«Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. Хорошие новости продолжают поступать в области исследований ядерного синтеза.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
Холодный синтез. Миф или лженаука? | Живой Космос | Дзен | Реакции термоядерного синтеза не выделяют ни углерода, ни радиоактивных отходов с долгим периодом полураспада, а небольшая чашка водородного топлива теоретически может питать дом в течение сотен лет. |
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака | Лабораторный реактор холодного термоядерного синтеза. |
Холодный синтез: миф и реальность | Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска. |
Холодный синтез. Миф или лженаука? | Живой Космос | Дзен | Во вторник 13 декабря 2022 года учёные, исследующие термоядерный синтез в Ливерморской национальной лаборатории, объявили о достижении долгожданного этапа приручения этого типа энергии. |
Регистрация
- Холодный ядерный синтез — Википедия
- Прорыв в термоядерном синтезе
- Что не так с «японским ученым» и его холодным термоядом
- Прорыв в термоядерном синтезе - Телеканал "Наука"
- Холодный синтез: желаемое или действительное?
- Холодный синтез: желаемое или действительное?
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи. Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза».
Ломоносова см. An Experiment in Reducing the Radioactivity of Radionuclide 137Cs with Multi-component Microorganisms of 10 Strains , в Индии была восстановлена государственная программа по холодному ядерному синтезу, а в рамках подготовки программы развития новых технологий ЕС по итогам конкурса были отобраны более 50 проектов по холодному ядерному синтезу и многое-многое другое.
К 2019 году были опубликованы документально подтвержденные результаты расследований, которые показали откровенно политизированный характер травли Мартина Флейшмана, Стенли Понса и других исследователей холодного синтеза, главными мотивами которых были финансовые интересы и зависть. Более того, как показала прошедшая в Москве 23 марта 2019 года мемориальная конференция «Холодному синтезу — 30 лет: итоги и перспективы», в которой приняли участие известные российские исследователи, уже в начале 1990-х годов вопрос о реальности феномена холодного ядерного синтеза не стоял, так как надежные подтверждения его существования были получены ещё в советское время в ведущих научных центрах Министерства среднего машиностроения и Академии наук СССР. Для Государственного комитета по науке и технике в 1990 году академиками А. Барабошкиным и Б. Дерягиным был разработан проект государственной программы по исследованию холодного синтеза, которая не была реализована из-за распада СССР. Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку.
Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача.
Мир сталкивается с ускоряющимся изменением климата, потерей биоразнообразия, деградацией естественной среды обитания в сочетании с экономическими, социальными и политическими кризисами. Мир, на который возлагаются большие надежды после пандемии COVID-19, является полной противоположностью. Дик Уиллис из Бристольского университета говорит: "У нас есть всего несколько лет, чтобы внести изменения, необходимые для того, чтобы избежать социальной катастрофы того, что происходит с биосферой, если, конечно, еще не слишком поздно. Даже оптимисты понимают, что пройдут десятилетия, прежде чем термоядерная энергия сможет внести свой вклад в энергосистему, каким бы ни было это достижение". Он с горечью добавляет: "Между тем, заголовки, которые последовали за этим результатом, просто успокаивают и отвлекают от срочности того, что необходимо сделать сейчас". Технологический прорыв, о котором было объявлено в начале этого месяца, был достигнут Национальным центром зажигания США в Ливерморской национальной лаборатории имени Лоуренса. В данном случае, по мнению Марка Дизендорфа, опасность, связанная с этими "чистыми и безопасными" энергетическими исследованиями, недвусмысленна. Проще говоря, будущие термоядерные реакторы могут предоставить военным державам новые способы получения сырья для ядерных бомб.
Новая эра началась? Термоядерный синтез — это процесс, который происходит в звездах, в том числе в нашем Солнце. В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени.
Холодный синтез: миф и реальность
По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США. Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном.
Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн.
Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».
В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина. Процесс длится доли пикосекунды 10—12 с. В общем, получается 500 тысяч нейтронов в секунду. Это много с точки зрения физики явления, но этого мало, чтобы это было термоядерным реактором».
Как бы там ни было, по словам Роберта Нигматулина, он продолжает теоретические исследования в этой области и есть идеи, как повысить выход нейтронов в пузырьковом термояде. Нет денег на проведение экспериментов. Как отмечал польский философ и футуролог Станислав Лем в своем трактате «Сумма технологий» 1964 , «Без сомнения, ученым придется сначала «воспитать» целое поколение руководителей, которые согласятся достаточно глубоко залезть в государственный карман, и притом для достижения целей, столь подозрительно напоминающих традиционную тематику научной фантастики». Пузырьковому термояду в этом смысле не повезло: до него додумались, когда основные государственные бюджеты уже были поделены между токамаками и лазерным термоядом.
В любом случае отметим еще раз этапное достижение ученых, полученное на установке NIF.
Исследования показали, что рост культуры идет неоднородно. В отдельных участках образуется потенциальные ямы, в которых на короткое время снимается кулоновский барьер, препятствующий слиянию ядра атома и протона. В таком состоянии становиться возможной трансмутация. Самое перспективное направление этой технологии — производство сверхредких и сверхдорогих тяжелых изотопов и ускоренная биологическая дезактивация опасных радиоактивных загрязнений.
Так в опытах Высоцкого с цезием 137 в Чернобыле период его полураспада до стабильного изотопа бария 138 удалось снизить, внимание, с 30 лет до 310 дней, то есть более, чем в 23 раз. Результаты абсолютно достоверные и опубликованы в научном журнале «Энерсофтнукэнерджи». Сегодня проектом живо интересуются в Индии и Японии, где на складах Фокусимы скопилось более миллиона тонн радиоактивной воды, но перспективы его признания лабораториями и корпорациями, синтезирующими редкие изотопы на миллиарды долларов традиционным путем, выглядят не слишком радужно. Холодный ядерный синтез 23 марта 1989 года ученые из университета Юты Флешмен и Полц объявили о получении аномально высокого тепла в ходе ядерной реакции, проводимой без использования сверхвысоких температур и энергии. Но опыта были признаны невоспроизводимыми.
Основной вопрос современности — где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные тем или иным методом более крупные или тяжелые ядра атомов химических элементов. Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается фото 3 , превращаясь в протон.
Фото 3. Распад нейтрона Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, то есть охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада 10—20 минут зависит от некоторых внешних условий.
Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, то есть в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, то есть происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы. Нейтрон обладает структурой и внешними-внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ.
К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада, а также взаимодействия нейтронов с атомными ядрами. Внешние поля заряда массы гравитационные поля создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот. Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек. В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели а не кварковой нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером 22 — 1956 год.
Экспериментально исследована внутренняя структура нейтрона была Р. Хофштадтером 23 путём изучения столкновений пучка электронов высоких энергий 2 ГэВ с нейтронами, входящими в состав дейтрона Нобелевская премия по физике 1961 г. Из этой работы следует заключение автора. Как мы видели, протон и нейтрон, которые считались элементарными частицами, представляются очень сложными образованиями. Почти с уверенностью можно сказать, что физики будут последовательно исследовать составные части протона и нейтрона — мезоны одного или другого сорта.
Что будет создано на основе этого? Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером 24 и С. Бергиа с сотрудниками по идеям 25 Фрэзера и Фулко, Намбо 26 и Чу.
Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, то есть они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты». Он был выведен на проектную энергию и достиг порога, после которого столкновения частиц электрон-позитрон в нем начинают рождать антибарионы — античастицы протонов и нейтронов, сообщает ученый секретарь института Алексей Васильев 28 : «Достигнута максимальная проектная энергия коллайдера — 1000 мегаэлектронвольт на пучок, что означает суммарную энергию столкновений 2000 мегаэлектронвольт. Пройден порог энергии 1870 мегаэлектронвольт — порог рождения барион-антибарионных пар. Мы фиксируем до 2 тысяч рождений в секунду в каждой точке столкновений , они регистрируются».
Их строение до сих пор очень плохо известно — как распределен заряд, как распределен момент внутри этих составных частиц. Известно, из чего они состоят, но как это там распределено, известно очень плохо. Этот коллайдер является самым удобным инструментом для изучения». Американский физик-теоретик Джулиан Швингер в основу магнитной модели 29 материи всех элементарных частиц заложил дуально заряженные частицы магнито-электрические дионы, которые являются, как он считает составной частью и нейтронов. И есть все основания считать, как он полагает, что основа всех элементарных частиц и в том числе нейтронов и протонов состоит из подобных дионов, а не из кварков.
Антинейтрон был открыт в Национальной лаборатории им. Лоуренса Беркли в 1956 году, через год после открытия антипротона. Практически уже давно освоена технология получения античастиц на мезонных фабриках и коллайдерах. Рождение пар античастиц производится не только с помощью встречных пучков адронов, но и при столкновениях пучков электронов и позитронов с энергией выше 1 Гэв. Рождение и аннигиляция антинейтрона.
Антинейтрон был получен в процессе реакции перезарядки антипротона на протоне жидководородной пузырьковой камеры. Образовавшийся антинейтрон затем аннигилировал с протоном с образованием пяти заряженных пионов и нескольких других нейтральных мезонов. Знак заряда образовавшихся пионов и их энергия определяются по кривизне траектории пиона в магнитном поле. Оставшуюся энергию уносят нейтральные мезоны. Поэтому в результате аннигиляции образуется один «лишний» положительно заряженный пион, который затем порождает цепочку последующих распадов.
Образующийся в конце цепочки распадов позитрон аннигилирует с электроном среды образуя фотоны с энергией 0,511 Мэв. Отсюда и следует, что полоса энергии электромагнитных квантов дебройлевских или клубковых для образования нуклонов в сингулярных точках на коллайдерах или ЧСТ лежит в пределах 130—500 Мэв. Трёхконтурные оболочки нейтронов. Внутренние свойства нейтрона, которые обеспечивают эти внешние свойства — это шесть замкнутых, взаимно противоположных ядерных полярных вихронов и сильно взаимодействующих с определенной частотой, полярностью и поляризацией. По трём внутренним и внешним оболочкам нейтрона пульсируют замкнутые магнитные монополи ГЭММ, которые обновляют замкнутые контуры, формируя из них внешние поля.
Между первой внутренней оболочкой и средней происходит сильное взаимодействие с аннигиляцией противоположных по знаку зерен-электропотенциалов, что приводит к почти полному уничтожению пространства между ними с помощью зоны холодной плазмы фото 4 третья справа. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны. Отсюда следует ещё одна форма жизни и существования зарядов электрическим потенциалом в состоянии динамического равновесия полного взаимного уничтожения пространства контурами-оболочками рождения слоистой холодной безмассовой плазмы и пространства нейтрона. Фото 4. Схемы оболочек нейтрона, слева — направо, внутренняя оболочка, составленная из двух сфер-источников ГЭММ с двумя четверть волноводами типа нейтрального К-мезона с полуцелым спином типа мюона; эта же оболочка в реальном виде из зёрен-потенциалов гравитационных внутри и электрических снаружи; две, вложенные друг в друга оболочки первая и средняя; три, вложенные друг в друга оболочки, образующие нейтрон.
Гравитационные зёрна-потенциалы этих оболочек имеют одинаковый знак и высокую проницательность, поэтому при обновлении излучаются и выходят за пределы этих контуров, а взаимодействуя с центральным полем Земли проявляют массу нейтрона. Третья, внешняя оболочка нейтрона пульсирует в обе стороны с рождением как положительных зёрен-электропотенциалов, так и отрицательных, проявляя электронейтральность нейтрона в целом и полуцелый спин, как у электрона. В слабом гравитационном поле на поверхности Земли эта свободная внешняя оболочка распадается с рождением стабильных частиц — протона, электрона и с выбросом промежуточного остатка нейтрино половины внешней оболочки из зёрен-электропотенциалов без магнитного монополя. Отсюда согласно приведенной структуре нейтрона и его электронейтральности, последний является и античастицей по отношению к себе. Итак нейтрон — это три вложенных друг в друга оболочки со структурой нейтральных мезонов — три ядерные оболочки Фото 4 , составленные из противоположных по знаку электрического заряда частиц со структурой типа мюонов — сложная центральная интеграция материи-контуров в состоянии покоя.
Это основное свойство гравиэлектромагнитных диполей высоких резонансных частот. Нейтрон не имеет электрического заряда, хотя обладает магнитным и электрическим дипольным моментами, имеет полуцелый спин и массу, которая примерно в 2000 раз больше, чем у электрона. Энергию для обеспечения этих состояний, нейтрон черпает от пульсирующих магнитных монополей в этих шести оболочках. Магнитный момент протона положителен и в полтора раза больше, чем у нейтрона, у которого он отрицателен. Разница в массах-энергиии нейтрона и протона составляет 1,293323 Мэв, которая при распаде нейтрона распределяется между его продуктами.
Комптоновская длина волны нуклонов составляет величину 1,3 х 10—13 см, а с учётом разрыхленности внешней оболочки, задающей запирающий слой и полуцелый спин, размер её достигает значения 9,1 х 10 —13 см. Нейтрон легко проникает в ядра химических элементов при любой энергии, вызывает ядерные реакции и способен вызывать деление тяжёлых ядер. Медленные нейтроны, имеющие дебройлевскую длину волны соизмеримую с межатомными расстояниями, служат для использования их в исследовании свойств твёрдых тел. Большое внимание привлекают на себя осцилляции друг в друга нейтрон-антинейтрон. Осцилляции элементарных частиц — это периодический процесс превращения частиц определённой совокупности друг в друга.
Ведутся экспериментальные работы во многих странах по обнаружению увеличения числа антинейтронов в пучке нейтронов из реактора с ростом длины пролёта, а также в потоках космических лучей и в специальных ловушках ультрахолодных нейтронов — это так называемые нейтрон-антинейтронные осцилляции 30. Они вложены друг в друга таким образом, что половины замкнутых контуров из положительных зёрен-потенциалов внутренней закрываются отрицательными зёрнами-потенциалами следующей половины внешней. Центральная сфера показывает свободное пространство, которое будет заполняться центральными оболочками при образовании ядер химических элементов вплоть до ядер кальция. Такая структура нейтрона свойственна ему вначале его появления и долгой жизни в определённых условиях, до начала разрыхления его внешней зарядо-образующей оболочки. Взаимодействие между оболочками — электромагнитное с очень малым радиусом действия 10—16 см.
Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон. Мгновенная структура нейтрона с уже разрыхлённой третьей внешней оболочкой, образующей его спин, приведена на фото 5, Фото 5. Схема нейтрона и антинейтрона где внешняя оболочка находится в состоянии разрыхления и готовится к распаду. Аналогичны структуры внешних оболочек перед распадом всех атомных нейтральных ядер, появившихся при рождении на поверхности ЧСТ звёзд и планет или в результате мощного электроразряда, или мощного удара при специальной сварке взрывом, или при воздействии магнитных монополей в кавитационном пузырьке и т. Распад нейтрона зависит от внешних условий и возможен с учётом нейтрон-антинейтронных осцилляций не только с образованием протона, но и антипротона.
Распад нейтрона можно рассматривать и как акт ионизации половины внешней оболочки ядра-нейтрона частицы типа мюона с испусканием электрона и антинейтрино за счёт внутренних процессов и рождением протона. Половина средней положительной отрицательной оболочки нейтрона после распада оголилась и уже не компенсируется полем вылетевшей отрицательной положительной оболочки, которая превратилась в электрон позитрон распада. Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней положительной превращает его в протон антипротон с геометрической формой внешней части представленной на фото 6, слева справа. Протон в состоянии покоя. Фото 6.
Схемы ядерных электрических оболочек протона слева и антипротона справа без указания гравитационых. В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ.
Правильно говорят, что каменный век прекратился не потому, что закончились камни, а потому, что появилось что-то еще. И наше время не прекратится с исчерпанием нефти, оно станет другим с появлением чего-то нового. Я так горжусь, что могу быть частью этого, частью истории. Я пришел в науку с опозданием — Эйнштейн уже мёртв, Коперник тоже мертв, но у меня уникальный шанс работать в сфере, в которой предстоит сделать еще много открытий, которые не были сделаны раньше.
Но раньше, вероятно, не было возможностей, не было нужного оборудования. Нанопорошки уже существуют достаточно долгое время — сигареты делают на нанопорошках. Но у нас раньше не было инструментов, чтобы рассмотреть их. Теперь, когда у нас есть такие инструменты, людей беспокоят нанотехнологии. Это аналогично тому, что до появления микроскопа мы ничего не знали о микробах, так как не видели их. А как только появился микроскоп, мы стали беспокоиться по поводу микробов.
Когда Христофор Колумб прибыл в Америку, он не знал, что это была Америка. Он думал, что это Индия. Мы не знаем, к чему мы придём с холодным синтезом. Для нас это неизведанная земля. У нас ни малейшего представления, что мы получим. Я объясню на одном примере.
Вот у вас есть атом кислорода, в нем восемь электронов крутятся вокруг ядра. Если вы убираете один электрон, остаётся семь. Высокая энергия — это только один электрон. Вы убрали один электрон, и больше нет энергии электрона, есть только энергия ядра. Водород без одного электрона это уже не водород. Но кислород без одного электрона все еще остается кислородом.
Промежуточное состояние высокой энергии имеет абсолютно другое поведение — вот что мы обнаружили. Люди еще не могут осознать этого. Цитатат из видео «Реактор холодного синтеза» на YouTube Реактор холодного синтеза Андрес Ковач, изобретатель, основатель компании BroadBit Словакия : В этом проекте я ответственный за экспериментальную работу и теоретические разработки, и я возглавляю отдел, который будет разрабатывать теорию. Мы собираем все экспериментальные данные и проверяем, какие теории могут лучше всего объяснить то, что происходит. Это нам нужно для того, чтобы выработать рациональный подход к созданию реакторов. Что касается экспериментов, то мы проводим их уже более трех лет и получили интересные результаты, которые позволили нам продвинуться на следующий уровень.
В нашей компании мы делаем несколько видов работ. Это не имеет отношения к коммерции. Это имеет отношение к научному любопытству — мы хотим понять, как всё это работает, и открыть новые виды ядерной энергии. С точки зрения практики мы бы хотели иметь чистую и эффективную технологию. И на сегодняшней день существует ярко выраженная потребность в такой энергии. Поэтому мы бы хотели внести свой вклад.
Если подходить к тому, что мы делаем, с точки зрения философии, то, я бы отметил следующее: в течение более 30 последних лет проводились эксперименты, которые подтвердили существующие теории. Это означает, что уже есть нечто, что дает понимание о фундаментальных силах химических элементов и частиц.
Холодный ядерный синтез. L E N R
С создания компактной термоядерной бомбы в 1953 г. и до 90-х СССР был лидером в этой гонке, а США выступали в роли догоняющего. Новости о горячем синтезе теперь разрешено публиковать, потому что идет коммерциализация холодного синтеза. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.
Первый термоядерный реактор может заработать уже в 2025 году
- Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
- Регистрация
- Преимущества и недостатки термоядерных реакторов
- Компактные термоядерные реакторы: прорыв или просчёт?
- Комментарии
- В Ливерморе совершили прорыв в получении термоядерной энергии
Холодный синтез: миф и реальность
Лабораторный реактор холодного термоядерного синтеза. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Главная» Новости» Симпозиум по термоядерному синтезу 2024. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных).
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. — Если обычная термоядерная реакция основана на синтезе дейтерия и трития с выделением нейтрона, здесь сталкиваются друг с другом протон и бор-11, — рассказывает Павел Владимирович. — Если обычная термоядерная реакция основана на синтезе дейтерия и трития с выделением нейтрона, здесь сталкиваются друг с другом протон и бор-11, — рассказывает Павел Владимирович.
Физики вносят ясность
- Холодный ядерный синтез: возможно ли? - YouTube
- Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
- FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
- Холодный ядерный синтез — Википедия
В защиту холодного ядерного синтеза (ХЯС)
К маю 2000 г. на тему холодного термоядерного синтеза в открытой научной печати было опубликовано более 2 тыс. работ, из которых примерно 10 % содержали достоверные указания на наличие эффекта ХС. Что подпитывает шумиху вокруг коммерческого термоядерного синтеза? Термоядерный синтез – очень сложная и очень дорогая технология. объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза. объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32.