В 2022 году в состав России вошли восемь крупных электростанций совокупной установленной мощностью примерно 15 гигаватт (ГВт), что составляло около 35% от мощности всей украинской электроэнергетики. А теперь посмотрим какие же еще электростанции строятся в России на данный момент. Атомная электростанция — сложный механизм.-3. 35. Чтобы понять, как работает АЭС, обратимся к основам химии. После обнаружения нарушений экологических стандартов, Ириклинская ГРЭС, крупнейшая электростанция в Оренбургской области, была оштрафована за вред, причиненный водохранилищу.
Активно обновляется энергосистема Хабаровского края
Такое решение принято, и в этом году она работает в составе потребителя, то есть на розничном рынке. Это используемое топливо, это энергобаланс, который фактически складывается у предприятия, в составе которого появляется такая электростанция. Поэтому я думаю, что решение будет принято уже ближе к моменту фактического пуска Лушниковской ПГУ. На сегодняшний момент рано об этом говорить. Серьезная программа модернизации этой крупнейшей по мощности в республике станции по известным обстоятельствам была заморожена. Каково будущее станции? И если, допустим, при каких-то худших условиях придется вывести ее из эксплуатации, это насколько будет болезненно для энергосистемы? С точки зрения энергобезопасности, возможности работы энергосистемы станцию можно вывести из эксплуатации. Технически, за счет хороших межсистемных связей, в том числе с соседними энергосистемами, вывод станции не является критичным. Безусловно, незначительные замещающие мероприятия должны будут в таком случае на сетевом уровне выполнены, но эти все вопросы решаемы.
То есть технически это возможно. Но вот с точки зрения экономических последствий, социальных, в том числе занятости местного населения, ведь ГРЭС является градообразующим предприятием для Заинска, вопросы есть. В этом смысле проект модернизации в том виде, в котором он существовал, все эти вопросы решал. Сейчас «Татэнерго» предстоит найти какое-то иное решение. С учетом общей экономической целесообразности, социальных последствий и так далее. На ваш взгляд, нуждается ли Татарстан в дополнительной генерации такого типа? Сейчас на уровне Правительства РФ приняты меры государственной поддержки развития возобновляемой энергетики. Проводятся аукционы и субсидируется строительство соответствующего вида генерации. В этом смысле все зависит от инвесторов — участие в конкурсах ведь добровольное.
А инвесторы в первую очередь оценивают климатический потенциал той или иной территории: ветряные нагрузки, характеристики инсоляции. В Татарстане, насколько мне известно, минимум три крупных игрока рассматривали достаточно большое количество площадок, на которых такие проекты могли бы быть реализованы. Посмотрим — в ближайшее время пройдут новые конкурсы, может быть, мы увидим кого-то из участников. ВИЭ возобновляемые источники энергии хороши с точки зрения экологии, решения задач снижения выбросов, декарбонизации и так далее. Но с системной точки зрения их выработка не гарантирована, а потому с определенного момента времени требуется принятие дополнительных мер — в энергосистеме должны существовать резервы традиционной генерации, которые могут компенсировать нестабильность выработки ВИЭ. Ведь потребителю нужны киловатт-часы всегда, а не только когда подует ветер. И должна быть достаточная пропускная способность сети, поскольку эти резервы могут находиться на каком-то удалении от места, где появляется солнечная или ветряная генерация. В этом смысле чем больше по энергосистеме распределены возобновляемые источники, тем, скажем так, проще бывает провести интеграцию этого вида генерации в энергосистему. На сегодня в России основные объемы ВИЭ все-таки локализуются в ОЭС Юга, и там это уже приводит к определенным сложностям, в частности к ограничению выдачи ветропарков в определенные периоды, когда их киловатт-часы не могут быть потреблены на месте и переданы другим потребителям.
Поэтому когда концентрация ВИЭ становится большой, это приводит к определенного рода, скажем так, технико-экономическим проблемам. То есть нужно либо развивать энергосистему, либо ограничивать их работу. В этом смысле первые проекты, если они появятся в энергосистеме Татарстана и будут не очень большого размера, то существующих возможностей по регулированию здесь хватит для того, чтобы компенсировать такой негарантированный режим их работы. А дальше вопрос уже к инвесторам. Но площадки рассматриваются. Поскольку в центральной части энергосистемы в целом на сегодняшний момент присутствуют определенные избытки мощностей, то с электрической точки зрения строительство АЭС в Татарстане не выглядит оптимальным решением. Но вообще строительство атомной станции — это всегда большой набор вопросов, там свои аргументы бывают как «за», так и «против». Но именно с точки зрения востребованности, наверное, Татарстану в наименьшей степени все-таки это сейчас нужно. Какие специалисты этого вуза востребованы и как они себя проявляют в работе?
Достаточно сказать, что больше половины работников регионального диспетчерского управления РДУ Татарстана — выпускники Казанского государственного энергетического университета КГЭУ. С 2012 года действует программа подготовки магистрантов «Управление режимами электроэнергетических систем», состоялось пять выпусков — в 2014, 2016, 2018, 2020 и 2022 годах. У нас было реализовано и планируется реализовывать много совместных мероприятий с точки зрения вовлечения молодежи — это конференция «Энергетика глазами молодежи», это и визиты, во время которых мы рассказываем студентам, что такое энергетика, что она разная, это не только электростанции.
Как мы знаем, сложным вопросом научно-технологического развития на современном этапе является трансфер научных открытий в производство. В нашем регионе есть несколько успешных примеров решения этой задачи — стартапов, превративших научные знания в работающий бизнес.
Это результат целенаправленной работы, ведущейся в Новосибирской области по решению этой ключевой проблемы современной отечественной науки и технологии», — заявил Андрей Травников. Необходимо максимально использовать интеллектуальный и кадровый потенциал региона для создания прорывных продуктов и технологий. Как государственный институт развития мы должны предложить отечественным ученым и высокотехнологичному бизнесу набор эффективных инвестиционных и инфраструктурных инструментов, которые бы обеспечили превращение научно-технологических разработок в востребованный продукт и продвижение его на глобальные рынки», — отметил Сергей Куликов.
Второй — электросетевое хозяйство, электрические подстанции с гаммой различного оборудования, а также линии электропередачи, соединяющие электростанции и потребители. Третий элемент — организации, управляющие процессом производства и распределения электроэнергии. Однако это наследство досталось в разном состоянии, а их работа зависит не только от конфигурации линии фронта и физического состояния станций, но и от расположения линий электропередачи и электроподстанций. Только первые две обеспечивали потребности республики все эти годы, а потому на них три года назад провели первый за 40 лет капитальный ремонт. На этот год на его продолжение федеральная власть выделила 2 млрд рублей. Там при пожаре была повреждена часть энергоблоков, в ходе боев станция сильно пострадала, а трудовой коллектив разбежался.
Изначально ее планировали перезапустить к середине 2023 года, однако так и не запустили: выдавать электроэнергию ей некуда из-за уходящих на Украину линий электропередачи. Мироновская ТЭС очень старая и в последние годы перед началом СВО работала в режиме котельной, производя тепло, а не электроэнергию. Власти ДНР пытались её восстановить, однако прогресс был остановлен метким прилётом артиллерийского снаряда на территорию электроподстанции. Вопрос с запуском станции теперь решается на федеральном уровне, и он может случиться, если начнётся восстановление Артёмовска и Соледара. ЛуТЭС в период с 2017 по 2022 год обеспечивала подконтрольную киевской власти часть Луганской области, которая на время превратилась в энергоостров. В это время в ЛНР был жёсткий кризис с электричеством, так как связи с энергосистемой ДНР у республики не было — линии передачи и подстанции остались на подконтрольной Украине территории, а перетоки из России не позволяли покрыть все потребности республики в силу неразвитости сетей. Но уже в мае 2022 года ЛуТЭС разминировали и перезапустили часть газовых блоков, а к осени 2023 года в работу пойдут и угольные. Таким образом республики к началу СВО уже были в целом интегрированы в единую энергосистему России, хотя расчёты за электроэнергию внутри них проводились в изолированном режиме. Перетоки извне ежегодной стоимостью около 3,5 млрд рублей считались технологическими потерями и перекрывались за счёт промышленных потребителей.
С Запорожской и Херсонской областями дела обстоят несколько сложнее.
На ней показаны и выводы блоков, и вводы новых по планам генсхемы, которые я дополнил свежей информацией как по срокам, так и по новым объектам. Да, какие-то сроки сдвинутся, но в целом картинка дает понимание перспектив и динамику. Скачки на графике вызваны тем, что многие вводы новых блоков я сместил на конец пятилетних интервалов, прописанных в планах генсхемы. В реальности все, конечно, будет плавнее. По диаграмме хорошо видно, как и говорил Александр Локшин, что где-то до 2030 года будут компенсированы выбывающие мощности, а затем начнется прирост мощностей и рост доли атомной генерации. Таким образом, уже озвученные и прописанные в действующих документах планы включают в себя строительство к 2035 году почти 17 ГВт новых мощностей, включая блоки на новых площадках — в Костромской, Нижегородской области, Якутии и на Чукотке. Отмечу, кстати, что промышленность такие объемы вполне сможет потянуть, поскольку за прошлые 15 лет Росатом суммарно в мире построил не меньше мощностей. Так что реализация этих планов — это вопрос экономики, а не техники. Этих 17 ГВт новых мощностей вполне хватит для замещения того что будет закрыто не только к 2035 году, но и к 2045 году, к которому суммарно закроется 13,5 ГВт.
Так что действующая генеральная схема уже содержит запас мощности и отвечает поставленным целям. Думаю стоит добавить, что скорее всего она составлялась 7-8 лет назад с расчетом на более оптимистичный рост экономики и электроэнергетики, Просто сейчас эти же планы приходятся кстати с учетом новой повестки низкоуглеродного энергоперехода. Описанные выше планы оказываются даже более масштабными, чем цифры, названные Лихачевым о вводе около 16 новых блоков до 2035 года. В октябре Лихачев также говорил, что в правительстве уже «согласовали строительство порядка 10 крупных энергоблоков в период до 2035 г». Надеюсь речь тут идет лишь о тех блоках, которые согласованы и в которых уже есть уверенность. А обновленная стратегия размещения атомных мощностей будет не меньше, чем действующая. Горизонт планирования тут очень далекий, конкретных планов строительства, на такие сроки нигде нет. Так что по большому счету тут пока можно только фантазировать о том, что это буду за блоки и где, равно как и о том что именно такая мощность в итоге понадобится. Карта действующих и возможных АЭС в центральной России. Если с учетом роста экономики и атомной генерации будет необходимость крупного строительства на новых площадках, то это могут быть площадки, уже появлявшиеся в более ранних версиях генсхем за последние годы.
Например, в схеме ввода энергообъектов от 2016 года. Там упоминались Татарская АЭС пос. Озерск с еще одним БН-1200. Сейчас же большие чиновники еще заговорили и о проекте Приморской АЭС. Я собрал всю актуальную информацию по действующим, планируемым и потенциальным площадкам размещения АЭС на показанных картах. Инфографика Дмитрия Горчакова Все это, кстати, как и Костромская с Нижегородской, старые площадки, определенные еще в советские времена. На некоторых из них когда-то давно уже даже начиналось строительство. Я упоминал многие из них в своем большом обзоре всех АЭС России. Но я пока лишь говорю о потенциальных площадках, которые фигурируют в конкретных планах и документах или о которых сейчас говорят официальные лица. Тут сложность прогнозирования касается и прогноза общей выработки электроэнергии в стране к 2040-2045 году, от которой и надо будет считать эту долю.
Давайте для грубых расчетов предположим, что к 2045 г. Пренебрегая ростом КИУМ прикинем, что это соответствует и приросту мощности в 1,5 раза, то есть с нынешних 29,5 до 44 ГВт.
Торжественный старт производства реактора для венгерской АЭС «Пакш» дали в Петербурге
Сейчас на Нововоронежской АЭС функционируют четыре энергоблока (№ 4, 5, 6 и 7) общей электрической мощностью 3778 МВт. Плавучие солнечные электростанции в Германии по-прежнему остаются редкостью и, как правило, имеют небольшие размеры. "Росатом" планирует строить на Урале, в Сибири и на Дальнем Востоке энергоблоки АЭС средней мощности по 600 МВт, конкретный проект такого блока намечено выбрать РИА Новости, 29.04.2023. В состав компании на правах филиалов входят 11 действующих АЭС, на которых в эксплуатации находятся 37 энергоблоков суммарной установленной мощностью свыше 29,5 ГВт.
На энергоблоке № 4 АЭС «Аккую» завершено бетонирование фундаментной плиты здания реактора
Такое поручение было дано Госкорпорации «Росатом» Президентом России. Развитие атомных технологий, строительство новых блоков АЭС в России — это новые рабочие места, повышение качества жизни людей в городах-спутниках атомных станций. Россия продолжает обеспечивать стабильную энергетическую безопасность. Отечественный топливно-энергетический комплекс работает на повышение конкурентоспособности национальной экономики, на улучшение качества жизни граждан, способствует развитию и благоустройству регионов страны, городов, поселков.
Новоленскую ТЭС построят в 15 км от города Ленска. Ее установленная мощность будет 550 МВт, она станет второй по мощности тепловой электростанцией Якутии. Газ для нее будет поступать со Среднеботуобинского месторождения.
Турбины для электростанции поставит Уральский турбинный завод, генераторы — «Силамаш», рабочая и конструкторская документация на котельное оборудование разработана компанией «Интер РАО — инжиниринг».
Но чем выше надёжность, тем больше за неё в итоге платит потребитель. В энергосистеме экономически нецелесообразно иметь как «сверхнизкий», так и «сверхвысокий» уровень надёжности. В обоих случаях страдают потребители: в первом — от частых отключений, ущербов и отсутствия нормальных условий развития, во втором — от высокой финансовой нагрузки. Расчёт балансовой надёжности позволяет оцифровать планируемое состояние энергосистемы с точки зрения вероятности отключения потребителей. Наша энергосистема — не «медная доска», её нельзя представить моделью, в которой вся мощность свободно передаётся между любыми её частями: она включает энергорайоны, которые имеют ограниченные возможности приёма и передачи. В этой связи крайне важно, чтобы расчётная модель, используемая для расчётов балансовой надежности, как можно более точно отражала реальные параметры функционирования энергосистемы.
Модель, которую использует «Системный оператор», достаточно подробна. Она включает в себя порядка 100 зон надёжности — энергорайонов, для каждого из которых отдельно считается вероятность бездефицитной работы. Такая подробная модель позволяет выявлять как территории, где существуют локальные проблемы с электроэнергетическим балансом и необходимо принятие решения о строительстве новых сетей или новых генерирующих мощностей, так и территории, где объём генерирующих мощностей заведомо избыточен и, соответственно, возможен вывод невостребованных мощностей. Сформировать расчётную модель и выполнить расчёты балансовой надёжности — это инженерная задача. В «Системном операторе» есть для этого все необходимые ресурсы и компетенции. Определение нормативных уровней надёжности — это уже вопрос технико-экономической политики государства. Задача состоит в том, чтобы найти оптимум, который с одной стороны не приведет к негативным последствиям для экономики страны в целом из-за ограничений электропотребления, а с другой — не будет перегружать экономику затратами на поддержание избыточной надёжности инфраструктуры.
В настоящее время идёт формирование нормативной базы в области вопросов балансовой надёжности. Первым стал приказ Минэнерго РФ от 30. На мой взгляд, именно принципы вероятностной оценки, формируемой на основании статистических и прогнозируемых параметров работы оборудования, являются наиболее корректным методом определения нормативных значений резервов в энергосистеме для любых видов долгосрочного планирования. Напомню, что в марте 2018 года «Системный оператор» провёл конкурентный отбор мощности новой генерации, по результатам которого в Юго-Западном энергорайоне Краснодарского края должна быть введена в работу новая электростанция с ПГУ-энергоблоками — ТЭС Ударная мощностью 500 МВт. Решают эти масштабные вводы ВИЭ проблему дефицита мощности? Ответ — нет. Ввод даже существенных объёмов новых объектов ВИЭ не оказывает значимого влияния на обеспечение надёжности.
Объекты ВИЭ — это замечательный источник чистой «зелёной» электроэнергии. Ключевое слово здесь — «электроэнергия». Чем больше в энергосистеме объектов ВИЭ, тем большую долю в балансе электроэнергии они будут занимать. В балансе мощности ситуация принципиально иная. Пример даже одного дня наглядно показывает, что при формировании баланса мощности бессмысленно учитывать установленную мощность объектов ВИЭ. Какой уровень мощности ВИЭ может быть учтён в балансе мощности? Тот, который может быть гарантированно обеспечен.
Как мы видим, для СЭС на сегодняшний день это ноль, для ВЭС расчёт на основе вероятностного подхода показывает, что мы можем рассчитывать на уровень загрузки порядка нескольких процентов от их установленной мощности. Что касается вопроса ограничений выработки электроэнергии, то, на мой взгляд, здесь больше мифов и абстрактных рассуждений, чем реальных оценок масштаба проблемы. В любой точке энергосистемы можно построить любое количество объектов ВИЭ. Вопрос в том, какую часть их выработки сможет принять энергосистема? И это вопрос прежде всего экономический, а не технологический. В предельном случае объект генерации может быть построен на территории, где включение объектов ВИЭ будет в принципе невозможно без реализации значительных мероприятий по развитию сети. Если инвестор реализует проект по вводу объекта ВИЭ за счёт собственных средств, все риски, в том числе что его выработка не будет принята энергосистемой, — это его собственные риски.
Для объектов ВИЭ, строительство которых оплачивается на рынке мощности через механизм ДПМ, правилами оптового рынка предусмотрены механизмы, исключающие оплату мощности простаивающих объектов. В странах с большой долей ВИЭ ограничение выработки солнечных и ветровых электростанций является нормальной практикой управления режимом работы энергосистемы. У нас же не вызывает вопросов необходимость разгрузки тепловых электростанций и гидроэлектростанций в период прохождения ночного минимума нагрузки. Другой вопрос, что территорий, где одновременно с высокой инсоляцией или устойчивой ветровой нагрузкой существует развитая сетевая инфраструктура, не так много. Если при реализации программы поддержки выработка объектов ВИЭ замещает выработку низкоэффективных тепловых электростанций, то мы можем говорить, что программа эффективна как минимум с точки зрения снижения выбросов. Если же выработка новых объектов ВИЭ будет замещать выработку АЭС, ГЭС, ранее построенных солнечных и ветровых электростанций, то вряд ли такую программу мы сможем назвать эффективной. Чтобы такого не случилось, необходимо создать стимулы для разумного территориального размещения объектов.
Одним из таких стимулов является предлагаемый нами подход к распределению выработки между объектами ВИЭ при наличии ограничений. В первую очередь предлагается разгружать последние введённые объекты. Чем позже ты пришел на территорию, тем выше твои риски снижения выработки. Если в энергорайоне на данный момент нет ограничений — хорошо, если есть, то инвестор должен взвесить, что ему выгоднее — построить объект именно на этой территории с хорошими метеоусловиями и рисками снижения выработки или найти другую площадку без рисков регулярных ограничений. При какой доле ВИЭ понадобится перенастройка работы объединённых или, возможно, Единой энергосистемы?
Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит. Но наилучшим замедлителем является тяжелая вода D2O. Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые на тепловых нейтронах и быстрые на быстрых нейтронах.
Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах. Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, — хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец. Кроме того, в быстрых реакторах используется и другое топливо — уран-238 и торий-232.
Причем уран-238 гораздо чаще встречается в природе, чем его «собрат» уран-235. Строительство атомных электростанций с реакторами на быстрых нейтронах способно значительно расширить топливную базу ядерной энергетики. Для того чтобы предотвратить попадание нейтронов в окружающую среду, активная зона реактора окружается отражателем. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях. Кроме того, наличие отражателя необходимо для повышения эффективности использования ядерного топлива, так как отражатель возвращает назад в активную зону часть вылетевших из зоны нейтронов. Парогенератор Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины. Применяются парогенераторы на двух- и трехконтурных АЭС.
На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами — японская АЭС «Фукусима-1». В современных реакторах типа ВВЭР водо-водяной энергетический реактор — они являются основой мировой атомной энергетики давление в первом контуре достигает 160 атмосфер. Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. Эта вода, которая находится под гораздо меньшим давлением половина давления первого контура и менее , поэтому она закипает.
На энергоблоке № 4 АЭС «Аккую» завершено бетонирование фундаментной плиты здания реактора
В 2022 году в состав России вошли восемь крупных электростанций совокупной установленной мощностью примерно 15 гигаватт (ГВт), что составляло около 35% от мощности всей украинской электроэнергетики. В портфеле зарубежных заказов на АЭС – 33 проекта в 10 странах мира, 22 из них – в стадии сооружения. Новости по запросу: электростанция. "Росатом" планирует строить на Урале, в Сибири и на Дальнем Востоке энергоблоки АЭС средней мощности по 600 МВт, конкретный проект такого блока намечено выбрать РИА Новости, 29.04.2023. поиск по новостям. Для производства гибридных электростанций компания использует дизельные генераторы от Новосибирского завода генераторных установок, литиевые батареи китайского производства, а также специальную программу для интеллектуального управления зарядом и расходом энергии.
Александр Ильенко: «Ограничение выработки СЭС и ВЭС является нормальной практикой»
Белоярская АЭС расширит взаимодействие с научными институтами Пермского федерального исследовательского центра УрО РАН. Электростанция состоит из двух газовых турбин SGT-800 Siemens мощностью 45 МВт каждая, работающих по простому термодинамическому циклу. Как раз работа в составе «большой» ЕЭС позволяет наиболее эффективно вырабатывать электроэнергию на тех электростанциях, которые в настоящий момент работают в сети и готовы нести нагрузку. ли Россия строить АЭС в Казахстане, раз российской стороне передали строительство ТЭЦ."Это параллельные проекты. После обнаружения нарушений экологических стандартов, Ириклинская ГРЭС, крупнейшая электростанция в Оренбургской области, была оштрафована за вред, причиненный водохранилищу. 17. Ионная электростанция по п. 1, характеризующаяся возможностью использования в электролите хлористоводородной кислоты (HCl).
Новая АЭС: что известно о перспективах строительства электростанции в Норильске
Установленная мощность электростанций, входящих в состав группы составляет более 38 ГВт. Установленная мощность электростанций, входящих в состав "РусГидро", включая Богучанскую ГЭС, составляет более 38 ГВт. Новости по запросу: электростанция. Уровень удельной выработки электростанции — 1 400 кВт•ч / кВт пик — один из самых высоких в России. «Росатом» построит плавучие электростанции для Приморского края «Росатом» планирует к 2029 году построить для Приморского края первую плавучую электростанцию. газопоршневая установка Hunan Liyu Gas Power, электростанция 1.5 МВт. Компания «Электросистемы» выполнила необходимые доработки для объединения системы управления всеми тремя ГПУ в общую АСУ, синхронизации всех трех ГПУ по электроснабжению и.
Коломзавод изготовил двигатель для Курской АЭС-2
На информационном ресурсе применяются рекомендательные технологии. Сетевое издание «МК в Новосибирске» novos. Новосибирск, ул.
Причина — выбытие мощностей", — сказал Петров, слова которого приводит официальное издание российской атомной отрасли "Страна Росатом". Кроме того, на российских энергоблоках с ядерными реакторами РБМК ведутся ремонты, связанные с восстановлением ресурсных характеристик реакторов. Сейчас в первый раз такие работы начинаются на Смоленской станции", — отметил гендиректор "Росэнергоатома". В российском посольстве рассказали о реализации проекта АЭС "Руппур" 15 февраля 2023, 09:46 "В связи с этим у нас крайне напряженные задачи по выработке электроэнергии в наступившем году: целевой показатель — 216 миллиардов киловатт-часов, верхний уровень, к которому будем стремиться, — 218,8 миллиардов киловатт-часов", — резюмировал Петров.
Что и происходит. Все электростанции, которые работают на ОРЭМ, за исключением электростанций промышленных потребителей, продают все свои киловатт-часы именно на оптовый рынок. И потом уже с оптового рынка конечные потребители и сбытовые компании приобретают эту электроэнергию. В этом смысле закупки электричества извне — это вопрос не технического обеспечения электроэнергией конечных потребителей в республике. Это вопрос наиболее экономически эффективного способа покрыть потребности потребителей в киловатт-часах. Но это говорит лишь о том, что эта разница была приобретена на оптовом рынке, а фактически выработана иными, более эффективными электростанциями. Когда я говорил, что на казанских ТЭЦ, после того как на них построили ПГУ, вырос коэффициент использования установленной мощности, я говорил именно о таком эффекте. Наиболее эффективное оборудование работает больше времени. Менее эффективное, в том числе конденсационные блоки, чаще находится в резерве. Но при этом оно готово включиться в сеть, если это будет нужно для обеспечения баланса спроса и предложения. В этом смысле ставить задачу самобалансирования энергосистемы Татарстана экономически бессмысленно. Нужно ставить задачу, чтобы технически энергосистема была обеспечена электроэнергией с необходимым уровнем резервирования при всех возможных рисках, которые существуют. Это вопрос технический, это вопрос энергобезопасности. А дальше, поскольку мы находимся в едином экономическом пространстве, чем более эффективно можно использовать имеющуюся в масштабах энергосистемы генерацию, тем лучше будет для потребителя. Принято ли уже решение, как она будет работать — на опт или на розницу? Такое решение принято, и в этом году она работает в составе потребителя, то есть на розничном рынке. Это используемое топливо, это энергобаланс, который фактически складывается у предприятия, в составе которого появляется такая электростанция. Поэтому я думаю, что решение будет принято уже ближе к моменту фактического пуска Лушниковской ПГУ. На сегодняшний момент рано об этом говорить. Серьезная программа модернизации этой крупнейшей по мощности в республике станции по известным обстоятельствам была заморожена. Каково будущее станции? И если, допустим, при каких-то худших условиях придется вывести ее из эксплуатации, это насколько будет болезненно для энергосистемы? С точки зрения энергобезопасности, возможности работы энергосистемы станцию можно вывести из эксплуатации. Технически, за счет хороших межсистемных связей, в том числе с соседними энергосистемами, вывод станции не является критичным. Безусловно, незначительные замещающие мероприятия должны будут в таком случае на сетевом уровне выполнены, но эти все вопросы решаемы. То есть технически это возможно. Но вот с точки зрения экономических последствий, социальных, в том числе занятости местного населения, ведь ГРЭС является градообразующим предприятием для Заинска, вопросы есть. В этом смысле проект модернизации в том виде, в котором он существовал, все эти вопросы решал. Сейчас «Татэнерго» предстоит найти какое-то иное решение. С учетом общей экономической целесообразности, социальных последствий и так далее. На ваш взгляд, нуждается ли Татарстан в дополнительной генерации такого типа? Сейчас на уровне Правительства РФ приняты меры государственной поддержки развития возобновляемой энергетики. Проводятся аукционы и субсидируется строительство соответствующего вида генерации. В этом смысле все зависит от инвесторов — участие в конкурсах ведь добровольное. А инвесторы в первую очередь оценивают климатический потенциал той или иной территории: ветряные нагрузки, характеристики инсоляции. В Татарстане, насколько мне известно, минимум три крупных игрока рассматривали достаточно большое количество площадок, на которых такие проекты могли бы быть реализованы. Посмотрим — в ближайшее время пройдут новые конкурсы, может быть, мы увидим кого-то из участников. ВИЭ возобновляемые источники энергии хороши с точки зрения экологии, решения задач снижения выбросов, декарбонизации и так далее. Но с системной точки зрения их выработка не гарантирована, а потому с определенного момента времени требуется принятие дополнительных мер — в энергосистеме должны существовать резервы традиционной генерации, которые могут компенсировать нестабильность выработки ВИЭ. Ведь потребителю нужны киловатт-часы всегда, а не только когда подует ветер.
Адрес редакции: 140411, г. Коломна, пр-т Кирова, д. Доменное имя сайта в информационно-телекоммуникационной сети «Интернет» для сетевого издания : kolomna-spravka. Примерная тематика и или специализация: Общественно-информационная, реклама в соответствии с законодательством Российской Федерации о рекламе. Форма периодического распространения вид - для периодического печатного издания : сетевое издание.
В Новосибирске создан прототип аккумулирующей электростанции будущего
Подробнее о достижениях уральских атомщиков и перспективах станции — в материале ЕАН. Именно последний уже год работает на новом топливе. Это продукты, которые остаются от работы классических атомных станций и отходов обогатительных производств. Каждый раз добавлялась новая партия топлива, оценивались нейтронно-физические характеристики, подтверждались проектные значения. Все прошло в штатном режиме.
Теперь то, что в понимании всего мира является отходами, для нас является исходным топливом», - заверил он.
Но они существенно меньше, чем арифметическая разница указанных цифр. Не будем забывать, что в составе этих 245 ГВт есть установленная мощность солнечных электростанций, вклад которых в покрытие декабрьского вечернего максимума нагрузки будет равен нулю, ветровых электростанций, фактическая нагрузка которых, как правило, существенно ниже установленной. Фактическая мощность гидроэлектростанций зависит от напора, условий ледостава и иных ограничений в конкретный год, мощность ТЭЦ с определённым оборудованием — от наличия тепловых нагрузок, а на атомных станциях необходимо производить перезагрузку топлива. Для любого вида оборудования требуется проведение ремонтов. Все эти факторы приводят к тому, что реальная мощность оборудования, готового к несению нагрузки, ниже установленной. Объём такого снижения является существенным. Максимальных значений он достигает в период летней ремонтной кампании. Так, например, в июле 2021 года средняя за месяц величина снижения мощности составляла 62,7 ГВт.
Но и в зимний период объём снижений достаточно высок — так, в январе 2021 года он составил 24,2 ГВт. Следует отметить, что в последние годы и температуры, при которых ЕЭС России проходит годовые пики потребления, далеки от наиболее низких температур, регистрировавшихся в предшествующие годы, соответственно, и уровень потребления мощности был ниже потенциально возможного. Некорректный учёт вышеуказанных факторов может привести к невозможности обеспечения электроснабжения потребителей. Поэтому необходимо иметь методику расчёта резервов, учитывающую указанные факторы. В настоящее время «Системный оператор» ведёт работу по имплементации подхода по расчёту необходимой величины резерва на основании расчёта балансовой надежности. Предполагается включение этой нормы в новую редакцию методических указаний по проектированию развития энергосистем. Это позволит нам, исходя из актуальных параметров работы энергосистемы, отвечать на вопрос, достаточно или нет генерирующих мощностей в конкретном энергорайоне или в целом по ЕЭС для покрытия потребления с заданной вероятностью. Принципиально важным является указание на заданную вероятность. Чем большими резервами обладает энергосистема, тем выше её надежность и меньше вероятность отключения потребителей.
Но чем выше надёжность, тем больше за неё в итоге платит потребитель. В энергосистеме экономически нецелесообразно иметь как «сверхнизкий», так и «сверхвысокий» уровень надёжности. В обоих случаях страдают потребители: в первом — от частых отключений, ущербов и отсутствия нормальных условий развития, во втором — от высокой финансовой нагрузки. Расчёт балансовой надёжности позволяет оцифровать планируемое состояние энергосистемы с точки зрения вероятности отключения потребителей. Наша энергосистема — не «медная доска», её нельзя представить моделью, в которой вся мощность свободно передаётся между любыми её частями: она включает энергорайоны, которые имеют ограниченные возможности приёма и передачи. В этой связи крайне важно, чтобы расчётная модель, используемая для расчётов балансовой надежности, как можно более точно отражала реальные параметры функционирования энергосистемы. Модель, которую использует «Системный оператор», достаточно подробна. Она включает в себя порядка 100 зон надёжности — энергорайонов, для каждого из которых отдельно считается вероятность бездефицитной работы. Такая подробная модель позволяет выявлять как территории, где существуют локальные проблемы с электроэнергетическим балансом и необходимо принятие решения о строительстве новых сетей или новых генерирующих мощностей, так и территории, где объём генерирующих мощностей заведомо избыточен и, соответственно, возможен вывод невостребованных мощностей.
Сформировать расчётную модель и выполнить расчёты балансовой надёжности — это инженерная задача. В «Системном операторе» есть для этого все необходимые ресурсы и компетенции. Определение нормативных уровней надёжности — это уже вопрос технико-экономической политики государства. Задача состоит в том, чтобы найти оптимум, который с одной стороны не приведет к негативным последствиям для экономики страны в целом из-за ограничений электропотребления, а с другой — не будет перегружать экономику затратами на поддержание избыточной надёжности инфраструктуры. В настоящее время идёт формирование нормативной базы в области вопросов балансовой надёжности. Первым стал приказ Минэнерго РФ от 30. На мой взгляд, именно принципы вероятностной оценки, формируемой на основании статистических и прогнозируемых параметров работы оборудования, являются наиболее корректным методом определения нормативных значений резервов в энергосистеме для любых видов долгосрочного планирования. Напомню, что в марте 2018 года «Системный оператор» провёл конкурентный отбор мощности новой генерации, по результатам которого в Юго-Западном энергорайоне Краснодарского края должна быть введена в работу новая электростанция с ПГУ-энергоблоками — ТЭС Ударная мощностью 500 МВт. Решают эти масштабные вводы ВИЭ проблему дефицита мощности?
Ответ — нет. Ввод даже существенных объёмов новых объектов ВИЭ не оказывает значимого влияния на обеспечение надёжности. Объекты ВИЭ — это замечательный источник чистой «зелёной» электроэнергии. Ключевое слово здесь — «электроэнергия». Чем больше в энергосистеме объектов ВИЭ, тем большую долю в балансе электроэнергии они будут занимать. В балансе мощности ситуация принципиально иная. Пример даже одного дня наглядно показывает, что при формировании баланса мощности бессмысленно учитывать установленную мощность объектов ВИЭ. Какой уровень мощности ВИЭ может быть учтён в балансе мощности? Тот, который может быть гарантированно обеспечен.
Как мы видим, для СЭС на сегодняшний день это ноль, для ВЭС расчёт на основе вероятностного подхода показывает, что мы можем рассчитывать на уровень загрузки порядка нескольких процентов от их установленной мощности. Что касается вопроса ограничений выработки электроэнергии, то, на мой взгляд, здесь больше мифов и абстрактных рассуждений, чем реальных оценок масштаба проблемы.
Начинается реакция — атомные ядра дробятся на части. При расщеплении атомного ядра выделяется тепло. Его избыток нужно отвести, и с этой задачей справляется теплоноситель — жидкое или газообразное вещество, которое проходит через активную зону. Здесь находится система управления и защиты, которая следит за тем, как протекает реакция, и может остановить её, если что-то пойдёт не по плану. Снаружи — корпус реактора: герметичная оболочка из бетона, которая выдерживает любую внешнюю угрозу, например землетрясение, ураган, пыльную бурю, пикирующий самолёт. Тепловую энергию, возникающую во время реакции, перегоняют в турбинный зал, где парогенератор, внешне похожий на огромную бочку, превращает её в водяной пар.
Падая с высоты, как в обычном душе, часть воды испаряется, происходит необходимое охлаждение. Но не все АЭС с градирнями — это лишь один из способов охладить системы станции.
Проект возведения восьмого энергоблока в Нововоронеже уже включен в Федеральную программу развития ядерной энергетики до 2045 года. Но в отличие от генеральной схемы размещения новых блоков до 2035 года, в долгосрочной программе возможны корректировки. Логично встает вопрос о замещении выбывающих мощностей за счет ввода в эксплуатацию новых.
Любое развитие предполагает, что технологии сделали свое дело, обеспечили научно-техническую базу, и теперь дело за новыми инновационными энергоблоками». Однако этого недостаточно для реализации стратегической цели Воронежского региона войти в топ-20 лидеров по темпам промышленного развития. Сейчас в области идет строительство новых производственных предприятий в особой экономической зоне «Центр» и на территории индустриального парка «Масловский», что ведет к росту энергопотребления. Залог дальнейшего развития промышленности — наличие избытка энергомощностей. Руководство региона это понимает, поэтому считает целесообразным возведение сразу двух энергоблоков.
Причем заверяет о готовности приступить к реализации проекта по строительству даже ранее запланированного срока, в 2025 году. Безусловно, одного желания в этом случае мало, требуется серьезное экономическое обоснование инвестиций.