Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы.
Биотехнологии в современном мире презентация
Биотехнологии являются одной из самых быстрорастущих и инновационных отраслей. Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов. Industry expansion has followed such innovation. The global biotechnology market is currently valued at 752.8 Billion — and growing. The development of breakthrough health initiatives from biotech will. Фото Пипетка, уронившая синий химикат образца на молодое растение в пробирке, концепция исследования биотехнологии. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для. Смотрите онлайн видео «Презентация факультета биотехнологии и промышленной экологии» на канале «Волшебство VueJS» в хорошем качестве, опубликованное 28 ноября 2023 г. 16.
24.Биотехнология достижения и перспективы развития
Смотрите онлайн Презентация программы «Клеточная и молекулярная. 43 мин 57 с. Видео от 25 мая 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте! Лента новостей. Курс евро на 20 апреля EUR ЦБ: 99,58 (-0,95) Инвестиции, 19 апр, 16:51 Курс доллара на 20 апреля USD ЦБ: 93,44 (-0,65) Инвестиции, 19 апр, 16:51. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы. Одним из направлений биотехнологии является селекция – выведение ценных для человека сортов растений или пород животных. Главная» Новости» Конференции по биотехнологии в 2024 году в россии.
Презентации по экологической биотехнологии
ЗАДАЧИ, МЕТОДЫ И ДОСТИЖЕНИЯ - Презентация абсолютно бесплатно. Презентация биотические факторы среды взаимоотношения между организмами. Вас ждут стоковые изображения в HD по запросу «Биотехнология» и миллионы других стоковых фотографий, трехмерных объектов. В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием. Слайд 3Биотехнологией часто называют применение генной инженерии в XX—XXI веках Однако, термин относится. Работа ежегодной конференции охватывает следующие направления: «Сельскохозяйственная биотехнология»; «Пищевая биотехнология»; «Биоинформатика, клеточная и генетическая.
Презентация факультета биотехнологии и промышленной экологии
Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Биотехнологии. Биотехнология — наука, изучающая использование живых организмов и биологических процессов в производстве. Биотехнологии-драйвер развития территорий. Последние новости по теме биотехнологии: Исследование: 90% компаний Европы инвестируют в наукоемкие технологии. а так же попытаемся понять суть методов применяемых в биотехнологии и выясним необходимость данного направления в жизни человека.
Будущее в биотехнологии, генетике и селекции растений
Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование. Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток — клон.
В этом году Томский государственный университет выиграл конкурс крупнейшего фонда - Российской венчурной компании - на право провести всероссийскую акселерационную программу BioTechMed. Проект включает работу с регионами России, поиск и отбор стартапов. По итогам лучшие команды пройдут обучение и получат возможность найти инвестиции и поддержку и крупного бизнеса. Участники выставки «БИО 2014» действуют в области исследований и развития здравоохранения, производства продукции для сельского хозяйства, защиты окружающей среды, а также в области биотехнологий.
Главное опасение — как бы такие клетки не представляли риска в отношении развития рака.
Потому что главная опасность эмбриональных стволовых клеток заключается в том, что они генетически нестабильны и обладают способностью развиваться в некоторые опухоли после трансплантации в организм Приёмы генной инженерии позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределёнными признаками. Методы генной инженерии остаются ещё очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др. Селекция микроорганизмов является важнейшим направлением в биотехнологии. Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы. Слайд 16 Трансгенные продукты: за и против? В мире уже зарегистрировано несколько десятков съедобных трансгенных растений. Это сорта сои, риса и сахарной свеклы, устойчивых к гербицидам; кукурузы, устойчивой к гербицидам и вредителям; картофеля, устойчивого к колорадскому жуку; кабачков, почти несодержащих косточек; помидоров, бананов и дынь с удлиненным сроком хранения; рапса и сои с измененным жирнокислотным составом; риса с повышенным содержанием витамина А. Генетически модернизированные источники могут встречаться в колбасе, сосисках, мясных консервах, пельменях, сыре, йогуртах, детском питании, кашах, шоколаде, конфетах мороженом.
Слайд 17 Перспективы развития биотехнологии Все шире на промышленной основе применяется метод вегетатив- ного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал. Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств. Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов.
Кстати, благодаря ему с учебником уже успел познакомиться Президент России Владимир Путин. Возможно, кого-то заинтересует это направление, а кто-то захочет продолжить свою деятельность в данной сфере, - отметила в заключение Елена Бахтенко.
Добавим, что в рамках мероприятия прошло заседание Биотехнологического кластера Вологодской области. Участники обсудили вопросы формирования бюджета, вступление новых предприятий в кластер, а также организацию конференции по биотехнологиям, которая пройдет уже этой осенью. Учебные подразделения.
Презентация, доклад по теме Биотехнологии
Воспроизвести копии выдающихся по продуктивности животныхрекордистов. Клонирование человека Клони рование англ. Объекты, полученные в результате клонирования, называются клонами. Промышленная биотехнология Аборт искусственный аборт, от лат. По современным медицинским стандартам, аборт проводится, как правило, при сроке до 20 недель беременности или, если срок беременности неизвестен, при весе плода до 400 г Эвтана зия от греч. Клони рование англ. Трансплантация пересадка органов — это безальтернативный метод лечения заболеваний таких органов как печень, почка, поджелудочная железа, сердце, легкие и др.
Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы. Технологии искусственного оплодотворения , за разработку которых присуждена Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии. Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению. Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма - донора вируса, бактерии, растения, животного, гриба и его выделению Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма - донора вируса, бактерии, растения, животного, гриба и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные. В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными. Клонирование — это получение многочисленных копий гена, белка, клетки или организма Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы. Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли.
К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства. Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения. Слайд 17 Бионика Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика — это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике. Слайд 18 Экологическая биотехнология Биоремедиация Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов — растений, грибов, насекомых, червей и других организмов. Слайд 19 Клонирование Появление естественным путём или получение нескольких генетически идентичных организмов путём бесполого в том числе вегетативного размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование.
Подробнее Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни. В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма. Отдельно стоит выделить создание методов ранней неинвазивной диагностики жидкостная биопсия опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания. Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует. Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК, т. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных , фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК. В рамках первого проекта с участием специалистов ИМБ им. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов на стеклянной подложке и с гелевыми спотами , а также портативный флуоресцентный детектор для их анализа. Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. Энгельгардта Российской академии наук Москва еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий. Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое. На одном таком чипе на площади менее 2 см2 могут располагаться миллионы точек-спотов размером в несколько микрон. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию. Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования. Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С.
Вертикальные фермы и медицина: столичным школьникам рассказали о современных биотехнологиях
По словам автора труда, на написание пособия ушло два года. Издание состоит из трех разделов: «Общая биотехнология», «Частная биотехнология» и «Нанобиотехнология». Помимо Елены Бахтенко, в создании учебника принял участие профессор кафедры медицинских нанобиотехнологий Российского национального исследовательского медицинского университета им. Пирогова Павел Курапов, а редактором выступил вице-президент Российской академии наук Владимир Чехонин. Кстати, благодаря ему с учебником уже успел познакомиться Президент России Владимир Путин.
Красногвардейское, Ставропольский край, 1 класс Научный руководитель: Горяйнова Ирина Алексеевна С давних времен люди, занимавшиеся растениеводством, стремились увеличить, ускорить рост и развитие растений, повысить урожайность. Для этих целей использовали как органические, так и минеральные удобрения, биостимуляторы. Исследование влияния натуральных биологических стимуляторов на рост и развитие растений является актуальной проблемой. Мы попробовали себя в роли исследователей-биотехнологов, провели эксперименты и выяснили, благодаря чему бобовое дерево из старинной английской сказки смогло дорасти до небес.
Например, гормоны раньше, как правило, получали из органов и тканей животных. Даже для получения небольшого количества ле чебного препарата требовалось много исходного материала.
Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог. Так, инсулин, гормон поджелудочной железы, — основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей. В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина. С помощью генной инженерии этот ген был введен в бактериальную клетку, которая в результате приобрела способность синтезировать инсулин человека. С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней. Cлайд 13 Биотехнология в медицине Cлайд 14 Метод стволовых клеток: лечит или калечит?
Японские ученые под руководством профессора Синья Яманака из Университета Киото впервые выделили стволовые клетки из человеческой кожи, предварительно внедрив в них набор определенных генов. По их мнению, это может послужить альтернативой клонированию и позволит создать препараты, сравнимые с теми, что получаются при клонировании человеческих эмбрионов. Американские ученые практически одновременно получили аналогичные результаты. Но это не означает, что через несколько месяцев можно будет полностью уйти от клонирования эмбрионов и восстанавливать работоспособность организма при помощи стволовых клеток, полученных из кожи пациента.
Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна.
Cлайд 10 Клонирование Клонирование овцы Долли в 1996 году Яном Вильмутом и его коллегами в Рослинском институте в Эдинбурге вызвало бурную реакцию во всем мире. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием "перенос ядра", то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. Cлайд 11 Клонирование овцы Долли Cлайд 12 Новые открытия в области медицины Особенно широко успехи биотехнологии применяются в медицине. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны. Например, гормоны раньше, как правило, получали из органов и тканей животных.
Даже для получения небольшого количества ле чебного препарата требовалось много исходного материала. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог. Так, инсулин, гормон поджелудочной железы, — основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей.
В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина.
#биотехнологии
В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения. Слайд 9 Первый антибиотик — пенициллин пенициллин— удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов. Флеминг Слайд 10 Биоинженерия или биомедицинская инженерия это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач. Слайд 11 Важные достижения биоинженерии Среди важных можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Слайд 12 Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Слайд 14 Наномедицина Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли.
Таким образом им удается получать различные вещества, гораздо более дешевые, чем оригиналы — от пряностей ваниль, шафран, экстракты цитрусовых и сандалового дерева до лекарств пока известно о морфине и противомалярийном препарате артемизинине. Методы биосинтеза с использованием микроорганизмов встречают в мире гораздо меньшее сопротивление, чем выращивание генно-модифицированных растений. Связано это с тем соображением, что в качестве продукции биосинтеза человеком употребляются не сами микроорганизмы, а продукты их метаболизма. Считается, что методы контроля качества исключают попадание генетического кода бактерий и грибов в конечный продукт, и этот продукт ничем не отличается от природного оригинала. Нельзя, правда, не вспомнить о случае в США в конце 80-х годов, когда бактерия, генно-модифицированная для производства пищевой добавки триптофан, стала вдруг по неизвестным причинам также вырабатывать токсичное вещество этилен-бис-триптофан.
В результате употребления пищевой добавки погибло 38 человек, и более тысячи стали инвалидами. К счастью, в дальнейшем подобных крупных инцидентов не было зафиксировано. Перспективы: Очень хорошие. Единственные недовольные голоса раздаются от разоряющихся производителей тех натуральных веществ, чья продукция постепенно вытесняется биосинтезом. Впрочем, подобные соображения в мире ещё никого не останавливали.
Биотехнология активно применяется в целях очистки всех компонентов биосферы воды, почвы, воздуха и др. Кроме того, существенным является не только сам процесс очистки, но и возможность использования выделенных отходов в качестве вторичного сырья. Существуют микроорганизмы, для которых загрязнения, содержащиеся в сточных водах, являются питательными веществами. В начале ХХ века произошла революция в очистке сточных вод с помощью активного ила - сложной смеси микроорганизмов. Хотя при этом требуется перемешивать жидкость и непрерывно аэрировать её воздухом, такой способ позволяет перерабатывать большие объёмы стоков с самыми разнообразными загрязнениями от хозяйственно-бытовых до промышленных.
Оставшийся ил затем подвергают брожению с получением ценного удобрения. Многие выбросы в атмосферу содержат вредные или дурно пахнущие примеси. Для их очистки применяют биофильтры, заполненные насадкой, на которой закреплены специальные микроорганизмы. Вредные примеси сорбируются на насадке и затем потребляются и обезвреживаются микроорганизмами. С утилизацией твердых отходов дело обстоит сложнее.
Например, различные пластмассы, составляющие сейчас, наверное, основной компонент городских свалок, разлагаются в естественных условиях за сотни лет. Эффективной технологии микробиологической переработки пластмассы пока не найдено. Тем не менее, недавно появились сообщения, что на пластиковом мусоре, скапливающемся в океанах в виде плавучих островов, обнаружены обширные колонии микроорганизмов. На поверхности пластика при тщательном осмотре были найдены микроскопические трещины и ямки, появление которых косвенно демонстрирует способность данных микробов разлагать углеводороды. Это оставляет надежду на разработку технологии биодеградации пластмасс в ближайшем будущем.
Описаны также опыты по успешному очищению почвы от загрязнения пестицидами, ртутью и тяжелыми металлами. Опытные участки засеиваются модифицированными бактериями, способными перерабатывать или связывать опасные вещества. Причем бактерии высеиваются вместе с питательным веществом, дозировка которого строго рассчитана. По прошествии определенного срока времени питательное вещество заканчивается и бактерии, сделав своё дело, погибают. Так предотвращается неконтролируемый рост модифицированных бактерий.
Технология, безусловно, будет в дальнейшем развиваться. В 2010 году в Мексиканском заливе в ликвидации последствий разлива нефти участвовали бактерии-деструкторы, выведенные российскими учеными. Перспективы: С неизбежностью хорошие. Переработка промышленных и бытовых отходов микроорганизмами - дело, конечно, хлопотное. Особенно по сравнению с излюбленным традиционным методом утилизации - «свалил всё в овраг и забыл».
Однако непрекращающийся рост промышленного производства и вообще населения Земли просто не оставляют альтернатив биологическим методам переработки отходов и загрязнений. Биогаз — газ, получаемый водородным или метановым брожением биомассы. Метановое разложение биомассы происходит под воздействием трёх видов бактерий. В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид — бактерии гидролизные, второй — кислотообразующие, третий — метанообразующие.
Одной из разновидностей биогаза является биоводород, где конечным продуктом жизнедеятельности бактерий является не метан, а водород. Биогаз можно получать практически из любого органического сырья. Раньше биогаз ассоциировался только с навозом, но сейчас его также получают из разнообразных отходов пищевой промышленности. Даже из отходов деревообрабатывающей промышленности можно извлекать биогаз, хотя целлюлоза и лигнин разлагается бактериями дольше. Биогаз используют в качестве топлива для производства электроэнергии, тепла или в качестве автомобильного топлива.
Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. В ряде стран Европы активно используются автобусы на биогазе. В развивающихся странах Азии строят недорогие малые односемейные биогазовые установки. Получаемый в них газ используется для приготовления пищи. Больше всего малых биогазовых установок находится в Китае — более 40 млн биогазовых установок.
В биогазовой индустрии Китая заняты 60 тысяч человек. Еще одно перспективное биотопливо - обычный этанол, получаемый в процессе переработки растительного сырья.
Представила учебник по биотехнологии сама Елена Бахтенко. По словам автора труда, на написание пособия ушло два года. Издание состоит из трех разделов: «Общая биотехнология», «Частная биотехнология» и «Нанобиотехнология».
Помимо Елены Бахтенко, в создании учебника принял участие профессор кафедры медицинских нанобиотехнологий Российского национального исследовательского медицинского университета им. Пирогова Павел Курапов, а редактором выступил вице-президент Российской академии наук Владимир Чехонин.
На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных. На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран. Требуется взаимодействие между людьми разных специальностей, это дает толчок к развитию», — обратился с приветствием к участникам Алексей Николаевич Фёдоров, директор ФИЦ Биотехнологии РАН. На торжественном открытии академик РАН Владимир Олегович Попов, научный руководитель ФИЦ Биотехнологии РАН, рассказал о направлениях работы Центра, его достижениях и ведущих проектах, а также подчеркнул значимость международной кооперации при реализации научных исследований. Господин Субрата Дас, Министр образования и социального обеспечения Посольства Республики Индия в РФ, отметил, что сотрудничество в развитии научных исследований и технологий — важнейшая часть отношений между Россией и Индией, а направления сотрудничества в области разработок для сельского хозяйства и энергетики являются одними из самых привлекательных для сотрудничества и инвестиций.
Презентация программы «Клеточная и молекулярная биотехнология» — Video
При аэробной очистке «работают» бактерии, которые окисляют органические вещества и способствуют осаждению загрязняющих частиц. Анаэробная биологическая очистка эффективна при больших концентрациях загрязняющих веществ, так как анаэробные бактерии, осуществляющие процессы очистки, не нуждаются в присутствии растворённого в воде кислорода. На конечной стадии анаэробной очистки происходит выделение метана. Если в медицинских целях необходимо использовать чужеродные для человеческого организма энзимы, то во избежание аллергических реакций ферменты иммобилизируют. Ферменты используют в пищевой промышленности при производстве пива, выпечке хлеба, приготовлении кисломолочных продуктов, осветлении фруктовых соков рис.
В рамках данного проекта уже функционирует крупнейшая в области лаборатория клонального микроразмножения с производственной мощностью 500 тыс растений в год, где работают квалифицированные специалисты данного направления, прошедшие обучение в Мичуринском государственном аграрном университете и других профильных научных учреждениях. Следующим этапом проекта станет создание сети биотехнологических комплексов по производству безвирусного посадочного материала плодовых, ягодных и декоративных садовых культур в каждом федеральном округе нашей страны, что позволит обеспечить потребности всех федеральных округов в качественном посадочном материале сортов плодовых и ягодных культур, адаптированных к местным климатическим условиям. Одновременно будет полностью решена проблема импортозамещения. Общий объем производства составит 59 млн.
В результате реализации данных проектов будет создана научно-производственная биотехнологическая школа по всем федеральным округам страны с общей численностью более 600 научных сотрудников, импортозамещение посадочного материала обеспечит стабильные инвестиции во все отрасли отечественного садоводства, российские производители плодово-ягодного сырья будут полностью обеспечены качественным отечественным посадочным материалом, российские сорта будут выведены на мировой рынок, отечественные потребители получат качественную плодово-ягодную продукцию в объемах, которые позволят устранить дефицит необходимых биологически-активных веществ в организме.
Формально это применение научных и инженерных принципов к переработке материалов живыми организмами с целью создания товаров и услуг. В историческом смысле биотехнология возникла тогда, когда дрожжи были впервые использованы при производстве пива, а бактерии — для получения иогурта. Слайд 6 Молекулярная биотехнология использует достижения многих областей науки и позволяет создавать широкий ассортимент коммерческих продуктов и методов.
После фильтрации жидкость, известная как сусло, смешивается с хмелем и кипятится. Приготовление направлено на растворение ингредиентов хмеля, выпаривание воды и стерилизацию. Затем сусло перекачивается в специальный чан, в него добавляются отборные пивные дрожжи, которые производят спирт и углекислый газ.
Ферментация занимает от нескольких дней до нескольких недель. Затем будущее пиво фильтруется и выдерживается. Выпечка хлеба и мучных изделий Местом, где используется процесс ферментации, являются также пекарни и кондитерские. В пшеничную муку добавляют дрожжи, чтобы взбить тесто. Пекарские дрожжи выделяют много углекислого газа, который раздувает тесто, увеличивая его объем. Для ржаного хлеба нужна закваска, содержащая молочнокислые бактерии. Его приготовление заключается в том, чтобы подвергнуть муку процессу брожения.
Для этого муку смешивают с водой и ставят на несколько дней в теплое место. Приготовленную таким образом закваску добавляют к ржаной муке, чтобы распушить тесто и придать ему отчетливый кислый вкус. Создание антибиотиков Особую роль в лечении смертельных бактериальных заболеваний сыграло промышленное производство природных антибиотиков. Первый антибиотик — пенициллин — был открыт случайно в 1928 году. Александр Флеминг выращивал очень опасные бактерии стафилококка. Однажды он забыл закрыть ферму для размножения. Вернувшись в лабораторию, он заметил, что на чашке появилась зеленовато-голубая плесень, вокруг которой не было колоний бактерий.
Флеминг пришел к выводу, что плесень выделяет бактерицид. Веществом, тормозившим рост бактерий, оказался грибок Penicillium. Экстракт, выделенный из гриба, назвали пенициллином. Это открытие было прорывом, потому что до появления первого антибиотика любой даже небольшой порез мог привести к необходимости ампутации инфицированной конечности или к смерти, а туберкулез и венерические заболевания наносили огромный урон здоровью.