Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов. Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов.
Машины лечат людей: как нейросети используют в российской медицине
Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Собянин: ИИ превратится в базовую медицинскую технологию в Москве
Только тогда можно будет сказать, что наша технология работает», — отметил Жаворонков. Фаза 2 В настоящее время лекарство проходит двойное слепое рандомизированное плацебо-контролируемое исследование, в котором участвуют 60 пациентов в 40 разных клиниках США и Китая. Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей. Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие. ИИ — сам по себе потенциальное оружие, которое нуждается в жестком контроле.
И это спасло несколько пациентов. Поэтому нашими пациентами в основном были дети, в том числе и самые маленькие. Хотя и не только они. Эпилепсия известна человечеству с глубокой древности. По состоянию на 2020 год около 50 миллионов человек по всему миру испытывали симптомы эпилепсии, из них более 350 тысяч — в России. Поэтому очень важно тщательно дифференцировать эпилептический синдром. Врач мог эту информацию изучить и принять верное решение. Это очень тяжёлый диагноз, при его наличии надо принимать несколько сильнодействующих препаратов с кучей побочных эффектов. Когда доктор ознакомился с заключением системы, он переосмыслил все вводные заново, собрал консилиум и представил новые результаты коллегам. В результате консилиум срочно скорректировал программу лечения. Благодаря этому состояние пациента нормализовалось. Сейчас он уже ходит в третий класс. Что такое «персонализированная медицина» — Откуда система брала информацию о пациенте? Из электронной истории болезни? Сама суть «Джейн» состоит в том, что она должна собирать полную и актуальную историю болезни пациента. Буквально всю информацию, до мельчайших подробностей. Чем больше система будет знать обо всех обстоятельствах происходящих с пациентом процессов, тем более качественные рекомендации она будет выдавать. Врач или пациент? Для быстрого добавления новых записей в «Джейн» был создан чат-бот, доступный со смартфона. Можно, конечно, воспользоваться обычной веб-версией, но с чат-ботом процесс сильно ускоряется. Чат-бот — очень оперативный интерфейс: запустил, быстро ввёл туда всё, что нужно. А веб-приложение — уже более мощный инструмент. Он может использоваться на стационарной основе и предоставлять больше функций. Это трудоёмкий процесс? Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься. Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером. Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране. Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов. Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы. Есть мощный тренд: мы от статистической доказательной медицины переходим к персональной медицине , но тоже доказательной. Однако пока ни в одной стране полного перехода к ней так и не произошло. И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете. Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью.
Технология искусственного интеллекта в корне меняют мировую систему здравоохранения, позволяя кардинальным образом переработать систему медицинской диагностики, а также в целом повысить качество услуг здравоохранения при одновременном снижении расходов для медицинских клиник. Проблема: Сейчас очень остро поднимается вопрос о том, чтобы на основе рукописных медицинских карт обучить нейронные сети. Из-за огромного количества заболеваний, похожих симптомов и где-то из-за неопытности врачей очень сложно на раннем этапе выявить недуг и назначить правильное лечение. Цель: Познакомиться с разработками искусственного интеллекта в области медицины, а также изучить доступность сервисов диагностики заболеваний с помощью искусственного интеллекта. Задачи: Найти информацию о том, как используется искусственный интеллект в медицине Опробовать доступность сервисов искусственного интеллекта для ранней диагностики заболеваний пациентов. Выяснить перспективы использования искусственного интеллекта в медицине. ГЛАВА 1 Медицинские сервисы с использованием технологий ИИ Медицинские технологии — молодая, но быстроразвивающаяся отрасль науки и бизнеса, основной целью которой является повышение качества, удобства и безопасности оказываемых медицинских услуг. Сегодня в медицинской практике активно используются нейросети — модели, которые построены на основе человеческой нервной системы. Нейросети активно применяются в рентгенологической практике, помогая врачу-рентгенологу поставить диагноз на раннем этапе. Например, нейросеть может проанализировать сотни обезличенных снимков, сравнить их со снимками здоровых пациентов и подсветить врачу наличие или отсутствие опасной патологии. Именно такие системы активно интегрируются в системы поддержки принятия врачебных решений. Система поддержки принятия врачебных решений СППВР — это сервис на основе искусственного интеллекта, который позволяет врачу получить рекомендацию при лечении, диагностике и мониторинге состояния пациента. При этом такие системы включают в себя не только искусственный интеллект, но и электронные справочники, системы проверки безопасности терапии, системы контроля качества и системы скрининга врачебных лекарственных назначений. Можно легко представить ситуацию: на приём к врачу пришёл пациент с сахарным диабетом. Как правило, у таких пациентов, помимо диабета, есть много сопутствующих заболеваний, о которых врачу также необходимо помнить. И главная задача врача в таком случае — вылечить пациента, учитывая все особенности его анамнеза. В этом врачу помогает СППВР: она видит всю историю болезни и в своих рекомендациях основывается на анализе всех имеющихся данных. Представим, что врач назначил препарат, который противопоказан пациенту по какому-то из имеющихся у него заболеваний. При сахарном диабете второго типа СД-2 часто назначают метморфин. Если врач назначит пациенту с хронической сердечной недостаточностью такое лекарство, программа подскажет врачу, что это лекарство лучше заменить, а также предложит ему список более подходящих препаратов. И врач, в свою очередь, может скорректировать план лечения с учётом этих рекомендаций. Однако важно понимать, что такие системы являются вспомогательными. В российской практике законодательно закреплено, что такое программное обеспечение не может самостоятельно ставить диагноз: это может сделать только врач! Чтобы разработать такую систему, необходима высокая медицинская технологическая экспертиза, а также очень большое количество медицинских данных, потому что именно на них алгоритмы обучаются ставить диагнозы. На сегодняшний день существует несколько видов подобных сервисов — СППВР, симптомчекеры, а также сервисы, работающие в режиме реального времени и помогающие врачам при диагностических исследованиях. Симптомчекер представляет собой анкету с перечнем симптомов. Такие анкеты могут заполняться пациентом либо перед приёмом, либо непосредственно на самом приёме совместно с врачом. В российской практике, чтобы избежать самолечения со стороны пациентов, внедряется предварительное заполнение таких анкет, но без демонстрации пациентам возможных диагнозов: их видит только врач. Симптомчекеры особенно актуальны в случаях, когда к начинающему врачу приходят пациенты с обширной или размытой симптоматикой — в этих случаях программа может подсказать врачу не только диагнозы, которые наиболее вероятны при определённой клинической картине, но и рекомендации по лечению, а также направления на дополнительные исследования или на приём к узкоспециализированному врачу. В более продвинутых медицинских сервисах могут использоваться технологии компьютерного зрения. Например, такие технологии применяются при процедурах гастроскопии. В классической практике врач с помощью камеры эндоскопа исследует слизистые оболочки органов и самостоятельно ищет отклонения. В силу сложности данного исследования врач может упустить детали, важные для постановки верного диагноза. Компьютерное зрение помогает врачу замечать такие детали. Работа сервиса выглядит следующим образом: к камере эндоскопа подключается специальный алгоритм на базе искусственного интеллекта. На специальном мониторе он подсвечивает врачу области с возможными отклонениями и даёт рекомендации дополнительно сфотографировать и исследовать выделенные области. После обследования врач загружает снимки в СППВР, которая помогает подтвердить или скорректировать ранее поставленный диагноз. Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований. Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка. Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение. Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её. Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку.
Сервис будет полезен людям с хроническими заболеваниями для отслеживания состояния здоровья. После анализа приложение отправляет информацию лечащему врачу. Есть удаленный мониторинг коронавирусной инфекции. Приложение нацелено на то, чтобы построить будущее медицины при помощи ИИ. Сервис работает более, чем в 70 странах, в клиентской базе более 790 учреждений здравоохранения. Платформа специализируется на диагностике онкологических патологий и наследственных заболеваний. На основании анализа ДНК можно получить информацию о предрасположенности к различным заболеваниям. Область применения этого сервиса — фармакогеномика. Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста. Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии. ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента. Надежный виртуальный помощник для врачей и пациентов, мгновенно отвечает на все вопросы. ИИ ежедневно собирает все новшества в области здравоохранения и оперирует только актуальными данными. Сервис помогает разработать алгоритм для эффективного лечения диабетической ретинопатии, спрогнозировать риск развития сердечно-сосудистых заболеваний. Приложение распознает человеческую речь, может интересоваться самочувствием, отвечать на любые вопросы, связанные со здоровьем. Это приложение предназначено для распознавания симптомов и формирования общей клинической картины. Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться. Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения.
Искусственный интеллект в медицине: применение и перспективы
"Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он. Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения. Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост. Ну и, конечно, стоит отметить чат-боты, которые помогают с первичным сбором данных о пациенте в кол-центрах при записи к врачу. Она позволяет на УЗИ-аппаратах неэкспертного уровня за счет анализа данных получать то же качество, как и на УЗИ-аппаратах более высокого класса", - рассказал Павел Пугачев.
Искусственный интеллект имеет большие возможности, но решать с его помощью все задачи сразу не требуется, полагают эксперты. Инвесторы, работающие в сегменте цифровой медицины, считают, что нужно фокусироваться на отдельных ключевых элементах, где ИИ сегодня действительно может помогать, отметил директор по развитию венчурного фонда НТИ под управлением Kama Flow Евгений Борисов. В первую очередь это все, что связано с ассистированием и поддержкой врачебных решений.
Теоретически это позволит врачам лучше исследовать болезни, быстрее и точнее ставить диагнозы и эффективнее лечить пациентов. То есть прогноз эффективности ИИ в медицине в российском и американском обществе находится примерно на одном уровне. В целом российскому обществу присущ умеренный энтузиазм по вопросу использования ИИ в здравоохранении. По-видимому, ИИ еще не успел заработать себе «антирейтинг» в этой сфере, в том числе потому, что значимая часть россиян еще не сформировала своей позиции на этот счет. Тогда как в американском обществе вопрос применения ИИ в медицине стоит более остро: здесь есть противоборство мнений, доли оптимистов и скептиков близки. Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях.
Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом. Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран.
Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев.
Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом. Полученные данные будут обработаны с помощью ИИ.
Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников.
В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний. Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи.
AI-платформа для анализа медицинских изображений
Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат. Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений. ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные. Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков. Последнее слово будет оставаться за врачом.
Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития. На основе медицинской истории пациента, данных о его образе жизни формируется цифровой двойник пациента. Это позволит перейти от всеобщей унификации к персонализированному здравоохранению. Извлечь ценность из этих данных можно при помощи ИИ. ИИ-помощники смогут формировать необходимый набор профилактических мер, обследований для конкретного пациента, назначения, исходя не из установленных стандартов, а индивидуальные, в том числе учитывая резистентность к лекарственным препаратам, аллергоанамнез пациента и другие важные индивидуальные особенности. ИИ сможет освободить, с одной стороны, врача от рутины, а с другой стороны — стать персонализированным помощником для пациентов. Умным и эмпатичным, который сможет ответить на определенные вопросы, помочь подготовиться к исследованиям, оптимизировать прием препаратов.
ИИ станет помощником в проактивном выявлении рисков развития заболевания и диагностировать болезнь не на стадии ее проявления или обострения, а заранее выявить риск и сформировать набор мер для предотвращения ее развития. В будущем сервисы ИИ могут стать «младшим научным сотрудником», помогая врачам и ученым в научных и клинических исследованиях. Все мы хотим меньше соприкасаться с системой здравоохранения, переживать о своем здоровье, а если все же пришлось — получить быстрый, искренний и качественный сервис. Врачи, со своей стороны, хотят заниматься лечением, а не административными вопросами, избавиться от рутины. В этих целях мы и пробуем применять ИИ — он не склонен к профессиональному выгоранию и готов круглосуточно выполнять рутинные операции. Какие риски могут возникнуть при использовании ИИ в медицине? Внедрение новой технологии всегда ставит на первый план вопросы безопасности и этики.
Если не урегулировать вопросы ответственности, не встроить механизмы контроля качества ИИ, обычной реакцией на допускаемые ошибки искусственного интеллекта станет рост регуляторного давления, которое замедлит развитие технологии. Но совершенно точно не остановит. Мы это видим на примере беспилотного транспорта. ИИ — это технология, с которой просто нужно научиться работать.
С помощью искусственного интеллекта возможны более точные и быстрые диагностические процедуры, что способствует более эффективному лечению и улучшению прогнозов для пациентов. Основные технологии и методы, используемые в диагностике с помощью искусственного интеллекта, включают в себя машинное обучение, нейронные сети, глубокое обучение и алгоритмы обработки естественного языка. Машинное обучение позволяет компьютерным системам обучаться на основе больших объемов данных и выявлять закономерности, которые помогают в диагностике различных заболеваний. Нейронные сети и глубокое обучение позволяют моделям искусственного интеллекта распознавать сложные образы и паттерны, что особенно полезно в распознавании изображений и интерпретации медицинских снимков. Алгоритмы обработки естественного языка позволяют системам искусственного интеллекта анализировать и интерпретировать текстовую информацию, что особенно полезно при обработке медицинских записей и отчетов. Такие системы могут распознавать ключевые симптомы, осуществлять дифференциальные диагнозы и предлагать рекомендации по дальнейшему обследованию и лечению пациентов. Важно отметить, что применение искусственного интеллекта в диагностике требует достаточного объема и качества данных для обучения моделей. Также необходимы надежные алгоритмы для обеспечения защиты конфиденциальности пациентов и предотвращения ошибок. В целом, применение искусственного интеллекта в диагностике позволяет значительно повысить эффективность и достоверность медицинских процедур, ускорить принятие решений и улучшить прогнозы для пациентов. Это открывает новые возможности в медицинской практике и способствует развитию прогрессивных методов диагностики и лечения заболеваний. Как искусственный интеллект помогает в определении редких и генетических заболеваний Искусственный интеллект играет все более важную роль в области медицины, особенно в обнаружении и диагностике редких и генетических заболеваний. Благодаря своим вычислительным возможностям и способности обрабатывать и анализировать большие объемы данных, искусственный интеллект может помочь в определении и понимании этих сложных и необычных состояний. Искусственный интеллект использует алгоритмы машинного обучения и глубокого обучения для анализа различных типов данных, таких как медицинские изображения, генетическая информация, результаты лабораторных анализов и многое другое. При помощи этих данных искусственный интеллект может выявлять корреляции, паттерны и скрытые взаимосвязи между различными заболеваниями и их симптомами. Одной из самых важных функций искусственного интеллекта в диагностике редких и генетических заболеваний является распознавание нежелательных генетических вариантов. Используя мощные алгоритмы, искусственный интеллект может анализировать генетическую информацию пациента и сравнивать ее с базами данных геномов, чтобы идентифицировать редкие или мутационные гены, которые могут быть связаны с заболеванием. Благодаря такому анализу искусственный интеллект может помочь в определении вероятности развития определенного генетического заболевания у пациента, что позволяет врачам принимать ранние меры по предупреждению или лечению. Он также может помочь в выборе наиболее эффективных методов лечения, учитывая индивидуальные особенности пациента и его генетическую предрасположенность. Кроме того, искусственный интеллект может помочь в исследованиях редких и генетических заболеваний путем анализа большого объема данных о пациентах. Это позволяет ученым выявлять новые паттерны и корреляции, определять новые подтипы заболеваний и разрабатывать инновационные методы лечения. Искусственный интеллект является мощным инструментом в борьбе с редкими и генетическими заболеваниями, обеспечивая более точную диагностику, персонализированное лечение и новые направления исследований. Это открывает новые перспективы для пациентов, страдающих от этих сложных состояний, и помогает предотвратить прогрессирование заболевания и улучшить качество их жизни. Искусственный интеллект в процессе лечения: персонализированная медицина и индивидуальные прогнозы Искусственный интеллект ИИ в медицине привносит новые возможности в процесс лечения, делая его более персонализированным и эффективным. Благодаря ИИ, врачи и исследователи получают доступ к огромным объемам данных, анализ и обработка которых помогают прогнозировать результаты лечения и предсказывать индивидуальные характеристики пациентов. Использование ИИ в процессе лечения способствует развитию персонализированной медицины, где каждому пациенту предлагается индивидуальный подход и оптимальный план лечения.
Подробнее о плюсах и минусах использования ИИ в медицине в авторской колонке для «Реального времени» рассказывает заместитель директора по стратегическому развитию решений регионального здравоохранения АО «БАРС Груп» Дина Филюшина. Интеллект естественный и врач выгорающий В условиях нынешней системы здравоохранения рядовой российский врач хронически перегружен. Что он должен успеть? Собрать клинический анамнез, выявить риски заболеваний, назначить правильное лечение, успеть принять всех пациентов, уделив внимание каждому, подписать документы электронной подписью, следовать клиническим рекомендациям, учитывать стандарты и порядок оказания медицинской помощи. Ему надо быть подобным шестирукому божеству, и все это — в условиях крайне сжатого времени, отведенного на прием. А перегруженность, как известно, ведет к профессиональному выгоранию. Естественный, то есть человеческий интеллект способен на многое: синтезировать новые знания, принимать решения, основанные на ценностях и смыслах, неся социальную и профессиональную ответственность, постоянно расширять профессиональный кругозор. Человек может мыслить креативно, создавая качественно новые решения. Не только на базе предыдущего опыта, но и на основе абстракций строить модели будущего, создавать концепции, рассматривать теории и предположения. Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам. А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор. И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор.
Ограничения и риски, связанные с применением ИИ в медицине Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Сюда входят вопросы конфиденциальности и безопасности данных, а также потенциальные ошибки в диагностировании или лечении, вызванные ошибками алгоритмов ИИ. Большой вопрос также представляет собой интеграция новых технологий в существующие медицинские системы и обеспечение подготовки персонала к работе с новыми инструментами. Конфиденциальность данных: с учетом того, что ИИ обрабатывает большое количество личной медицинской информации, вопросы конфиденциальности данных становятся крайне актуальными. Необходимо выработать регламент для защиты приватности пациентов. Недостаточная точность и ошибки в диагностике: в настоящее время алгоритмы ИИ могут допускать ошибки, иногда весьма серьезные, в диагностике и предсказании болезней. Это создает потенциальные риски для пациентов и требует дальнейшего усовершенствования технологий. Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных. Плохие или неадекватные данные могут привести к неточным или даже опасным выводам. Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии. Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности.
Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
Основную работу ИИ сейчас выполняет в службе лучевой диагностики. Нейросеть распознает 37 различных заболеваний. В ближайшие годы ИИ станет базовой медицинской технологией столицы. Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней.
Он способен составить историю болезни пациента, членов его семьи, структурировать генетическую предрасположенность к тем или иным патологиям и выдать моментально всю эту информацию лечащему доктору.
Система предлагает свои рекомендации по лечению заболеваний, в том числе онкологических. А возможность через приложение связать Watson и фитнес-трекер позволяет отслеживать даже самые незначительные изменения состояния здоровья пациента. Freepik Но диагностика не единственная сфера медицины, куда сегодня проник ИИ. Это, например, поиск перспективных молекул для определенных рецепторов, что может предварять открытие новых препаратов», — рассказал «Ведомости.
Городу» врач-эксперт Тимур Пестерев. Один из последних примеров — китайская биотехнологическая компания в начале этого года с помощью ИИ придумала лекарство для лечения идиопатического легочного фиброза ИЛФ. Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание.
Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом. Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение.
Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению. Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний.
Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов.
Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных. Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии.
Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких.
С её помощью можно изменять практически любые гены и делать хромосомную перестройку. Эти свойства широко используются даже в лечении онкологических заболеваний. Технология была открыта в 1987 году во время изучения кишечной палочки Escherichia coli. Ученые обнаружили в её ДНК странные повторяющиеся последовательности, но не смогли выяснить их предназначение. Бактерии производят специальные ферменты, когда пытаются бороться с вирусами. Это помогает бороться с будущими вирусными атаками. Бактерия использует сохраненный генетический материал и производит белки Cas9, которые способны при совпадении генов с геном вируса быстро его нейтрализовать.
Нейронные сети в помощь врачам
- Искусственный интеллект в сфере здравоохранения — Википедия
- ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня
- Собянин: ИИ превратится в базовую медицинскую технологию в Москве
- Что такое искусственный интеллект
- Для чего в российских регионах используют ИИ в медицине - Российская газета
- Искусственный интеллект в медицине. Настоящее и будущее
Читайте также
- Столичные алгоритмы
- Погружение в мир AI: курсы, проекты, советы
- Обзор Российских систем искусственного интеллекта для здравоохранения
- Искусственный интеллект в медицине. Настоящее и будущее | Образовательная социальная сеть
- Видео: Как искусственный интеллект помогает в медицине | Новости России
- Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время