Из истории создания водородной бомбы в США и СССР. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце.
Водородная бомба
оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта».
«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия
Соответственно, если США готовились к использованию тактических «пушечных» зарядов, в которых 10 кг плутония взрывались как 50-150 тонн тротилла, советские конструкторы ломали головы над тем, как выдавить лютой имплозией 50 килотонн из всего 6 кг плутония. Успехи наличествовали, но переломить ситуацию таким образом было невозможно… Другое дело, если мощность боеприпаса при прежнем расходе ядерного горючего исчисляется десятками Мегатонн. В такой ситуации отставание по количеству зарядов уже не имело значения. На это Хрущёв и намекал. Ещё в 1942 году наивные немцы пытались взорвать замороженный дейтерий, закладывая его в кумулятивную воронку. Это не работало. Требовалась температура на пару порядков более высокая, чем достижимая при использовании химической взрывчатки.
Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. Вопрос заключался в том, как это организовать. Простое размещение термоядерного заряда рядом с ядерным положительных результатов не давало. Когда бомба взрывалась, водород лишь рассеивался, не нагреваясь до нужной температуры. Термоядерное горючее требовалось каким-то образом обжать взрывом. В 1951 году американцы даже почти сделали это, испытав чрезвычайно сложный в изготовлении тороидальный, а не сферический, имплозивный заряд, в центр которого помещалась ёмкость с жидким водородом.
Затем доходит ударная волна. Она движется со скоростью выше скорости звука, но ниже скорости света, сметая всё на своём пути: разрушает постройки, выкорчёвывает деревья, переворачивает машины. Параллельно с этим местность загрязняется радиацией. Люди заболевают лучевой болезнью, у них и их потомков повышается риск онкологических заболеваний. Растения и животные мутируют. Сельхозполя становятся непригодными для использования.
Действительно ли у президентов ядерных держав есть красная кнопка? Я этого не знаю. Мне кажется, это образное название. В самолёте , например, есть устройства, на которые записываются параметры полёта и разговоры пилотов. Они называются чёрными ящиками, хотя на самом деле окрашены в оранжевый цвет. То же самое и здесь — вряд ли «красная кнопка» описывает физическое воплощение.
Но то, что есть стратегическое ядерное оружие, которое находится на боевом дежурстве и, условно говоря, готово к применению в любой момент — это правда. Его могут использовать, когда наблюдается прямая угроза государству — от ядерного удара до нападения инопланетян, например. В этом случае первое лицо государства, президент, отдаёт личный приказ по его запуску. Помимо этого, есть тактическое ядерное оружие, которое не подготовлено к непосредственному применению. Оно хранится в «законсервированном» состоянии в военных частях. Есть ли срок годности у ядерного оружия?
В составе ядерных бомб используется нестабильное радиоактивное вещество, в котором происходит процесс естественного распада. Но счёт идёт не на года, а на десятки тысяч лет. Что это значит? Это значит, что лишь через это время активного вещества в бомбе станет в два раза меньше. То есть на горизонте сотен лет ядерная бомба остаётся опасной. Однако помимо этого в бомбе есть дополнительные элементы, у каждого из которых — свой срок годности.
Эти элементы тоже устаревают. Например, самая обычная взрывчатка может отсыреть, электроника — прийти в негодность. Поэтому срок годности каждой конкретной бомбы зависит от её конструкции. Может ли атомная бомба взорваться сама? Крайне маловероятно.
Нейтроны — это нейтральные субатомные частицы, которые могут проникать сквозь твердые объекты и ионизовать атомы, вызывая повреждение биологических тканей и электронных цепей. Нейтронное излучение нейтронной бомбы может убить или вывести из строя людей и животных в радиусе нескольких сотен метров, оставив нетронутыми здания и инфраструктуру. Идея нейтронных бомб заключалась в том, чтобы разработать оружие, которое могло бы нейтрализовать солдат и танки противника, не вызывая массовых разрушений в городах или инфраструктуре. Соединенные Штаты испытали свою первую нейтронную бомбу в 1963 году, но это оружие так и не было развернуто в полевых условиях из-за политических и этических соображений. Однако, как сообщается, Советский Союз произвел и развернул небольшое количество нейтронных бомб во время холодной войны, и несколько других стран, таких как Франция и Китай, также заявили, что обладают ими.
Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. Атомные бомбы основаны на делении ядер и выделяют огромное количество энергии в виде тепла, взрыва и излучения. Водородные бомбы, с другой стороны, основаны на ядерном синтезе и намного мощнее атомных бомб, высвобождая энергию, эквивалентную миллионам тонн тротила. Наконец, нейтронные бомбы предназначены для испускания большого количества нейтронного излучения при минимальных взрывах и тепловых эффектах, что делает их потенциально полезными для военных целей. Однако разработка и развертывание ядерного оружия имеют серьезные этические, политические и экологические последствия.
В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки.
Принцип работы водородной бомбы
Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР | Испытание первой водородной бомбы на Семипалатинском полигоне. |
Водородная бомба и ядерная бомба отличия | Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. |
Непростая бомба
- Водородная бомба | Наука | Дзен
- Принцип работы водородной бомбы » ЯУстал - Источник Хорошего Настроения
- Последствия взрыва водородной бомбы
- Последние материалы
- Водородная бомба | Наука | Дзен
Уроки водородной бомбы для мирного термоядерного синтеза
Водородная бомба - состав и принцип действий | Водородная бомба типа Super получила индекс РДС-6т, а водородная бомба слоеной конфигурации — индекс РДС-6с. |
«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37) | Атомная энергия 2.0 | 55 лет назад Никита Хрущев объявил о создании в СССР водородной бомбы. |
Как работает водородная бомба » Вестник К | Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году. |
Принцип работы водородной бомбы
Расчёты показали, что разлёт не прореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения США испытания « Иви Майк » в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким , Трутневым , Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн «мощного» изделия [12] , доставленная бомбардировщиком Ту-95. Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую [8]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.
Великобритания[ править править код ] В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний , что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации. В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» Операция Схватка. Первым под наименованием «Short Granite» Хрупкий Гранит было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства. В ходе испытания «Orange Herald» Оранжевый вестник была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных не термоядерных бомб.
Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы.
При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности.
Однако вскоре разобрались, что Фукс был разоблачён и прекратил свою деятельность в пользу Советского Союза раньше, чем возникла идея Улама. В радиоактивных продуктах взрыва содержится определённая информация — это известно учёным. К примеру, количество трансурановых элементов, рождённых в результате взаимодействия ядерных и термоядерных нейтронов с тяжёлыми атомами, сильно зависит от того, насколько быстро протекают реакции. Скорость же реакции пропорциональна плотности вещества, и наличие далёких трансуранов может свидетельствовать о высокой степени сжатия. Это теоретически. А на практике дело обстоит следующим образом. Во-первых, трансуранов мало, их улавливание из атмосферного облака — дело хлопотливое и требует большой тщательности. Определённо нет, т. Во-вторых, сведения о сжатии не дают возможности сделать заключение о том, как оно достигнуто, то есть носят косвенный характер. Если бы из анализа радиоактивности последовали тогда глубокие революционные выводы, как представляет себе Г. Бете, то это носило бы характер сенсации. Информация непременно пришла бы к исполнителям в своём первичном виде, так как в самой по себе в ней не содержится для нас элементов секретности. Но тут я со всей определённостью утверждаю, что за всё время наших радиохимических поисков в атмосфере никаких необычных сведений мы не извлекли. Наконец, в-третьих. Так вот, никакого трёхлетнего интервала не было. Максимум год-полтора. Бомба подготавливалась к испытанию сразу в боевом варианте. Вроде того, что американцы богатые: нагромоздили кубометры — и шарахнули, лишь бы произвести эффект. Так всегда была настроена внутренняя наша пропаганда. Всегда говорилось именно так — и никогда по-другому. Я никого не хочу обвинять — может, в той ситуации это было оправданно и разумно. Да, её взорвали на земле, но они всё проверили и подтвердили то, что сумели сделать новую бомбу. К ней было приковано всеобщее внимание, она подготавливалась к испытаниям и была нашей национальной гордостью. В состав атомного заряда включались слои из водородонесущего материала дейтерид лития для усиления деления по схеме деление-синтез-деление. Исходно плотность лёгких и тяжёлых слоёв отличалась в десятки раз. При взрыве, когда материал разогревался и ионизировался, происходило сильное сжатие лёгких слоёв со стороны тяжёлых, что способствовало резкому возрастанию скорости термоядерных реакций. Рассуждали примерно так: есть водородная бомба, чего мы будем ещё какую-то следующую громоздить — с неизвестным исходом и огромной затратой и своих усилий, и материальных средств?! Так что с благословения Зельдовича и Франк-Каменецкого мы это дело прекратили. А уже в августе 1953 года на башне Семипалатинского полигона была успешно испытана первая советская водородная бомба. Подтвердились расчёты, полный триумф. Уже по этой причине испытанный заряд поднимал уровень ядерного оружия на новую ступень. Более того, схема этого заряда допускала создание водородной бомбы мощностью до одной мегатонны. Никто не сомневался в то время, что и дальше мы будем идти по своему, отечественному пути, развивая первый успех. Однако к концу 1953 года, в самый разгар эйфории и, казалось бы, вопреки логике, события стали стремительно развиваться совсем в другом направлении. Такой поворот был неожиданным не только для меня. По-видимому, аналогичное ощущение испытывал и А. Конечно, мне следовало отказаться: сказать, что подобные вещи не делаются с ходу и одним человеком, что необходимо осмотреться, подумать. Но у меня была идея, не слишком оригинальная и удачная, но в тот момент она казалась мне многообещающей. Посоветоваться мне было не с кем. Одно из них обязывало наше Министерство в 1954 amp;ndash;1955 гг. Существенно, что вес заряда, а следовательно, и весь масштаб ракеты был принят на основе моей докладной записки. Это предопределило работу всей огромной конструкторско-производственной организации на долгие годы. Именно эта ракета вывела на орбиту первый искусственный спутник Земли в 1957 г.
10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский
Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях. Из истории создания водородной бомбы в США и СССР. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии.
Как действует водородная бомба и каковы последствия взрыва? Инфографика
Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. Конструкция бомбы состояла из чередующихся сферических слоев делящихся материалов и термоядерного горючего (дейтерий, тритий).
Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами.
Принцип работы водородной бомбы
Например, радиоактивный йод, попавший в детский организм с коровьим молоком, вызывает рак щитовидной железы. Пепел и сажа, выброшенные в атмосферу во время ядерной войны, могут охладить климат, если будет сброшено достаточное количество бомб. Один или два ядерных взрыва не будут иметь глобальных последствий. Но детонация 100 боеприпасов размером с те, что были сброшены на Японию в 1945 году, снизит глобальные температуры до уровня ниже, чем в Малый ледниковый период с 1300 по 1850 год.
Внезапное похолодание может повлиять на сельское хозяйство и снабжение продовольствием. Так, Малый ледниковый период стал причиной неурожая и голода тогда, когда население Земли было в семь раз меньше, чем сейчас. Кстати, ранее ученые решили выяснить, у каких государств больше шансов на выживание во время ядерной зимы.
Подробнее об этом мы писали в материале « Какие пять стран переживут ядерную зиму ». Последствия, очевидно, будут катастрофическими. Поэтому важно не допустить такого сценария.
Так выглядят ядерные взрывы:.
Не годилась и идея британцев — изготовить большой полый шар из сверхкритической массы плутония и поместить капсулу с термоядерным горючим внутрь. Взорвалось сильно — 700 килотонн даже без капсулы. Но бомба сожрала 120 килограммов плутония — это столько, сколько Британия могла произвести за год. Термоядерный заряд должен был располагаться отдельно от инициирующего, соответственно, для осуществления радиационного обжатия требовались решения нетривиальные. В современной конструкции оба заряда — инициирующий и термоядерный — помещаются в заполненную рентгенопрозрачным пластиком общую оболочку из обеднённого урана.
При подрыве ядерного заряда внешняя оболочка, в том числе и её затенённый термоядерной капсулой участок, «освещённый» благодаря рассеянию излучения в пластике, предсказуемо превращается в плазму также излучающую соответствующий своей температуре рентген. И давление направленного внутрь излучения симметрично — именно равномерное давление со всех направлений требует изощрённых методов — обжимает капсулу. Капсула, в свою очередь, для обеспечения равномерного сжатия могла представлять собой цилиндр, усеченный конус, яйцо, — лишь в 80-х удалось добиться равномерного действия излучения, позволяющего использовать капсулы в форме сферы. Внешний её слой, опять-таки, состоит из обеднённого урана, средний из термоядерного горючего, внутренний же из подкритической массы плутония. В результате обжатия плотность плутония увеличивается, критическая масса достигается и происходит второй ядерный взрыв. Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу.
На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться. В качестве горючего используется дейтрид лития-6.
США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования.
К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании.
В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба». Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель.
Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление.
В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб.
Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва.
Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов.
Ядерная бомба — история появления ядерного оружия
Одним из типов ядерного оружия является термоядерное оружие, которое многим из нас более известно под названием водородная бомба. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. 55 лет назад Никита Хрущев объявил о создании в СССР водородной бомбы.