в США не было построенони одной новой АЭС. Авария на АЭС — в широком смысле любая неполадка в работе атомной электростанции, связанная с внезапным выходом из строя какой-то техники. После аварии на АЭС Три-Майл-Айленд в США было принято решение больше не строить атомных электростанций, что привело к застою в американской атомной энергетике.
Что еще почитать
- Произошла крупнейшая в США авария на атомной электростанции
- Что еще почитать
- Пять самых опасных аварий на ядерных объектах в мире
- Авария на АЭС Три-Майл-Айленд в США. 28 марта 1979. Хронология событий |
28 марта 32 года назад произошла авария на АЭС Три-Майл-Айленд
Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии. С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно.
Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62].
Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67].
За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62]. С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71].
Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72]. Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75]. Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76].
Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77].
Снимок сделан в день аварии, 29 марта 1979 года. Власти решили, что масштабная эвакуация населения не нужна, но губернатор Пенсильвании все же рекомендовал беременным женщинам и детям дошкольного возраста покинуть 8-километровую зону вокруг аварийного реактора. Снимок 30 марта 1979 года. Миссис Дэвид Нил вместе со своей дочкой Даниэль и домашним питомцем собираются покинуть опасную зону вокруг аварийного реактора. Их сосед, Джон Суайтзер, помогает им загрузить вещи в автомобиль. В непосредственной близости от градирни находится детская игровая площадка. Снимок сделан 30 марта 1979 года.
Безлюдная улица города Голдсборо, Пенсильвания 31 марта 1979 года. Часть населения этого города уехала подальше от аварийной АЭС, те же, кто не смог или не захотел уехать, старались не выходить на улицу без особой необходимости.
Барботер переполнился, расположенные на нем предохранительные мембраны лопнули, а кипяток и пар стали поступать в помещения. Сработала система аварийного охлаждения реактора. Из-за не закрывшегося клапана через барботер вода начала поступать и в гермооболочку. Датчики показывали, что в реакторе слишком много воды, хотя на самом деле он был практически пуст. Операторы, опираясь на показания, отключили все аварийные насосы, закачивающие воду в первый контур.
Лишь на следующий день уже новая смена операторов разобралась в ситуации. Сотрудники станции закрыли электромагнитный клапан компенсатора давления и смогли запустить принудительное охлаждение активной зоны. Но к этому времени топливо расплавилось. Критическая фаза миновала, но в теплоносителе осталось скопление водорода, от которого удалось избавиться лишь к 1 апреля.
An inter-agency analysis concluded that the accident did not raise radioactivity far enough above background levels to cause even one additional cancer death among the people in the area, but measures of beta radiation were not included, because the EPA found no contamination in water, soil, sediment, or plant samples.
Even then, the elevated levels were still below those seen in deer in other parts of the country during the height of atmospheric weapons testing. Elevated levels were not found. Gundersen cites affidavits from four reactor operators according to which the plant manager was aware of a dramatic pressure spike, after which the internal pressure dropped to outside pressure. Gundersen also claimed that the control room shook and doors were blown off hinges. However, official NRC reports refer merely to a "hydrogen burn".
Farmers were told to keep their animals under cover and on stored feed. The evacuation zone was extended to a 20-mile radius on Friday, March 30. Kemeny , president of Dartmouth College. It was instructed to produce a final report within six months, and after public hearings, depositions, and document collection, released a completed study on October 31, 1979. Although Babcock engineers recognized the problem, the company failed to clearly notify its customers of the valve issue.
In 1986, core samples and samples of debris were obtained from the corium layers on the bottom of the reactor vessel and analyzed. The Three Mile Island accident is one of the factors cited for the decline of new reactor construction. However, following the event, the number of reactors under construction in the U. In total, 51 U. Additionally, as a result of the earlier 1973 oil crisis and post-crisis analysis with conclusions of potential overcapacity in base load , forty planned nuclear power plants already had been canceled before the TMI accident.
At the time of the TMI incident, 129 nuclear power plants had been approved, but of those, only 53, which were not already operating, were completed. During the lengthy review process, complicated by the Chernobyl disaster seven years later, Federal requirements to correct safety issues and design deficiencies became more stringent, local opposition became more strident, construction times were significantly lengthened and costs skyrocketed. Globally, the end of the increase in nuclear power plant construction came with the more catastrophic Chernobyl disaster in 1986 see graph. A clean-up crew working to remove radioactive contamination at Three Mile Island Initially, GPU planned to repair the reactor and return it into service. TMI-2 had been online for only three months but now had a ruined reactor vessel and a containment building that was unsafe to walk in.
Популярные материалы
- Информация
- Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года
- Авария на Чернобыле унесла больше жизней, чем авария на Фукусиме
- Популярные материалы
- Авария на АЭС Три-Майл-Айленд
- ТОП-5 наихудших катастроф на мировых АЭС
2.2 Авария на аэс «Три-майл-Айленд»
Авария на Три-Майл-Айленде вдохновила Чарльза Перроу Обычная теория аварии, в которой авария происходит в результате непредвиденного взаимодействия нескольких отказов в сложной системе. Авария на Три-Майл-Айленд (TMI) была очень информативной и помогла повысить безопасность, в частности, подчеркнув важность "государственного вождения". На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта 1979 года примерно в 4:00.
Авария на АЭС Три-Майл-Айленд
Это позволило реактивности медленно вырасти и дойти до уровней, близких к тем, которые требовались для проведения эксперимента. Поток охлаждающей жидкости в ядре реактора был усилен для получения большего количества пара, но это понизило реактивность, поэтому два насоса были остановлены для того чтобы снова повысить реактивность реактора. В этой ситуации, когда практически все управляющие стержни были вынуты из реактора, и когда были отключены все системы безопасности, эксперимент свернули, несмотря на то что падение мощности, выдаваемой замедляемым генератором, привело к понижению давления воды, охлаждающей реактор. И, наконец, было принято решение воспользоваться системой аварийного отключения реактора, что привело бы к сравнительно быстрому вводу управляющих стержней в реактор для его остановки. Стержни вытесняли воду из каналов, создавая пустоты, а графит на концах стержней способствовал повышению реактивности реактора. В результате роста реактивности в нижней части реактора теплоотдача реактора подскочила примерно до 30000 МВт при номинальной теплоотдаче в 3000 МВт.
Вода, охлаждающая реактор, немедленно закипела, циркониевая оболочка топливных стержней расплавилась, она прореагировала с паром, а в результате этой реакции выделился водород. Первым взрывом возможно, его причиной стал перегретый пар сбросило крышку реактора и повредило крышу здания. Второй взрыв, который произошёл через несколько секунд это, вероятно, взорвалась смесь водорода с кислородом , разрушил ядро реактора и прекратил цепную ядерную реакцию. Тем временем в ядре реактора загорелся графит, в воздух поднялся столб радиоактивного дыма, что и привело к тому, что в Швеции обнаружили следы радиационного заражения. Все они расположены в России.
А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации. Работающие реакторы РБМК усовершенствовали, учтя опыт катастрофы. А именно, речь идёт о следующих улучшениях: Использование топлива с более высоким уровнем обогащения урана, что позволяет скомпенсировать наличие дополнительных управляющих стержней. Использование большего количества поглотителей нейтронов для стабилизации реактора на низких уровнях мощности. Ускорение работы системы аварийного отключения реактора 12 секунд вместо 18.
Ограничение доступа к органам управления реактором, отключающим системы безопасности. Вот главные следствия этих изменений: значительно уменьшился положительный паровой коэффициент реактивности, реактором стало намного легче управлять на низких уровнях мощности, у операторов стало гораздо меньше возможностей для «импровизаций». Учитывая то, что реакторы типа РБМК и подобные им в наши дни совершенно не пользуются поддержкой общественности, в России будущее атомной электроэнергетики строится на реакторах типа ВВЭР. В таких реакторах обычная вода используется для замедления нейтронов, для охлаждения реактора, а так же — для поглощения нейтронов. Такие реакторы, при создании которых соблюдаются международные стандарты безопасности, заменят в будущие годы оставшиеся на российских атомных электростанциях реакторы РБМК.
Эти реакторы привлекают к себе так мало внимания, что обычные люди, не являющиеся гражданами Канады, обычно не знают о том, что в Канаде есть атомная промышленность, и о том, что Канада экспортирует эти реакторы во многие страны. При этом в реакторах CANDU изначально использовался природный уран и они отличаются положительным паровым коэффициентом реактивности. Но, несмотря на это, активные и пассивные системы защиты таких реакторов способны предотвратить нечто вроде тех ошибок персонала, которые были совершены в Чернобыле, или что-то вроде частичного расплавления активной зоны реактора при отрицательном паровом коэффициенте реактивности при аварии на АЭС Три-Майл-Айленд. В последнем случае оператор взял на себя управление системой безопасности, в результате события развивались по сценарию, напоминающему неудачный эксперимент в Чернобыле.
Гундерсен также утверждал, что диспетчерская тряслась, и двери срывались с петель. Однако официальные отчеты НСЦБ относ просто к «водородному ожогу». Комиссия Кемени сослалась на «ожог или взрыв, вызвавший повышение давления на 28 фунтов на квадратный дюйм 190 кПа в здании содержания», в то время как The Washington Post сообщила, что «примерно в 2:00 после полудня, когда давление почти упало до такой степени, что можно было задействовать огромные охлаждающие насосы, небольшой взрыв сотрясения реактор. Три-Майл-Айленд на заднем плане позади международного аэропорта Гаррисберг , через несколько недель после аварии. Двадцать - через восемь часов после начала аварии Уильям Скрэнтон III , вице-губернатор , Появился на брифинге, чтобы сказать, что митрополит Эдисон, владелец завода, заверил штат, что «все находится под контролем», что «все находится под контролем», Скрэнтон изменил свое заявление, сказав, что ситуация «сложнее, чем компания сначала предполагала». Фермерам было приказано держать своих животных под укрытием и использовать запасы корма.
Зона эвакуации была расширена до 20 миль в пятницу, 30 марта. За несколько дней ее покинули 140 000 человек. Более половины из 663 500 жителей в радиусе 20 миль остались в этом районе. Расследования Несколько государственных и федеральных агентов по расследованию наиболее заметных заметок Президентская комиссия по аварии на Три-Майл-Айленд, созданная Джимми Картером в апреле 1979 года. Комиссия состояла из группы в составе двенадцать человек, специально отобранных из-за отсутствия сильных или антиядерных взглядов, и систем председателем Джоном Г. Кемени , президентом Дартмутского колледжа. Следствие подвергло резкой критике Babcock Wilcox, Met Ed, GPU и NRC за упущение в группе качества и техническом обслуживании, недостаточная подготовка операторов, отсутствие передачи информации по безопасности, плохое управление и самоуспокоенность, но он избегал делать выводы о будущей ядерной отрасли. Самая серьезная критика со стороны Комиссии Кемени заключалась в том, что «необходимы фундаментальные изменения в организации, процедурах, методах работы» и, прежде всего, в подходах NRC [и ядерной отрасли] ». Эти процедуры были «несоответствующими», но рабочие «действовали в соответствии с процедурами, которые были выполнены, и наши процедуры указывали на то, что эти процедуры были неадекватными» и что диспетчерская «в степени не соответствовала требованиям для управления аварией». Более тревожным был тот факт, что первоначальная причинно-следственная последовательность событий на TMI была воспроизведена 18 месяцев ранее на другом реакторе Babcock Wilcox, АЭС Дэвис-Бесс , принадлежавшей в то время Толедо Эдисону..
Хотя инженеры Бабко осознал проблему, компания не смогла четко уведомить своих клиентов о проблеме с клапаном. Палата представителей Конгрессвании провела собственное расследование, в котором особое внимание уделяется необходимости улучшения улучшения. В 1985 году использовалась камера внутренней части поврежденного реактора. В 1986 г. Влияние на атомную энергетику Мировая история использования ядерной энергетики. Авария на Три-Майл-Айленде является одним из факторов сокращения строительства новых реакторов. В период с 1963 по 1979 год количество строящихся реакторов во всем мире увеличивалось каждый год, за исключением 1971 и 1978 годов. Однако после этого количества строительных реакторов в США снизилось с 1980 по 1998 год. Многие аналогичные реакторы Babcock Wilcox по заказу были отменены; в общей сложности 51 ядерный реактор в США был закрыт с 1980 по 1984 год. Авария на TMI 1979 года не привела к упадку американской ядерной энергетики, но остановила ее исторический рост.
Кроме того, в результате более раннего нефтяного кризиса 1973 года и посткризисного анализа с выводами о потенциальной избыточной мощности в прогноз нагрузки сорок запланированных атомных электростанций уже были отменены до аварии на TMI.. На момент инцидента с TMI было одобрено 129 атомных электростанций, но из них 53 которые еще не работали были построены. Во время длительного процесса проверки, осложненного Чернобыльской катастрофой лет спустя, федеральные требования по исправлению проблем безопасности и конструктивных недостатков стали более строгими, местное сопротивление стало более резким, сроки строительства были значительно увеличены, а стоимость возросла. В глобальном масштабе рост строительства атомных электростанций закончился более катастрофической Чернобыльской катастрофой в 1986 году см. Очистка Бригада по очистке, работающая над удалением радиоактивного загрязнения в Три-Майл-Айленд Блок 2 Три-Майл-Айленд был слишком сильно поврежден и загрязнен, чтобы возобновить работу ; реактор был постепенно отключен и окончательно закрыт. TMI-2 проработал всего 13 месяцев, но теперь имел разрушенный корпус реактора и здание защитной оболочки, в которое было небезопасно входить. Очистка началась в августе 1979 года и официально закончилась в декабре 1993 года, а общая стоимость очистки составила около 1 миллиарда долларов. Бенджамин К. Совакоол в своей предварительной оценке крупных энергетических аварий в 2007 году подсчитал, что авария с TMI вызвала в общей сложности 2,4 миллиарда долларов материального ущерба. Первоначально усилия были сосредоточены на очистке и дезактивации участка, особенно выгрузка топлива из поврежденного реактора.
Начиная с 1985 года, с площадки было вывезено почти 100 коротких тонн 91 т радиоактивного топлива. В 1988 году Комиссия по ядерному регулированию объявила, что, несмотря на возможность дальнейшей дезактивации площадки блока 2, оставшаяся радиоактивность была достаточно ограничена, чтобы не представлять угрозы для здоровья и безопасности населения. Первый крупный этап очистки был завершен в 1990 году, когда рабочие завершили отправку 150 коротких тонн 140 тонн радиоактивных обломков в Айдахо для хранения в Национальной инженерной лаборатории Министерства энергетики. Однако загрязненная охлаждающая вода, которая просочилась в здание защитной оболочки, просочилась в бетон здания, в результате чего радиоактивный остаток было невозможно удалить. Соответственно, дальнейшие усилия по очистке были отложены, чтобы учесть снижение уровней радиации и воспользоваться потенциальными экономическими выгодами от вывода из эксплуатации блоков 1 и 2 вместе. Воздействие на здоровье и эпидемиология После аварии основное внимание уделялось количеству радиоактивности, выпущенной в результате аварии.
Поток охлаждающей жидкости в ядре реактора был усилен для получения большего количества пара, но это понизило реактивность, поэтому два насоса были остановлены для того чтобы снова повысить реактивность реактора. В этой ситуации, когда практически все управляющие стержни были вынуты из реактора, и когда были отключены все системы безопасности, эксперимент свернули, несмотря на то что падение мощности, выдаваемой замедляемым генератором, привело к понижению давления воды, охлаждающей реактор. И, наконец, было принято решение воспользоваться системой аварийного отключения реактора, что привело бы к сравнительно быстрому вводу управляющих стержней в реактор для его остановки. Стержни вытесняли воду из каналов, создавая пустоты, а графит на концах стержней способствовал повышению реактивности реактора. В результате роста реактивности в нижней части реактора теплоотдача реактора подскочила примерно до 30000 МВт при номинальной теплоотдаче в 3000 МВт. Вода, охлаждающая реактор, немедленно закипела, циркониевая оболочка топливных стержней расплавилась, она прореагировала с паром, а в результате этой реакции выделился водород. Первым взрывом возможно, его причиной стал перегретый пар сбросило крышку реактора и повредило крышу здания. Второй взрыв, который произошёл через несколько секунд это, вероятно, взорвалась смесь водорода с кислородом , разрушил ядро реактора и прекратил цепную ядерную реакцию. Тем временем в ядре реактора загорелся графит, в воздух поднялся столб радиоактивного дыма, что и привело к тому, что в Швеции обнаружили следы радиационного заражения. Все они расположены в России. А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации. Работающие реакторы РБМК усовершенствовали, учтя опыт катастрофы. А именно, речь идёт о следующих улучшениях: Использование топлива с более высоким уровнем обогащения урана, что позволяет скомпенсировать наличие дополнительных управляющих стержней. Использование большего количества поглотителей нейтронов для стабилизации реактора на низких уровнях мощности. Ускорение работы системы аварийного отключения реактора 12 секунд вместо 18. Ограничение доступа к органам управления реактором, отключающим системы безопасности. Вот главные следствия этих изменений: значительно уменьшился положительный паровой коэффициент реактивности, реактором стало намного легче управлять на низких уровнях мощности, у операторов стало гораздо меньше возможностей для «импровизаций». Учитывая то, что реакторы типа РБМК и подобные им в наши дни совершенно не пользуются поддержкой общественности, в России будущее атомной электроэнергетики строится на реакторах типа ВВЭР. В таких реакторах обычная вода используется для замедления нейтронов, для охлаждения реактора, а так же — для поглощения нейтронов. Такие реакторы, при создании которых соблюдаются международные стандарты безопасности, заменят в будущие годы оставшиеся на российских атомных электростанциях реакторы РБМК. Эти реакторы привлекают к себе так мало внимания, что обычные люди, не являющиеся гражданами Канады, обычно не знают о том, что в Канаде есть атомная промышленность, и о том, что Канада экспортирует эти реакторы во многие страны. При этом в реакторах CANDU изначально использовался природный уран и они отличаются положительным паровым коэффициентом реактивности. Но, несмотря на это, активные и пассивные системы защиты таких реакторов способны предотвратить нечто вроде тех ошибок персонала, которые были совершены в Чернобыле, или что-то вроде частичного расплавления активной зоны реактора при отрицательном паровом коэффициенте реактивности при аварии на АЭС Три-Майл-Айленд. В последнем случае оператор взял на себя управление системой безопасности, в результате события развивались по сценарию, напоминающему неудачный эксперимент в Чернобыле. Об этом говорится в отчёте Национального парламента Японии.
Тем не менее, эта авария оказала огромное влияние на ядерную энергетику в США. После серии массовых протестных акций, прокатившихся по всем Соединенным Штатам в одном только Вашингтоне в мае 1979 года вышли на улицы 65 тысяч человек развитие отрасли было фактически заморожено. В течение следующих 20 лет после аварии в США не была введена в строй ни одна новая атомная электростанция.
Три-Майл-Айленд– крупнейшая авария на АЭС в США
А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. После аварии на Три-Майл-Айленд в США не было построенони одной новой АЭС. 28 марта 1979 года Крис Ахенбах-Киммель училась в 9-м классе средней школе, а в четырнадцати милях от школы персонал АЭС Три-Майл-Айленд боролся с последствиями аварии на одном из ее реакторов. «Я просто помню, как в классе узнавала новости и.
Авария на Три-Майл-Айленде
На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта1979 года примерно в 4:00. Блок № 2 на АЭС «Тримайл-Айленд», как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются. Авария на станции «Три-Майл Айленд» могла бы привести к ещё большей катастрофе.
Насколько авария в Чернобыле была страшнее других аварий на АЭС?
В результате парогенератор не мог отводить от первого контура тепло, вырабатываемое реактором. Автоматически отключилась турбина. В первом контуре реакторного блока резко возросли температура и давление воды. Через предохранительный клапан смесь перегретой воды с паром начала сбрасываться в специальный резервуар барбатер , однако после того, как давление воды снизилось до нормального уровня, клапан не сел на место, вследствие чего давление в барбатере также повысилось сверх допустимого. Аварийная мембрана на барбатере разрушилась, и около 370 кубометров горячей радиоактивной воды вылилось на пол. Автоматически включились дренажные насосы, персонал должен был немедленно отключить их, чтобы вся радиоактивная вода осталась внутри защитной оболочки, однако этого сделано не было.
Вода залила пол слоем в несколько дюймов, начала испаряться, и радиоактивные газы вместе с паром проникли в атмосферу, что явилось одной из главных причин последующего радиоактивного заражения местности. В момент открытия предохранительного клапана сработала система аварийной защиты реактора со сбросом стержней-поглотителей, в результате чего цепная реакция прекратилась и реактор был практически остановлен. Процесс деления ядер урана в топливных стержнях прекратился, однако продолжался ядерный распад осколков... Предохранительный клапан оставался открытым, уровень воды в корпусе реактора снижался, температура быстро возрастала. По-видимому, это привело к образованию пароводяной смеси, в результате чего произошел срыв главных циркуляционных насосов, и они остановились.
Как только давление упало, автоматически сработала система аварийного расхолаживания активной зоны, и топливные сборки начали охлаждаться. Это произошло через две минуты после начала аварии. Здесь ситуация похожа на чернобыльскую за двадцать секунд до взрыва. Но в Чернобыле система аварийного охлаждения активной зоны была отключена персоналом заблаговременно. Вода по-пре- жнему испарялась из реактора.
Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе.
Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62]. С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71]. Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72].
Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75]. Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76]. Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77]. Удаление водорода из первого контура [ править править код ] К концу 29 марта стало очевидным, что в теплоносителе первого контура всё ещё имеется большое содержание газов, в первую очередь водорода, образовавшегося ранее при пароциркониевой реакции [78] [79]. Эта информация вызвала в СМИ совершенно беспочвенную панику о возможности взрыва внутри корпуса реактора, тогда как фактически в объёме первого контура отсутствовал кислород, что делало такой взрыв невозможным [81].
Тем не менее из-за риска нарушить циркуляцию в первом контуре от водорода решено было избавиться [76]. Растворимость водорода в воде падает при снижении давления. Теплоноситель из первого контура отводился через линию продувки в бак подпитки, давление в котором значительно ниже, чем в реакторе, в баке происходила дегазация теплоносителя: газ удалялся в систему газоочистки и по временным трубопроводам под гермооболочку [82] [83]. Использовался также и другой способ: теплоноситель распылялся в компенсаторе объёма в котором электронагревателями поддерживалась высокая температура при открытом отсечном клапане, при этом газы удалялись в объём герметичной оболочки. Уже к 1 апреля измерения показали отсутствие газообразного водорода под крышкой реактора [84]. Добровольная эвакуация [ править править код ] Тридцатого марта проблема наличия растворённого и газообразного водорода в первом контуре начала давать о себе знать, но согласованной стратегии по решению этой проблемы ещё не существовало. Опасность заключалась в неконтролируемом повышении давления в баке подпитки, где водород выделялся из теплоносителя и скапливался над уровнем жидкости. По решению начальника смены второго энергоблока был проведён сброс давления из бака в систему газоочистки, хотя в последней уже были выявлены серьёзные протечки. Это решение не было заранее согласовано с другими официальными лицами станции.
Это стало вторым по величине измеренным значением на всём протяжении аварии [86]. В это время в управлении комиссии по ядерному регулированию существовало серьёзное опасение о вероятности больших выбросов радиоактивности от АЭС. Источником этих выбросов могли стать газгольдеры , накапливавшие в себе радиоактивные газы из системы газоочистки. По информации, располагаемой комиссией, эти газгольдеры были практически заполнены, и в любой момент могли сработать их предохранительные устройства. По случайности эта цифра совпала со значением, полученным с вертолёта. Комиссия, узнав эту цифру, не сделала никаких попыток связаться со станцией и уточнить конкретную точку замеров либо причину сброса. Информация о переполнении газгольдеров также являлась недостоверной. Тем не менее руководство комиссии по ядерному регулированию сочло нужным выдать губернатору штата Пенсильвания рекомендацию эвакуировать население из района АЭС. По мере прохождения этого указания через различные заинтересованные службы мнения сильно разделились, и в условиях крайне противоречивой информации губернатор Торнберг 30 марта около 12:30 объявил о добровольной эвакуации для беременных женщин и детей дошкольного возраста из района в радиусе 8 км вокруг АЭС [87].
К двум часам дня, по требованию властей штата и самого президента Картера, руководство комиссии по ядерному регулированию прибыло на станцию, чтобы разобраться со всем на месте. В результате к вечеру 30 марта состоялась совместная конференция губернатора Пенсильвании и представителей комиссии. На этой встрече было официально объявлено, что никакой необходимости в обязательной эвакуации населения нет. Тем не менее губернатор не стал отменять своих ранее выданных рекомендаций [88]. В связи с противоречивой информацией от СМИ и из-за самого факта появления рекомендации от губернатора, в течение нескольких дней после аварии около 195 000 человек добровольно покинули 32-километровую зону АЭС. Большинство из них расположилось у своих родственников и друзей, лишь малая часть отправилась в специальные эвакуационные центры. Практически все люди вернулись в свои дома через три недели после аварии [89] [90]. Расследование аварии [ править править код ] Авария на АЭС имела широкий общественный резонанс, и для определения её причин и последствий было проведено сразу несколько независимых расследований [91]. Наиболее масштабными из них можно назвать расследование комиссии президента США и специальное расследование комиссии по ядерному регулированию.
Другие отчёты по аварии, выполненные комитетом сената США по вопросам окружающей среды , комиссией губернатора штата Пенсильвания и институтом электроэнергетических исследований EPRI были ограничены определённой тематикой. В рамках расследования [93] [94] несколько сотен человек дали официальные показания и значительно большее количество лиц было опрошено, в том числе на публичных слушаниях.
Было решено, что в эвакуации населения, проживавшего рядом со станцией нет необходимости, однако губернатор Пенсильвании посоветовал покинуть пятимильную 8 км зону беременным женщинам и детям дошкольного возраста. Средняя эквивалентная доза радиации для людей живущих в 10-мильной 16 км зоне составила 8 миллибэр 80 мкЗв и не превысила 100 миллибэр 1 мЗв для любого из жителей. Для сравнения, восемь миллибэр примерно соответствуют дозе, получаемой при флюорографии, а 100 миллибэр равны одной трети от средней дозы, получаемой жителем США за год за счёт фонового излучения. Было проведено тщательное расследование обстоятельств аварии. Было признано, что операторы допустили ряд ошибок, которые серьёзно ухудшили ситуацию.
Эти ошибки были вызваны тем, что они были перегружены информацией, часть которой не относилась к ситуации, а часть была просто неверной. После аварии были внесены изменения в систему подготовки операторов. Если до этого главное внимание уделялось умению оператора анализировать возникшую ситуацию и определять, чем вызвана проблема, то после аварии подготовка была сконцентрирована на выполнении оператором заранее составленных технологических процедур. Были также улучшены пульты управления и другое оборудование станции. На всех атомных станциях США были составлены планы действий на случай аварии, предусматривающие быстрое оповещение жителей в 10-мильной зоне. Работы по устранению последствий аварии были начаты в августе 1979 года и официально завершены в декабре 1993. Они обошлись в 975 миллионов долларов США.
Была проведена дезактивация территории станции, топливо было выгружено из реактора. Однако, часть радиоактивной воды впиталась в бетон защитной оболочки и эту радиоактивность практически невозможно удалить. Эксплуатация другого реактора станции TMI-1 была возобновлена в 1985 году. Предупреждение: Данная новость взята отсюда. Авторство НЕ принадлежит Muz4in. Вам понравилась статья?
В результате этой аварии активная зона реактора станции была очень сильно повреждена, а часть ядерного топлива расплавилась. Одним из результатов этой аварии явилось то, что после нее развитие атомной энергетики в США было практически заморожено. Но, несмотря на это, США и сегодня являются обладателями самой мощной атомной энергетики в мире. Полицейский и охранники АЭС дежурят у ворот станции.
Авария была спровоцирована рядом технических неисправностей и явными ошибками в работе персонала станции. Официальная статистика утверждает, что в результате этой аварии никто из людей не погиб, и даже не получил серьезной дозы облучения. Работы по устранению последствий аварии завершились только в 1993 году, а их стоимость составила 975 миллионов долларов. Другой энергоблок станции продолжает работать и сегодня. Рабочие ночной смены в защитных костюмах въезжают на станцию, чтобы продолжить работы по отключению станции во время аварии.
Ядерные катастрофы мира. № 8 Авария на АЭС Три-Майл-Айленд
Аварийное развитие событий было обусловлено просто невероятным сочетанием целого ряда технических неполадок заклинивание клапана, неправильные показания приборов, отказ нескольких насосов , грубых нарушений правил ремонта и эксплуатации, и пресловутого «человеческого фактора». Люди, впервые столкнувшиеся с такой аварией, просто-напросто растерялись, у них не было ни соответствующей подготовки к подобного рода нештатным ситуациям в то время вообще никто не был готов , ни понимания того, что происходит. Усугубили ситуацию безбожно вравшие приборы и большое количество проблем технического плана. Поэтому и получилось то, что получилось — первая серьезная авария на АЭС, которая до трагических событий на Чернобыльской АЭС оставалась крупнейшей в мире. Хроника событий Авария на втором энергоблоке АЭС началась примерно в четыре утра 28 марта, и борьба за реактор велась до самого вечера, а полностью устранить опасность удалось лишь ко 2 апреля. Хроника событий этой аварии обширна, однако имеет смысл остановиться только на ее ключевых моментах. Примерно 4. Остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться.
Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками! Первые 12 секунд после аварии. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду она скапливалась в специальной емкости — барботере. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку.
Первая грубая ошибка операторов. Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур.
Авария на АЭС Три Майл Айленд оказала беспрецедентное влияние на развитие атомной энергетики, от которого Запад до сих пор не оправился.
С тех пор на визитной карточке атомной энергетики написано: риск аварий, противодействие общественности и дороговизна. Современные реакторы стоят дороже ветровых станций, не говоря уже о традиционных источниках энергии. При этом, ветропаркам не требуется топливо, а вот стоимость урана, необходимого для АЭС, неуклонно растет.
Более того, в стоимость атомной энергии до сих пор не включено обращение с ядерными отходами, которые предстоит изолировать от людей и окружающей среды как минимум на четверть миллиона лет, что приведет к гигантским расходам, - говорит Владимир Сливяк, сопредседатель группы"Экозащита!
Чтобы под громадной волной взорвались три энергоблока, загорелся четвертый, защитное бетонное основание расплавилось и радиоактивные вещества полились в грунтовые воды. К слову, проблему утечки радиации в подземные воды в Чернобыле решили в первые часы после аварии и сумели практически полностью ее устранить. Наши предлагали японцам помощь, но те хотели бесплатно забрать технологию и право пользования, а русских специалистов не пускать - рассказывали мне причастные к переговорам. Сток в грунт на Фукусиме начался после аварии и идет все это время. Как и слив в океан воды, охлаждающей горящие уже 13 лет реакторы, производится не только тогда, когда об этом объявляют официально.
Накрыть энергоблоки саркофагами пока невозможно. Сотрудники станции в Три-Майл-Айленде не имели инструкций на случай аварии Зону отчуждения в 20 км не закрывают полностью - в некоторых местах ее не объедешь, в Японии земли мало. Через зараженную местность даже рейсовые автобусы ходят! Многие из эвакуированных 300 тыс. Но статистика по смертям, связанным с облучением, засекречена.
После серии массовых протестных акций, прокатившихся по всем Соединенным Штатам в одном только Вашингтоне в мае 1979 года вышли на улицы 65 тысяч человек развитие отрасли было фактически заморожено. В течение следующих 20 лет после аварии в США не была введена в строй ни одна новая атомная электростанция.
Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года
Это привело к прекращению циркуляции воды и, как следствие, перегреву реактора. В этот момент должны были запуститься аварийные насосы второго контура, но этого не произошло из-за ошибки, допущенной во время ремонта. Техники, проводившие незадолго до аварии ремонтные работы, не открыли задвижки на напоре. Никто из операторов не увидел этого, так как индикаторы задвижек аварийных питательных насосов на пульте управления были закрыты бумажками. В этот момент сработал предохранительный клапан, выпускающий из реактора пар и воду, которая скапливалась в барботере. Но при достижении нормального давления клапан не закрылся, что стало причиной утечки теплоносителя. Эту неполадку операторы обнаружили лишь через 2,5 часа. Барботер переполнился, расположенные на нем предохранительные мембраны лопнули, а кипяток и пар стали поступать в помещения. Сработала система аварийного охлаждения реактора.
Первая ядерная катастрофа в СССР: зона отчуждения, о которой молчали больше 30 лет. Об аварии на Чернобыльской АЭС сегодня знает весь мир, однако в истории Советского Союза была и другая катастрофа, повлекшая за собой ядерный взрыв.
Информация об этом происшествии не разглашалась больше тридцати лет, в зоне заражения в Челябинской области продолжали жить люди. Судьбы семей, оставшихся жить в зоне отчуждения, - это трагедии, о которых в официальных сводках предпочитают молчать… Кыштымская катастрофа произошла 29 сентября 1957 года: на заводе «Маяк», специализировавшемся на изготовлении ядерного оружия, произошел взрыв. Причиной стала поломка системы охлаждения емкостей с радиационными отходами. Как только температура достигла критической отметки, в небо поднялось облако радиоактивной пыли. Меры по ликвидации последствий аварии были приняты не сразу. Показательно, что производственный цикл на заводе не останавливали, к ликвидации привлекли военнослужащих, надлежащих мер предосторожности не соблюдали. Хуже обстояло дело с информированием местных жителей: им даже не объяснили, что произошло, а молодежь через пару дней даже вывели в поле на сезонные работы. Неделю спустя было принято решение об эвакуации людей из зоны заражения. Тогда вывезли около 10-12 тысяч людей, однако потенциальную опасность радиоактивное заражение представляло для сотен тысяч человек. Деревни, из которых вывезли людей, полностью уничтожили, чтобы предотвратить распространение радиации.
Однако в регионе осталась деревня, жителей которых по непонятным причинам не увезли из зоны заражения. Эта деревня носит название Татарская Караболка. Некогда это было большое поселение на четыре тысячи человек, сегодня тут осталось чуть больше четырех сотен, да и то каждый третий серьезно болен. Основной диагноз в Караболке — рак. Онкологию выявляют и у взрослых, и у молодежи, и даже у детей. Всего здесь восемь кладбищ, люди умирают катастрофически быстро, но вот никакой помощи от государства не получают сейчас, равно как не получали и на протяжении тех долгих трех десятилетий, пока о трагедии молчали. Замалчивание трагедии было обусловлено рядом причин: авария произошла в закрытом городе Челябинск-40, поэтому информацию нельзя было афишировать. Кроме того, завод «Маяк» работал на ядерную промышленность, что тоже надлежало хранить в секрете. Эвакуированные люди подписывали бумагу, согласно которой обещали хранить молчание о случившемся на протяжении 25 лет. Жители Татарской Караболки до сих пор пытаются добиться признания своего особого статуса, однако пока это безрезультатно.
На протяжении многих лет они отапливали дома дровами и только спустя годы узнали, что жечь деревья было ни в коем случае нельзя из-за того, что они накапливают загрязнение. Еще одна проблема — вода. Экспертиза признала, что местная вода не пригодна к употреблению, но обеспечить регулярный подвоз воды так и не смогли, поэтому людям ничего не остается делать, как использовать воду из колодцев. Самое трагическое в этой истории — то, что по документам жители Татарской Караболки были эвакуированы после аварии. Бумага была подписана, а люди остались жить, ежедневно борясь со смертью, страдая от тяжелейших болей… Только двадцать лет назад Татарскую Караболку вновь нанесли на карты, с которых ее изображение исчезло в конце 1950-х годов. Аварии с выбросом радиоактивных веществ в россии. Радиационные катастрофы в России Самая крупная авария произошла в Челябинской области в 1948 году на комбинате «Маяк» в процессе ввода атомного реактора на плутониевом топливе на заданную проектом мощность. Вследствие плохого охлаждения реактора несколько блоков с ураном соединились с графитом, расположенным вокруг них. Ликвидация происшествия длилась 9 дней. Позже, в 1949 году, был произведен сброс опасного жидкого содержимого в реку Теча.
Пострадало население 41 пункта, расположенного поблизости. В 1957 году на этом же комбинате произошла техногенная катастрофа под названием «Куштымская». Чернобыльская зона отчуждения. В 1970 году в Нижнем Новгороде в процессе производства атомного судна на заводе «Красное Сормово» произошел запрещенный запуск атомного реактора, который начал работать на запредельной мощности. Пятнадцати секундный сбой стал причиной загрязнения закрытой территории цеха, радиоактивное содержимое не попало за территорию завода.
Рейтинг: 6 серьёзная авария «Кыштымская авария» - очень серьезная радиационная техногенная авария на химкомбинате «Маяк», расположенном в закрытом городе «Челябинск-40» с 1990-х годов - Озёрск. Авария получила свое название Кыштымской по той причине, что Озёрск был засекречен и отсутствовал на картах до 1990 года, а Кыштым - ближайший к нему город. Взрывом, оцениваемым в десятки тонн в тротиловом эквиваленте, ёмкость была разрушена, бетонное перекрытие толщиной 1 метр весом 160 тонн отброшено в сторону, в атмосферу было выброшено около 20 млн кюри радиации. Часть радиоактивных веществ были подняты взрывом на высоту 1-2 км и образовали облако, состоящее из жидких и твёрдых аэрозолей. В течение 10-11 часов радиоактивные вещества выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва по направлению ветра. Более 23 тыс. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных. Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданского населения, получивших значительные дозы облучения. Общая длина составляла примерно 300 км, при ширине 5-10 км. Из воспоминаний с сайта oykumena. Я немного необычный человек. В течение жизни случались странные вещи… Предвидела катастрофу эстонского лайнера. И даже говорила о столкновении самолетов с приятельницей стюардессой… Она погибла». Кыштым 3 место. Уиндскейлский пожар Windscale Fire , Великобритания. Рейтинг: 5 авария с риском для окружающей среды 10 октября 1957 года операторы уиндскейлской станции заметили, что температура реактора неуклонно растет, в то время как должно происходить наоборот.
Утечка теплоносителя [ править править код ] Панель блочного щита управления с ремонтными маркировочными табличками, скрывшими от персонала цветовую индикацию о закрытом положении задвижек на напоре насосов аварийной питательной воды. В типовом переходном режиме , связанном с внезапным прекращением циркуляции во втором контуре станции, на этот раз существовало несколько отклонений, о которых персонал станции ещё не догадывался. Во-первых, задвижки на напоре аварийных питательных насосов оказались ошибочно закрыты и охлаждение через парогенераторы было временно потеряно ошибочное состояние задвижек было определено уже через 8 минут и не оказало значительного влияния на последствия аварии [14]. Фактически это означало, что на станции имелась нераспознанная персоналом авария, связанная с «малой» течью теплоносителя в противовес «большой» течи, возникающей при разрыве трубопроводов максимального диаметра [16]. Действуя по стандартной при аварийной остановке реактора процедуре [17] , операторы предприняли шаги для компенсации ожидаемого уменьшения объёма теплоносителя первого контура [2] [примечание 4] : подача воды подпитка в реакторную установку была увеличена, а отбор её на очистку продувка уменьшен. Образовавшийся в активной зоне пар вытеснял воду в компенсатор давления, создавая иллюзию полного заполнения жидкостью первого контура [20]. Однако, с точки зрения операторов, состояние реакторной установки казалось относительно стабильным, хотя и необычным [22] [23]. Это обманчивое впечатление сохранялось до тех пор, пока работа главных циркуляционных насосов не стала ухудшаться из-за перекачивания неоднородной пароводяной среды, плотность которой снижалась в результате продолжавшегося кипения теплоносителя. После остановки циркуляции в первом контуре произошло разделение жидкой и паровой сред, пар занял верхние участки контура, а граница кипения теплоносителя в реакторе установилась примерно на 1 метр выше верхней плоскости активной зоны. Реакция операторов [ править править код ] Сложившаяся ситуация с течью теплоносителя из верхнего парового объёма компенсатора давления не была учтена при проектировании АЭС, и подготовка персонала станции для управления реакторной установкой в таких условиях была недостаточной [19] [25]. Операторы столкнулись с симптомами, которых не понимали: сочетание снижавшегося давления и растущего уровня в компенсаторе давления не было описано в эксплуатационной документации и не рассматривалось при их тренировке. С другой стороны, по мнению комиссии, проводившей расследование, правильное понимание базовой информации, предоставляемой приборами, позволило бы операторам исправить положение [26]. Основной вклад в развитие аварийной ситуации внесли как неспособность операторов вовремя распознать утечку через неисправный клапан, так и их вмешательство в автоматическую работу системы аварийного охлаждения. Устранение любого из этих факторов превратило бы аварию в сравнительно малозначительный инцидент. С точки зрения безопасности, отключение насосов аварийного охлаждения является более значимой ошибкой, так как всегда можно представить себе случай возникновения протечки которую невозможно устранить закрытием арматуры [26]. Анализ действий персонала показал неудовлетворительное понимание им основных принципов работы реакторов типа PWR , одним из которых является поддержание достаточно высокого давления в установке для предотвращения вскипания теплоносителя [27]. Обучение операторов было нацелено прежде всего на их работу при нормальной эксплуатации, поэтому, наблюдая конфликтующие симптомы, персонал предпочёл отдать приоритет регулированию уровня в компенсаторе давления [28] , а не обеспечению непрерывной работы системы аварийного охлаждения, способной поддерживать высокое давление в контуре при протечках [29]. Операторы не восприняли всерьёз автоматическое включение системы безопасности ещё и потому, что на Три-Майл-Айленд эта система за последний год срабатывала четыре раза по причинам, никак не связанным с потерей теплоносителя [30]. Недостатки щита управления и длительная работа станции с неустранёнными дефектами не позволили персоналу быстро определить состояние электромагнитного клапана компенсатора давления. Указателя фактического положения запорного органа клапана предусмотрено не было, а лампа на панели управления сигнализировала лишь о наличии питания на его приводе, соответственно, сигнал указывал на то, что клапан закрыт [16]. Косвенные признаки, такие как повышенная температура в трубопроводе после клапана и состояние бака-барботера также не были восприняты однозначно. Срабатывание предохранительных устройств бака-барботера также не осталось незамеченным, но персонал никак не связал это событие с продолжительной утечкой из первого контура [33] , приписав его скачку давления при кратковременном срабатывании электромагнитного клапана в самом начале аварии [34]. В эксплуатационной документации был определён перечень признаков течи из первого контура [35] , одни из них действительно имели место, например падение давления в реакторной установке, повышение температуры под гермооболочкой и наличие воды на её нижнем уровне. Однако операторов привело в замешательство отсутствие симптомов, которые они считали ключевыми: не было снижения уровня в компенсаторе давления он, наоборот, возрастал , также не было сигнализации о повышенном уровне радиации в атмосфере гермооболочки возможно, порог срабатывания датчика был некорректно установлен. Таким образом, даже зная о наличии воды в помещениях гермооболочки, персонал не смог адекватно определить источник её происхождения [36] [37]. Разрушение активной зоны [ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41]. Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора [ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии. С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось.
СМИ вспомнили аварию на американской АЭС
Событиям на Припяти предшествовали аварии на АЭС Три-Майл-Айленд (США), аварии и сбросы радиоактивных отходов на производственном объединении «Маяк» (СССР). Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. Авария на АЭС «Три-Майл Айленд» произошла через несколько дней после выхода в прокат кинофильма «Китайский синдром», сюжет которого построен вокруг расследования проблем с надёжностью атомной электростанции, проводимого тележурналисткой и сотрудником станции. Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас. Авария на АЭС три-майл-айленд. 12+. 83 просмотра.
Ядреный атом. Мир пугали Чернобылем, замалчивая масштабную аварию в США
В рамках цикла передач "Аварии на АЭС" речь пойдет конечно же об атомной энергетике. Авария на американской АЭС «Три-Майл-Айленд» произошла 28 марта 1979 года в 4 часа утра из-за утечки теплоносителя. Авария на АЭС Три-Майл-Айленд — крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции по.