Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался.
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.
и
Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся.
Прорыв в термоядерном синтезе
Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.
Термоядерный синтез
Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле. Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем.
Темы Это интереснейший физический процесс, который пока в теории может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов.
Элрих Мюирич Эмм, вот кто здесь вообще новости пишет? Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".
Темы Это интереснейший физический процесс, который пока в теории может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция — она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция. Я не вижу никакого исхода, кроме приблизительно такого. Нравится мне это или нет. На этом программа была завершена. Реакция общества Московский политик Николай Королев отправил обращения в Следственный комитет и полицию после высказывания Маргариты Симоньян. Николай Королев попросил проанализировать рассуждения главного редактора RT.
Высказался сегодня о перспективах термоядерного взрыва над Сибирью и мэр Новосибирска Анатолий Локоть , ответив на соответствующий вопрос NGS. Ничего хорошего в наземных термоядерных взрывах нет. Последствия могут сказываться даже не на сотни лет, а на тысячелетия. Потому что образуются неустойчивые элементы, период полураспада которых исчисляется сотнями лет, а некоторые — и тысячей лет. К проблеме наземных термоядерных испытаний и любых взрывов, связанных с выделением термоядерной энергии, ядерной энергии, надо относиться очень ответственно, — подчеркнул Анатолий Локоть. RU, что термоядерный взрыв — это подрыв сразу двух бомб. Сначала взрывается атомная бомба, которая в итоге является запалом водородной бомбы. И сила у того взрыва колоссальная.
Например, в Хиросиме США взорвали только относительно небольшую атомную бомбу, и последствия были ужасающие. Понять я это не могу. Может быть, если на какой-то огромной высоте, если взорвать, то людей массово сразу не убьет, но всё равно радиоактивные осадки будут перемещаться в атмосфере по Земле и в конце концов выпадут вместе с дождями, с пылью на головы всех людей, — отметил физик. Заражение может распространиться по всей Земле и выпасть осадками в другом регионе, стране — это негативные последствия, которые возможны повсеместно. А катастрофические — локальны, — ответили на запрос корреспондента NGS.
Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя 28 декабря 2022, 14:07 Новосибирск. Есть мысль про двигатель термоядерный и так далее. Там активно работает молодая команда", - рассказал он.
Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его.
Научный комплекс National Ignition Facility NIF за несколько миллиардных долей секунды усиливает и фокусирует 192 мощных лазера на мишени размером несколько квадратных сантиметров. Температура мишени превышает 100 миллионов градусов, давление — 100 миллиардов атмосфер. Этого достаточно, чтобы началась термоядерная реакция. Главная проблема — затраты энергии на разогрев мишени должны быть меньше желательно, гораздо меньше , чем энергия выделяемая при термоядерном синтезе. Иначе процесс не производит энергию, а тратит. Как сообщила Ливерморская лаборатория, на NIF поставлен новый рекорд: летние эксперименты показали в 8 раз более высокий энергетический выход, чем во время весенних опытов 2021 года и в 25 раз выше результатов 2018 года. Выход превысил 1,3 мегаджоуля. Это серьезный шаг вперед.
Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип. Плазма разогревается в двух источниках, и ее потоки сталкиваются в камере сгорания.
Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года.
А вот с энергопуском возникли организационные проблемы. Все это время мощности не использовались. Нам потребовалось почти два года, чтобы решить эту проблему.
Американские физики повторно добились термоядерного зажигания
В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза. Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте.
Есть мысль про двигатель термоядерный и так далее.
Там активно работает молодая команда", - рассказал он. Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его. Ранее сообщалось, что для создания реактивного двигателя достаточно температуры плазмы в 100 тыс.
Параллельно ученые в попытке добиться инерциального конфайнмента пробовали и увеличить «массу молотка», то есть энергии, которая «вкачивалась» в мишень за один выстрел начав с единиц килоджоулей, физики к 1980-м пришли к энергиям в десятки, а то и сотню килоджоулей за выстрел , так и поменять саму схему эксперимента. В середине 1970-х годов физики решили поставить между лазерным излучением и мишенью посредника, то есть попробовать метод «непрямого воздействия». В этом варианте топливная капсула размером в миллиметр подвешивалась в центре небольшого золотого или свинцового сосуда, который получил название хольраум от немецкого Hohlraum, «пустое пространство, полость», термин взят из работ Макса Планка , посвященных излучению абсолютно черного тела.
Детали их производства оставались в секрете до 1994 года. Под действием излучения лазера внутренняя поверхность сосуда становилась источником рентгеновского излучения, которое и попадало в мишень, запуская термоядерную реакцию. В рентген должно было превращаться от 70 до 80 процентов энергии лазерного излучения. В этом варианте поток излучения гораздо более равномерен и капсула, в теории, должна была сжиматься ровно, без искажения формы. Впрочем, на практике путь к этому оказался долгим. Рождения героя После нескольких промежуточных установок поменьше, в 1997 году США запустили строительство гигантской лазерной установки NIF стоимостью около 2 миллиардов долларов, которая должна была продемонстрировать работоспособность концепции и так называемый breakeven — равенство или превышение выхода термоядерной энергии над энергией лазеров, которая по проекту должна была составить 1,8 мегаджоуля.
Проблемы NIF, как прототипа термоядерной электростанции, были видны еще до начала строительства — даже если бы 1,8 мегаджоуля термоядерной энергии получалось бы в каждом выстреле, затраты энергии «из розетки» все равно составляли бы скорее 500 мегаджоулей, а количество выстрелов не превышало бы 2-3 в сутки. Кроме того, мишени для NIF представляли собой произведение криогенного ювелирного искусства: капсула миллиметрового размера и сверхточной формы наполняется топливом при температуре 15 кельвин и поддерживается при этой температуре в процессе помещения в установку и до момента эксперимента. Ну и разумеется, никакой энергоустановки в проекте предусмотрено не было, термоядерное тепло просто рассеивалось через градирни. В реальности все оказалось еще скромнее. Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой.
Однако это было далеко от того, что обещали до начала строительства NIF. Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы.
Как работает NIF Специально профилированный во времени затравочный импульс «мастер-лазера» расщепляется на 192 луча, каждый из которых проходит 4 раза через 192 усилителя лазерного излучения и направляется на систему преобразования частоты, где исходное инфракрасное превращается в рабочий ультрафиолет. Через систему фокусировки 192 луча с точностью в 10 микрон проходят через окна в хольрауме, попадая на его внутренние стенки, за 10 наносекунд разогревая их до 3 миллионов градусов. Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы. Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца. В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии.
В ноябре 1941 года Фукс посетил советское посольство в Лондоне и предложил предоставить СССР известную ему информацию о работах по созданию ядерного оружия в Великобритании. Его предложение приняли, связь с Фуксом установили через Урсулу Кучинскую. Урсула была профессиональной связисткой высочайшего уровня. Родилась в Германии в 1907 году. В 1930 году в Шанхае была завербована Рихардом Зорге. Он же присвоил Урсуле псевдоним «Соня», который и использовался в 1940-х годах. С ноября 1941 года «Соня» работала только на Клауса Фукса, все остальные задачи с неё были сняты. Поначалу Фукса курировал секретарь советского военного атташе С. Фукс работал исключительно из идейных соображений, на предложение о получении денег от СССР ответил категорическим отказом и попросил более никогда с ним на эту тему не разговаривать. В декабре 1943 года, по рекомендации Пайерлса и Роберта Оппенгеймера, Фукс с группой других учёных был включён в состав участников американского «Манхэттенского проекта» и прибыл в США. Там в феврале 1944 года с Фуксом была установлена новая связь через связника Гарри Голда, коммуниста из семьи украинских евреев, которому Клаус передавал важную информацию, касающуюся своей части исследовательской работы по «Манхэттенскому проекту». Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов. Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле.
Последние комментарии
- «Повторение ошибок»
- Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя
- Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
- Российские учёные разработали новый материал для термоядерного реактора
Что такое термоядерный синтез и зачем он нужен?
В Хэфэе испытывали такомак EAST, который представляет собой модификацию установки, созданной в 90-х годах при сотрудничестве с Россией. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Как рассказал «Звезде» научный сотрудник частного учреждения Государственной корпорации по атомной энергии «Росатом» «Проектный центр ИТЭР» Кирилл Артемьев, речь идет об алмазном детекторе. Плазма просто так долго держаться не может, ее различными методами дополнительно нагревают», - пояснил суть работы устройства ученый.
Laser fusion put on slow burn Для равномерного давления на капсулу в установке NIF используется не только большое число лазерных лучей 192 синхронизованных луча, которыми можно независимо управлять , но и так называемое непрямое обжатие капсулы рис. Лазеры не светят прямо на поверхность капсулы, они освещают внутренность маленькой, сантиметрового размера, цилиндрической камеры, в центре которой находится слоистая капсула с топливом рис.
Попадая на стенки камеры, лазерная вспышка резко ее испаряет и нагревает получившуюся плазму до 3 млн градусов. Плазма начинает светиться в рентгеновском диапазоне, и уже это рентгеновское излучение давит на капсулу. Такая схема работы позволяет получить более равномерное обжатие, а также позволяет избежать слишком быстрого испарения внешней оболочки капсулы. Центральная камера сантиметрового размера, внутри которой помещается капсула с топливом. Конечно, последствия термоядерной реакции были замечены, но эта реакция была слабоватой.
Даже если сравнивать выделившуюся энергию с той энергией, которая непосредственно поглощается топливом, то выход тут до недавнего времени составлял от силы 20—30 процентов рис. Таким образом, NIF долгое время не удавалось даже достичь первой цели из приведенного выше списка. Результаты работы NIF за последние два с половиной года. По горизонтали отмечены отдельные лазерные «выстрелы» шестизначный номер кодирует год-месяц-день выстрела и для каждого выстрела показаны три величины: энергия, поглощенная топливом черная отметка , энергия, выделившаяся в термоядерном синтезе за счет сжатия синяя колонка , дополнительная термоядерная энергия, связанная с саморазогревом топлива альфа-частицами красная колонка. Полная высота колонки показывает всю термоядерную энергию, выделившуюся при выстреле.
Правая часть гистограммы, отмеченная как «high foot», отвечает новому режиму сжатия капсулы. Вставка показывает распределение выстрелов на диаграмме двух величин: по горизонтали обобщенный критерий Лоусона GLC единица соответствует полноценному запуску реакции , по вертикали — доля нейтронного потока, вызванного разогревом альфа-частицами, по сравнению с прямым сжатием. Изображение из обсуждаемой статьи в Nature Вообще, надо сказать, что работает NIF очень неторопливо — два-три лазерных «выстрела» в месяц. Это и неудивительно: каждый выстрел уничтожает камеру с капсулой и требуется определенное время на ее установку, накопление энергии и подготовку нового выстрела. Из-за этой неторопливости и дороговизны всей установки к концу 2012 года сложилась угрожающая ситуация — руководству NIF пришлось даже отчитываться перед Конгрессом США о целесообразности продолжения этих исследований.
Действительно, несколько десятков попыток в течение 2011—2012 годов не привели ни к какому улучшению, а вся работа NIF выглядела топтанием на месте. Тем ценнее то, что удалось в NIF реализовать в 2013 году. Исследователи научились эффективно применять новую схему управления лазерными лучами. Во-первых, они задавали определенный временной профиль мощности лазерного импульса, а во-вторых, они независимо настраивали частоту разных лазерных лучей, попадающих в камеру под разными углами. Это позволило настраивать зависимость от времени того рентгеновского излучения, которое возникает при испарении камеры и сжимает капсулу.
Отчасти с оглядкой на формулы, а отчасти эмпирическим путем был подобран временной профиль, при котором температура испарившейся камеры сначала резко прыгает до миллиона градусов, а потом в два этапа — до 2,5 миллионов такой режим был назван профилем с высоким подножием, «high-foot». При таком нагреве в капсуле запускается три умеренно сильных ударных волны, которые вызывают меньшие деформации, чем раньше. В результате центр капсулы удается сжать до меньших размеров и больших плотностей, что приводит к повышению температуры и более эффективной термоядерной реакции. Действовать методом проб и ошибок — дело очень ответственное при таком неторопливом режиме работы. Первые несколько комбинаций параметров не принесли успеха, и только три последние попытки позволили резко повысить энергетический выход по сравнению со всеми прошлыми попытками рис.
Рекордными оказались выстрелы, произведенные 27 сентября и 19 ноября прошлого года. Опубликованные в статьях результаты относятся прежде всего к этим двум сеансам работы. Рекордные выстрелы Наблюдение за результатами лазерного выстрела велось с помощью целого арсенала инструментов — применялось свыше 50 различных диагностических методик! Это позволило проследить за всеми аспектами схлопывания капсулы и восстановить физические условия в этом процессе. Для рекордных выстрелов были получены следующие данные.
Температура доходит до 60 млн градусов, а это уже достаточно для запуска термоядерной реакции синтеза. Изображения центральной горячей зоны в сеансе работы 27 сентября 2013 года.
В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание».
Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых. Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов.
Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко. Плюс нужно будет придумать, как превратить термоядерную энергию, например, в электричество.