Новости когда минус на минус дает плюс

4 февраля фондом «Петербургская политика» были опубликованы данные за январь 2013года, определяющие уровень социально-политической устойчивости российских регионов. Ведь здесь, если не приложить усилий и не избавиться от «минусов», никакие законы математики не помогут — сколько ни складывай, ни перемножай, а недочеты и упущения по-прежнему останутся таковыми. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус". Лучший ответ: Таня Масян. минус на минус даёт плюс, плюс на плюс даёт плюс, плюс на минус даёт минус. более месяца назад.

Правила умножения и деления отрицательных чисел

Например, сегодня от индекса экономических настроений институциональных инвесторов Германии (ZEW) никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7. Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы. Правда, в 2014 году она вернула ее на положительный уровень, а в 2015-м снова загнала ставку «в минус». Если мы умножаем «минус» на «минус», то получим «плюс».

Минус на минус даёт плюс

В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе.

Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример?

Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку.

Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать.

Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны.

А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс».

Теперь представим ситуацию, когда температура не повышается со временем, а понижается бывает и такое на те же 2 градуса в час.

Понижение температуры означает ее изменение на -2 градуса каждый час. Для большей правдоподобности у нас на часах 23-00, а на термометре все тот же 0 градусов по Цельсию. А какая температура была в 20-00? Проверим, двигаясь вверх по шкале на два градуса за каждый час. В итоге имеем те же 6 градусов по Цельсию.

Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще.

Вычитание действуют полностью по такому же принципу. Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием?

С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами.

В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами.

Лучший ответ:

  • Минус на минус дает плюс - Мир финансов -
  • Сложение и вычитание отрицательных и положительных чисел. Решение примеров.
  • Минус на минус дает плюс . НСОТ решили усовершенствовать – Учительская газета
  • Что дает плюс на минус в математике
  • Когда минус на минус дает плюс?
  • Когда минус на минус дает плюс? - Ответ найден!

Правило знаков

  • Актуальное
  • Отрицательные числа
  • Минус На Минус Дает Плюс!
  • Правило знаков

Причина, по которой минус на минус дает плюс

  • Математика плюс на плюс: Минус на плюс что дает?
  • Другие вопросы
  • Причина, по которой минус на минус дает плюс
  • «Минус» на «Минус» дает плюс?
  • Публикации

Когда два минуса дают плюс. Как понять, почему ";плюс"; на ";минус"; дает ";минус";

Со временем математики установили, что после исследования свойств операций результаты станет возможно применять ко всем этим совокупностям объектов. Точно так же работают и в современной математике. Больше интересных материалов: Сугубо математический подход С течением времени математики выявили новый термин — кольцо. Под кольцом подразумевают множество элементов и операции, которые можно над ними производить. Основополагающими становятся правила те самые аксиомы , которым подчиняются действия, а не природа элементов множества. Для того, чтоб выделить первостепенность структуры, возникающую после введения аксиом, как раз обычно и употребляют термин «кольцо»: кольцо целых чисел, кольцо многочленов и т. Используя аксиомы и исходя из них, можно выявлять новые свойства колец. Сформулируем правила кольца, похожие на аксиомы операций с целыми числами, и докажем, что в любом кольце при умножении минуса на минус выходит плюс. Уточним, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости операция деления не всегда возможна , ни существования единицы — нейтрального элемента по умножению. Если ввести данные аксиомы, получим другие алгебраические структуры, однако со всеми действующими теоремами, доказанными для колец.

Рабочая тетрадь содержит различные виды заданий на усвоение и закрепление нового материала, задания развивающего характера, дополнительные задания, которые позволяют проводить дифференцированное обучение. Тетрадь используется в комплекте с учебником «Математика. Мерзляк, В. Полонский, М. Якир , который входит в систему учебно-методических комплектов «Алгоритм успеха». Из этого получим утверждения про единицы: Далее следует доказать некоторые моменты. Во-первых, нужно установить существование лишь одной противоположности для каждого элемента. Допустим, наличие у элемента А два противоположных элемента: B и С. Отметим, что и A, и - -A противоположны к элементу -A.

Отсюда заключаем, что элементы A и - -A должны быть равны. Получается, это произведение равно нулю. Следующая пословица В книге Владимира Левшина «Магистр рассеянных наук» есть математическая притча, в которой к богатому человеку пришел бедняк и предложил умножить имущество миллионщика. Правда, бедняк сразу же оговорился, что умножая состояние богача, он на то же число умножит и собственные средства. Движимый алчностью богач согласился на это условие, действие по умножению было совершено. Миллионщик бросился к своим сундукам, но вместо золота обнаружил только долговые расписки, согласно которым он обязался вернуть различным людям крупные суммы денег. На вопрос, где моё золото? Бедняк ответил: "Теперь у меня. Мы договорились умножить наши состояния, вот я и умножил.

У бедняка были исключительно долги отрицательная сумма денег и при умножении на отрицательное число получилось крупное состояние. Ну а богач при умножении своего состояния на отрицательное число оказался в долгах как в шелках. Приведенная притча как нельзя лучше иллюстрирует математическое правило умножения на отрицательное число. Но как это обосновать и объяснить наглядно? Строгое доказательство того, что умножение двух отрицательных чисел даст в итоге положительный результат, приводится в таком разделе математики как «Теория чисел». Однако вряд ли среди читателей канала много людей знакомых с математическим понятием «кольцо», а тем более с его бинарными операциями. Поэтому оставим строго математическое доказательство через аксиоматику кольца для математиков, а сами обратимся к доказательствам логическим. Доказательство первое Сейчас мы воспользуемся «математической логикой». Есть там «закон отрицания отрицания», который гласит, что если неверное утверждение неверно, то оно - истинное.

На примере это можно пояснить так: неверно, что неверно, что Москва столица Российской Федерации. Значит утверждение «Москва является столицей РФ» правдиво. Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение. Перепишем последнюю строчку: Мы уже знаем правильный ответ. А сейчас повторно решим наше уравнение, вот только постоянные соберем слева от знака равенства, а переменные справа. Получили, что при умножении двух отрицательных чисел результат оказывается положительный.

Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность!

Самым устойчивым регионом была названа Мордовия с результатом в 8,9 балла, следом идут Тамбовская, Амурская и Тюменская области с одинаковым результатом — 7,9 балла. Самую большую группу составили области с высоким уровнем устойчивости — от 7 до 7,9 баллов. Среди них оказалась и омская область, заняв 31-е место. У омского региона 7 баллов. Такой же результат показали Ставропольский край и Калининградская область. Что интересно, так это баланс позитивных и негативных событий, которые продемонстрировала Омская область. Негативных оказалось намного больше, чем позитивных, и почти все они носят коррупционный характер.

А чтобы не садились на шею — нужно объяснять и показывать, что мы оба люди, мы одинаковы, но в то же время держать субординацию, указывать на ошибки и не позволять лишнего. Про терпение: я его черпаю из книг. Чтение очень успокаивает и приводит чувства в гармонию. И люблю больше бумажную книгу: ее запах, хруст страниц придают какую-то магию в чтении. На смартфоне тоже читаю много. Особенно летом, во время отпуска, на просторах интернета начинаю искать и читать пьесы. К сентябрю намечаю примерно 10—12 пьес, которые потом обсуждаю уже с детьми, слушаю их мнение, и вместе мы выбираем пару пьес для постановки, остальные откладываем в «потайной ящик». Видите, я говорил вам, что чем больше работаешь с текстом, проживая его, тем лучше. А теперь послушайте, какие ошибки у кого были… — тут молодой педагог открыл толстый блокнот с множеством пометок и знаков и начал с ребятами разбор полетов. После возвращения из Красноярска Павел Викторович сообщил, что на фестивале им удалось получить призовые места. Четыре их номера заняли третье место, семь номеров — второе место и четыре номера — первое. А для меня самой значимой наградой всегда остаются аплодисменты после каждого спектакля, эмоции и слова благодарности от зрителей и детей, самые искренние и настоящие. А когда им помогаешь развиваться — они меняются на глазах. Многие ребята переосмыслили свою жизнь кардинально, поучаствовав в спектакле, некоторые благодаря репетициям нашли друзей, помогли родителям взглянуть на жизнь по-другому».

Действия с минусом. Почему минус на минус дает плюс

Ну ок, ты доказал что плюс на минус дает минус тогда и только тогда, когда существует такое некое i, которое равно корню из минус единицы. но согласно более ранним правилам, такого числа не существует. Минус на минус дают плюс. В последнем варианте как раз минус на минус дает плюс.

Правила знаков

Готовься к ОГЭ и ЕГЭ по математике вместе со мной: мне, чтобы задать вопрос или записаться на курсы подготовки. Это первое впечатление, со временем все минусы -оказываются плюсы. Обдумай данную ситуацию и в спокойной обстановке прими решение. «Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие.

Почему минус на минус дает плюс?

минус на минус дает плюс. Ну ок, ты доказал что плюс на минус дает минус тогда и только тогда, когда существует такое некое i, которое равно корню из минус единицы. но согласно более ранним правилам, такого числа не существует. Поэтому умножение минус на минус дает плюс.

Почему минус на минус всегда даёт плюс?

Так вот жена моя взяла наглость каждый раз при их битвах тыкать мне о законах природы и мужской конкуренции в отношениях. Мне стало жалко горемыку-дохляка, пошёл я в тот же магазин и купил 2-х самочек, не иначе. Отношения в прайде резко изменились, самочка стала резко недовольна пополнением, за моего дохляка участились даже драки среди самок. Жена молчала.

Это и есть определение. Это нетрудно запомнить, но трудно понять. В конце концов, в реальной жизни почти нет отрицательных чисел: Нельзя представить, что существует — 2 яблока или — 3 карандаша. Вы можете понять, что такое действительное число, что такое отсутствие чисел, но что такое отрицательные числа понять гораздо сложнее. Фактически, любое отрицательное число можно представить как отсутствующий ноль. Например, — 3 означает, что при вычитании вычитающий не добрал три единицы до нуля. Чаще всего это встречается в бухгалтерских отчетах и финансовой отчетности. Правило знаков В этой теме часто встречается понятие правила знаков, которое рассматривается на уроках математики в шестом классе. Стоит проанализировать эту тему.

Это связано с тем, что правило знака является производным от правил умножения для отрицательных и положительных чисел. А умножение «плюса» на «минус» дает «минус». Эти правила легко запомнить, поэтому вам не придется беспокоиться о том, чтобы каждый раз получать множественные числа. Сложение и вычитание отрицательных чисел Давайте рассмотрим каждый процесс отдельно, чтобы не возникало лишних вопросов. Сложение отрицательных чисел Вычитание отрицательных чисел Вычитание может быть выполнено между: Два отрицательных числа. В этом случае «минус», умноженный на «минус», дает «плюс». После этого мы видим выражение из предыдущего пункта, которое представляет собой сложение отрицательного числа с положительным. Нам нужно поменять местами числа и выполнить вычитание. С отрицательным числом и положительным числом.

Это приводит к той же ситуации, что и сложение двух отрицательных чисел. Так же, как «минус» умножить на «плюс», получается «минус». Полученные числа складываются по модулю, а затем «минус» возвращается к результату. Положительные и отрицательные числа. Этот случай является любимым у авторов примеров. При преобразовании по правилу знаков «минус» в «минус» получается «плюс». Таким образом, результатом является сложение двух положительных чисел.

Это всего-навсего множество элементов плюс действия, которые можно над ними производить.

Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты.

Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Значит, это произведение равно нулю.

По вопросам, связанным с использованием контента Правообладателей, не имеющих Лицензионных Договоров с ООО «АдвМьюзик», а также по всем остальным вопросам, просьба обращаться в службу технической поддержки сайта на mail lightaudio.

Почему минус на минус даёт плюс ?

Минус, умноженный на минус, дает плюс; минус, умноженный на плюс, дает минус; а знаком минуса является усеченный Ψ, перевернутый вверх ногами, таким образом, Λ [с третьей центральной ветвью]. А название темы "Минус на минус не дает плюс", свидетельствует, что ты умножаешь минус на плюс. Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Если рассматривать долг как произведение, то можно объяснить, почему минус на минус дает плюс, а плюс на минус дает минус. Правда, в 2014 году она вернула ее на положительный уровень, а в 2015-м снова загнала ставку «в минус». Правда, в 2014 году она вернула ее на положительный уровень, а в 2015-м снова загнала ставку «в минус».

Похожие новости:

Оцените статью
Добавить комментарий