Новости термоядерная физика

В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. Институт Ядерной Физики (ИЯФ). Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим.

«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза

Есть мысль про двигатель термоядерный и так далее. Там активно работает молодая команда", - рассказал он. Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его. Ранее сообщалось, что для создания реактивного двигателя достаточно температуры плазмы в 100 тыс.

И создавать тягу. Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток. В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма.

Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание».

Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи. Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза». Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии.

Он находится в Калхэмском центре термоядерной энергии в Великобритании.

Все благодаря международной команде ученых и инженеров в Оксфордшире», — заявил министр ядерной энергетики и сетей Великобритании Эндрю Боуи. Проект разрабатывается с середины 1980-х годов, закончить строительство главной конструкции планируют в 2025 году. В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном. Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн. Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина.

Процесс длится доли пикосекунды 10—12 с. В общем, получается 500 тысяч нейтронов в секунду. Это много с точки зрения физики явления, но этого мало, чтобы это было термоядерным реактором». Как бы там ни было, по словам Роберта Нигматулина, он продолжает теоретические исследования в этой области и есть идеи, как повысить выход нейтронов в пузырьковом термояде. Нет денег на проведение экспериментов. Как отмечал польский философ и футуролог Станислав Лем в своем трактате «Сумма технологий» 1964 , «Без сомнения, ученым придется сначала «воспитать» целое поколение руководителей, которые согласятся достаточно глубоко залезть в государственный карман, и притом для достижения целей, столь подозрительно напоминающих традиционную тематику научной фантастики». Пузырьковому термояду в этом смысле не повезло: до него додумались, когда основные государственные бюджеты уже были поделены между токамаками и лазерным термоядом. В любом случае отметим еще раз этапное достижение ученых, полученное на установке NIF. Пусть и локально, но превышение выработанной энергии над затраченной продемонстрировано экспериментально.

Но вообще-то результат американских физиков нетривиален не только в отношении физики. В последние годы общество уже привычно принимает за данность, что современная Большая Наука — это дело больших международных проектов и коллабораций Megascience, Меганаука. Большой адронный коллайдер LHC в Европейском центре ядерных исследований в Женеве, токамак ITER во французском Кадараше, пуск которого все откладывается и откладывается… Но вот оказывается, что национальные исследовательские проекты и программы в каком-то смысле более эффективны.

Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3.

Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems. Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов.

Основа криостата, весом 1250 тонн, будет одной из самых тяжелых одиночных нагрузок при сборке машины весом 23 тыс.

Европейский союз ответственен за вакуумную камеру, однако для оптимизации проекта и минимизации задержек часть работ была поручена Корее, которая продемонстрировала высочайший уровень собственных технологий, запустив токамак со сверхпроводящей магнитной системой KSTAR Korean Superconducting Tokamak Advanced Research , получивший первую плазму в 2008 году, и продемонстрировав рекордную 70-секундную высокопроизводительную плазму в 2016 году. Китай вместе с Россией работают над созданием сверхпроводников, первая поставка которых была осуществлена в июне 2014 года. Шесть кольцеобразных полоидальных магнитов с полевой катушкой будут окружать машину ИТЭР для формирования плазмы и обеспечения ее стабильности путем отстранения от стенок вакуумного реактора. Россия отвечает за широкий спектр электротехнических компонентов, из которых состоят коммутационные сети, блоки быстрого разряда, комплекты поставки измерительной аппаратуры.

Налажено производство сборных шин и переключающих сетевых резисторов, завершается программа НИОКР для компонентов блока быстрой разгрузки. Японские инженеры и ученые также работают над магнитной системой, в частности, над дизайн-проектом катушек тороидального поля и над получением сверхпроводящих ниобий-оловянных стрендов. Получение первой плазмы на установке ИТЭР запланировано на 2025 год, выход на полную мощность — на 2035 год. Недавно о желании присоединиться к проекту заявили Австралия и Иран.

Это еще одна из важнейших задач, которую должен решить ИТЭР. Кстати, бланкет и дивертор — основные плазменные компоненты. Следует отметить, что первая стенка реактора, та, что ближе всего к плазме, всего в трех метрах от нее, — неотъемлемая часть бланкета. Идея разделения этих двух компонентов была отброшена в 1980-х годах; ученые пришли к их унификации для удобного и безопасного обслуживания.

Бланкет со встроенной наработкой трития и интегрированной первой стенкой реактора обеспечит защиту от высокоэнергетических нейтронов. В ИТЭР первая стенка будет изготовлена из бериллия, а для остальной поверхностной структуры будут использоваться высокопрочные медные сплавы и нержавеющая сталь. Для удобства обслуживания защитная стенка внутри реактора модульная, состоящая из 440 сегментов. Дивертор от англ.

Его главная функция — минимизировать плазменное загрязнение, а также отводить тепловые и нейтронные нагрузки от стенок реактора. Дивертор будет состоять из 54 кассетных сборок с опорной конструкцией из нержавеющей стали, бронированной вольфрамовыми плитками. Три главных плазменных звена: внутренняя и внешняя вертикальные мишени, центральный купол — составляют диверторную сборку. И для дивертора, и для бланкета будет внедрена система охлаждения, отводящая тепло от этих устройств и преобразовывающая его в электрическую энергию.

Вид вакуумного сосуда с основными положениями компонентов, обращенных к плазме: первой стенки, бланкета и дивертора Рис. Вид в поперечном разрезе основных компонентов стенки токамака Рис. Схематическое изображение диверторного узла Осторожно, «горящая плазма»! Один из важнейших критериев проекта — безопасность.

При осуществлении термоядерного синтеза не инициируется цепная реакция, а значит, при любом нарушении или прекращении подачи топлива плазма охлаждается в течение нескольких секунд и затухает, словно пламя. Тритий, содержащийся в топливе, будет вырабатываться в замкнутом контуре, поэтому должны строго соблюдаться меры безопасности при обращении с тритиевым топливом внутри реактора. Тритий — слабый бета-излучатель, он не проникает в человеческую кожу, но очень токсичен для организма при попадании через дыхательные пути.

Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили.

Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет?

То есть эта опция — она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция. Я не вижу никакого исхода, кроме приблизительно такого. Нравится мне это или нет. На этом программа была завершена. Реакция общества Московский политик Николай Королев отправил обращения в Следственный комитет и полицию после высказывания Маргариты Симоньян. Николай Королев попросил проанализировать рассуждения главного редактора RT. Высказался сегодня о перспективах термоядерного взрыва над Сибирью и мэр Новосибирска Анатолий Локоть , ответив на соответствующий вопрос NGS.

Ничего хорошего в наземных термоядерных взрывах нет.

Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте

все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание.

Термоядерный синтез вышел на новый уровень: подробности

Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

Действительно, заявления типа «Ученые США впервые в мире смогли получить от термоядерного синтеза больше энергии, чем на него потратили», «Научные прорывы в этой сфере позволят человечеству в будущем полностью отказаться от ископаемого топлива» существенно переоценивают значение эксперимента на установке NIF. Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно!

Этот сценарий, как бы, зеркально противоположен лазерному термояду. Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х. По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США.

Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном.

Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн.

Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».

В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина.

Плазму можно удерживать в магнитном поле, заставляя принимать различные формы, но она стремится занять наиболее энергетически выгодное для нее положение: подобно живому организму, она будет вырываться на свободу из жесткой «клетки» магнитной ловушки, если конфигурация последней ее не устраивает Шошин, Аникеев, 2007 Наши ученые выдвинули идею замкнутого магнитного термоядерного реактора. Проблема в том, что магнитное поле сжимает и удерживает плазму в поперечном направлении относительно силовых линий, а вот вдоль них плазма течет свободно, как по рельсам. Работа над созданием токамаков стала важнейшим шагом на пути к термоядерной энергетике. Этот параметр фактор Q , естественно, должен быть больше единицы. Для промышленной же электростанции значение Q должно быть не меньше пяти: только в этом случае заряженные альфа-частицы, которые вместе с нейтронами рождаются при термоядерной реакции, но, в отличие от последних, не покидают магнитную ловушку, будут способствовать поддержанию высокой температуры. Таким образом, при Q, равном пяти, достаточно один раз «зажечь» плазму, а потом никаких дополнительных манипуляций с реактором проводить уже не нужно. В идеале значение Q должно достигать десяти. Но создание подобной установки не под силу ни одной стране мира в одиночку.

Поэтому в 1980-х гг. Горбачев, президенты Р. Рейган США и Ф. Миттеран Франция поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора. Выбор пал на область Прованс на юго-востоке Франции. Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю. Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более. Наконец, уже в середине первого десятилетия нового века, началось строительство токамака ИТЭР.

Арцимович, внесший огромный вклад в реализацию советской программы по управляемому термоядерному синтезу, говорил, что термоядерная энергия будет освоена тогда, когда она действительно понадобится человечеству. Состоятельной и обоснованной критики проекта ИТЭР и термоядерной энергетики в целом на сегодня нет. В сборнике, недавно изданном нашим центром, представлено свыше трех десятков подобных новых технологий, которые уже активно внедряют в своих лабораториях и на производствах российские организации, участвующие в реализации проекта. Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т.

При таких колоссальных температурах ядра изотопов водорода сталкиваются и, преодолевая кулоновский барьер, сливаются, образуя ядра атомов гелия. В результате каждого акта такого синтеза должно выделиться 17,6 МэВ энергии. При нагревании топливная смесь приходит в состояние полностью ионизированной плазмы, словно в солнечном ядре, где каждую секунду сгорают тонны водорода, также превращаясь в гелий. Сверхпроводящие тороидальная и полоидальная катушки совместно с центральным соленоидом удерживают плазму внутри вакуумного сосуда реактора. Эти катушки генерируют магнитное поле, которое формирует плазму в тор. В 1950-х годах считалось, что MFE можно достичь относительно легко. Шла настоящая гонка: кто первым создаст подходящую установку. К концу 1950-х годов стало ясно, что турбулентность и нестабильность в плазме — серьезные проблемы. В 1968 году советская команда изобрела токамак, который показал производительность в 10 раз выше, чем альтернативные способы. Курчатова под руководством академика Льва Арцимовича. С тех пор считается наиболее перспективной идея токамаков с магнитным плазменным удержанием. Однако есть и другая концепция термоядерного синтеза — инициирование цепных реакций внутри реактора путем нагревания и сжатия топливной мишени с помощью мощного лазерного излучения так называемый инерционный синтез. Применяются мощные лазеры для того, чтобы зажечь небольшую мишень — ампулу, содержащую топливо, и быстро менее чем за одну миллиардную долю секунды достичь условий термоядерного синтеза. Лазер используется для генерации импульса инфракрасного света, который длится несколько миллиардных долей секунды с миллиардными долями джоуля энергии. У этой технологии есть свои подводные камни. Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им. NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча. ТОП-7 событий в области термояда в 2018 году: В марте специалисты отдела оптики низкотемпературной плазмы ФИАН представили систему контроля концентрации водяного пара в плазме, которая обеспечит безопасность водяной системы охлаждения термоядерного реактора. В апреле ученые Института ядерной физики им. Будкера представили технологию, позволяющую в реальном времени наблюдать поведение конструкционных материалов при термоядерном синтезе. В июле американская Lockheed Martin запатентовала дизайн компактного реактора CFR, прототипы которого были представлены еще в 2017 году. В августе в Оксфордском университете запущена импульсная установка FLF. В сентябре специалисты Токийского университета представили устройство для создания магнитного поля с полностью контролируемыми параметрами, причем магнитное поле экспериментально удается продержать 100 мкс — это абсолютный рекорд. В декабре исследователи из Управления по атомной энергии Великобритании сообщили о создании уникальной системы для охлаждения плазмы в токамаке охлаждение — одна из ключевых проблем в токамаках. Международный проект ИТЭР International Thermonuclear Experimental Reactor ITER — самый крупный в мире токамак, сложнейшая термоядерная экспериментальная машина, призванная продемонстрировать осуществимость технологий термоядерного синтеза и доказать, что термоядерная реакция может быть управляемой.

Эта плазма излучает тепловое рентгеновское излучение, которое уже и сжимает слоистую капсулу с топливом структура капсула показана в разрезе. Схема из статьи G. Brumfiel, 2012. Laser fusion put on slow burn Для равномерного давления на капсулу в установке NIF используется не только большое число лазерных лучей 192 синхронизованных луча, которыми можно независимо управлять , но и так называемое непрямое обжатие капсулы рис. Лазеры не светят прямо на поверхность капсулы, они освещают внутренность маленькой, сантиметрового размера, цилиндрической камеры, в центре которой находится слоистая капсула с топливом рис. Попадая на стенки камеры, лазерная вспышка резко ее испаряет и нагревает получившуюся плазму до 3 млн градусов. Плазма начинает светиться в рентгеновском диапазоне, и уже это рентгеновское излучение давит на капсулу. Такая схема работы позволяет получить более равномерное обжатие, а также позволяет избежать слишком быстрого испарения внешней оболочки капсулы. Центральная камера сантиметрового размера, внутри которой помещается капсула с топливом. Конечно, последствия термоядерной реакции были замечены, но эта реакция была слабоватой. Даже если сравнивать выделившуюся энергию с той энергией, которая непосредственно поглощается топливом, то выход тут до недавнего времени составлял от силы 20—30 процентов рис. Таким образом, NIF долгое время не удавалось даже достичь первой цели из приведенного выше списка. Результаты работы NIF за последние два с половиной года. По горизонтали отмечены отдельные лазерные «выстрелы» шестизначный номер кодирует год-месяц-день выстрела и для каждого выстрела показаны три величины: энергия, поглощенная топливом черная отметка , энергия, выделившаяся в термоядерном синтезе за счет сжатия синяя колонка , дополнительная термоядерная энергия, связанная с саморазогревом топлива альфа-частицами красная колонка. Полная высота колонки показывает всю термоядерную энергию, выделившуюся при выстреле. Правая часть гистограммы, отмеченная как «high foot», отвечает новому режиму сжатия капсулы. Вставка показывает распределение выстрелов на диаграмме двух величин: по горизонтали обобщенный критерий Лоусона GLC единица соответствует полноценному запуску реакции , по вертикали — доля нейтронного потока, вызванного разогревом альфа-частицами, по сравнению с прямым сжатием. Изображение из обсуждаемой статьи в Nature Вообще, надо сказать, что работает NIF очень неторопливо — два-три лазерных «выстрела» в месяц. Это и неудивительно: каждый выстрел уничтожает камеру с капсулой и требуется определенное время на ее установку, накопление энергии и подготовку нового выстрела. Из-за этой неторопливости и дороговизны всей установки к концу 2012 года сложилась угрожающая ситуация — руководству NIF пришлось даже отчитываться перед Конгрессом США о целесообразности продолжения этих исследований. Действительно, несколько десятков попыток в течение 2011—2012 годов не привели ни к какому улучшению, а вся работа NIF выглядела топтанием на месте. Тем ценнее то, что удалось в NIF реализовать в 2013 году. Исследователи научились эффективно применять новую схему управления лазерными лучами. Во-первых, они задавали определенный временной профиль мощности лазерного импульса, а во-вторых, они независимо настраивали частоту разных лазерных лучей, попадающих в камеру под разными углами. Это позволило настраивать зависимость от времени того рентгеновского излучения, которое возникает при испарении камеры и сжимает капсулу. Отчасти с оглядкой на формулы, а отчасти эмпирическим путем был подобран временной профиль, при котором температура испарившейся камеры сначала резко прыгает до миллиона градусов, а потом в два этапа — до 2,5 миллионов такой режим был назван профилем с высоким подножием, «high-foot». При таком нагреве в капсуле запускается три умеренно сильных ударных волны, которые вызывают меньшие деформации, чем раньше. В результате центр капсулы удается сжать до меньших размеров и больших плотностей, что приводит к повышению температуры и более эффективной термоядерной реакции. Действовать методом проб и ошибок — дело очень ответственное при таком неторопливом режиме работы. Первые несколько комбинаций параметров не принесли успеха, и только три последние попытки позволили резко повысить энергетический выход по сравнению со всеми прошлыми попытками рис. Рекордными оказались выстрелы, произведенные 27 сентября и 19 ноября прошлого года. Опубликованные в статьях результаты относятся прежде всего к этим двум сеансам работы. Рекордные выстрелы Наблюдение за результатами лазерного выстрела велось с помощью целого арсенала инструментов — применялось свыше 50 различных диагностических методик! Это позволило проследить за всеми аспектами схлопывания капсулы и восстановить физические условия в этом процессе.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Физик объяснил важность создания прототипа российского термоядерного реактора. Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF).

Похожие новости:

Оцените статью
Добавить комментарий