Новости 26 задача егэ информатика

Смотрите видео онлайн на Смотрите сериалы бесплатно, музыкальные клипы, новости мира и кино, обзоры мобильных устройств. Задание 3. Демоверсия ЕГЭ 2018 информатика (ФИПИ): На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах). Примеры заданий: Задание 26 Простое задание (Решу ЕГЭ). В этой статье посмотрим некоторые задачи из 26 задания ЕГЭ по информатике.

5 самых сложных задач из ЕГЭ по информатике в 2023 году — и как их решать

Задание 26 (ЕГЭ 2023 г.) Задание выполняется с использованием прилагаемых файлов. За это задание вы можете получить 2 балла на ЕГЭ в 2024 году. Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки.

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

Грузы массой от 200 до 210 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся. На оставшееся после этого место стараются взять как можно больше грузов. Если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу. Если и при этом условии возможно несколько вариантов, выбирается тот, при котором наибольшую массу имеет второй по величине груз, и т. Известны количество грузов, масса каждого из них и грузоподъёмность грузовика.

Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000.

В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе. Скачать Вариант 2. В текстовом файле записан набор натуральных чисел, не превышающих 109. Гарантируется, что все числа различны.

Необходимо определить, сколько в наборе таких пар чётных чисел, что их среднее арифметическое тоже присутствует в файле, и чему равно наибольшее из средних арифметических таких пар. Входные данные Первая строка входного файла содержит целое число? Каждая из следующих?

Входные данные находятся в файле. Связанные страницы:.

Преемственность с C3-2012 видна из разбора К. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3.

Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию. Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход.

В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. Будем говорить, что игрок имеет выигрышную стратегию , если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы.

На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S.

Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней. В обоих случаях игрок, который будет делать ход теперь это Валя , проигрывает смотрите пункт 1б. После первого хода Паши в куче может стать либо 8, либо 14 камней. В обеих этих позициях выигрывает игрок, который будет делать ход теперь это Валя. В таблице изображено дерево возможных партий при описанной стратегии Вали. Заключительные позиции в них выигрывает Валя подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы. Дерево всех партий, возможных при Валиной стратегии. Два игрока, Паша и Вова, играют в следующую игру.

За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней.

Pascal в ЕГЭ по информатике

Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом.

Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19.

Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней.

При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней. В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход.

Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней.

Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом. Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом.

Достаточно указать хотя бы одно верное значение. Два игрока, Паша и Вова, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова.

Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче.

При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней. Тогда после первого хода Паши в куче будет 31 камень или 40 камней. Возможные значения S: 20, 29. Возможное значение S: 28. После первого хода Паши в куче будет 29 или 38 камней.

Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 29 камней, разобрана в п. В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции в них выигрывает Вова подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы.

Два иг-ро-ка, Петя и Ваня, иг-ра-ют в сле-ду-ю-щую игру. Перед ними лежат две кучки кам-ней, в пер-вой из ко-то-рых 2, а во вто-рой - 3 камня. У каж-до-го иг-ро-ка не-огра-ни-чен-но много кам-ней. Иг-ро-ки ходят по оче-ре-ди, пер-вый ход де-ла-ет Петя.

Здесь представлены материалы для подготовки к ЕГЭ по информатике. В отличие от известной литературы, для большинства задач из демо-вариантов ЕГЭ сравниваются несколько способов решения, анализируются их достоинства и недостатки, возможные проблемы и «ловушки».

Приведены рекомендации, позволяющие выбрать эффективные методы решения каждой конкретной задачи. Автор признателен О. Тузовой г. Санкт-Петербург за обсуждение этих материалов и конструктивную критику. Спасибо всем, кто присылал и присылает мне замечания, предложения, сообщения об опечатках и неточностях. Особая благодарность Н.

В данной задаче под парой подразумевается два идущих подряд элемента последовательности. Файл с данными: 17. Задание 22 Демо-2022 Ниже на языке программирования записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа: L и M. Укажите наибольшее число x, при вводе которого алгоритм печатает сначала 4,а потом 5. Определите максимальное количество идущих подряд символов в прилагаемом файле, среди которых нет идущих подряд символов P. Для выполнения этого задания следует написать программу.

Если и при этом условии возможно несколько вариантов, выбирается тот, при котором наибольшую массу имеет второй по величине груз, и т.

Известны количество грузов, масса каждого из них и грузоподъёмность грузовика. Необходимо определить количество и общую массу грузов, которые будут вывезены при погрузке по вышеописанным правилам. Входные данные: Первая строка входного файла содержит два целых числа: N — общее количество грузов и M — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число — массу груза в кг.

ЕГЭ по информатике с решением

Задания 26. Обработка целочисленной информации — Студия Компьютерного Мастерства 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова ().
ЕГЭ по информатике 2023 В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода.
ЕГЭ по информатике 2023 - Задание 26 (Сортировка) Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград.
Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация Смотрите видео онлайн на Смотрите сериалы бесплатно, музыкальные клипы, новости мира и кино, обзоры мобильных устройств.

Pascal в ЕГЭ по информатике

Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход.

Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Разбор 27 задания демоверсии 2018 года ФИПИ : На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен.

По таблице определяем искомую длину тропинки между Д5 и Д6 — 4. Ответ: 4 Задание 3 10268 На рисунке представлена схема дорог около города Максимовка. Определите, какие номера населенных пунктов в таблице могут соответствовать населенным пунктам Ж и З на схеме. Заметим, что пункт А уникален том смысле, что из него выходит уникальное число дорог, а именно одна. Заметим, что городов, от которых выходит по четыре дороги, всего два — Б и Ж. Теперь поймем, какой номер соответствует городу З.

Так как из него выходят две дороги так же, как из пункта В, то и З, и В могут соответствовать номера 7 и 8. Заметим из таблицы, что П8 связан с П2, следовательно, П8 — это город В. В ответ запишем номера искомых пунктов в порядке возрастания — 17. Ответ: 17 Задание 4 10269 Аня и Таня нашли карту сокровищ. На рисунке представлена схема мостов между островами в океане Z. В таблице содержатся сведения о длине моста от одного острова к другому.

Отсутствие значения означает, что такого моста нет. Каждому острову на схеме соответствует его номер в таблице, но неизвестно, какой именно. Чтобы спланировать путешествие, Ане и Тане нужно определить длину моста между островами Ж и Е. Заметим, что острова Д и Е уникальны в том смысле, что от них построено уникальное число мостов: от Д — два, от Е — четыре. Заметим, что от остальных островов отходит по три моста.

Ответ на задачу 20 : 31; 34. В задании 21 требуется найти минимальное значение S, при котором одновременно выполняются два условия: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Разбор 21 задания ЕГЭ по информатике. Также следует учесть, что иногда Ваня может вместо создания этой особой позиции просто сразу выиграть, получив 77 и более камней в кучках. Все варианты перебраны. Так как мы ищем значения s, при которых Ваня выигрывает независимо от действий Пети, то мы должны взять пересечение победных для Вани значений s из всех четырёх веток перебора. А именно взять пересечение четырёх найденных множеств: 1. Так как в условии требовалось найти минимальное подходящее s, то в ответ следует записать число 30.

Если таких рядов несколько, укажите минимально возможный номер. Входные данные Первая строка входного файла содержит целое число N — общее количество частиц, попавших на экран. Каждая из следующих N строк содержит 2 целых числа: номер ряда и номер позиции в ряду.

Разбор 26 задания ЕГЭ 2023 по информатике ( python )+ досрочный период 2023

Запрещается использовать переменные, не описанные ниже, но разрешается не использовать некоторые из описанных переменных. В качестве ответа Вам необходимо привести фрагмент программы, который должен находиться на месте многоточия. Вы можете записать решение также на другом языке программирования укажите название и используемую версию языка программирования, например Free Pascal 2. В этом случае Вы должны использовать те же самые исходные данные и переменные, какие были предложены в условии. Перед игроками лежит куча камней.

Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани.

По заданной информации об объёме файлов на компьютере и свободном объёме на диске определите максимальное число файлов, которые могут быть перенесены за один раз на внешний жесткий диск, а также максимальный размер файла, записанного на этот диск, при условии, что перенесено наибольшее возможное число файлов. Выходные данные Запишите в ответе два числа: сначала наибольшее число файлов, которые могут быть перенесены на внешний жёсткий диск за один раз, затем максимальный размер перенесённого файла, при условии, что перенесено наибольшее возможное число файлов.

Если вариантов переноса несколько, выберите тот, при котором будет перенесён наибольший файл.

Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая.

Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках.

Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре?

Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза.

Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход.

В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.

Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

Побеждает тот игрок, который называет последнюю букву любого слова из набора. Петя ходит первым. Определить выигрышную стратегию. В первом слове 99 букв, во втором 164.

Задание 2 Необходимо поменять две буквы местами из набора пункта 1А в слове с наименьшей длинной так, чтобы выигрышная стратегия была у другого игрока. Объяснить выигрышную стратегию. У кого из игроков есть выигрышная стратегия? Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии.

Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии.

Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней.

Демо В файле файл возьмите из архива содержится последовательность натуральных чисел, каждое из которых не превышает 100 000. Определите количество троек элементов последовательности, в которых ровно два из трёх элементов являются трёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 13. Гарантируется, что в последовательности есть хотя бы одно число, оканчивающееся на 13. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

Задание 26. Алгоритмы сортировки. Обработка целочисленной информации.. ЕГЭ 2024 по информатике

@kegechat Связаться с админом и записаться на занятия - @marat_ii. задание 26 решение. 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). Задание по информатике 24-27. Ответы и решения заданий ЕГЭ. Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. Официальный информационный портал единого государственного экзамена.

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

#егэ по информатике. #решение задач на python. В решении этой задачи мы сначала записываем свободное место в переменную, а затем сортируем массив с файлами по возрастанию. Начинаем заполнять массив пока место не закончится (оно гарантированно закончится раньше). егэ по информатике информатика 10 класс информатика 11 класс информатика с нуля. Отмена. Воспроизвести. Информатика ЕГЭ Умскул.

Егэ информатика 26. Баллы за задания по информатике

Разбор 17 задания на Python | ЕГЭ-2023 по информатике. Смотрите видео онлайн на Смотрите сериалы бесплатно, музыкальные клипы, новости мира и кино, обзоры мобильных устройств. В данной статье публикую полный разбор досрочного апрельского варианта по информатике ЕГЭ 2024 года. Всего 27 заданий. Задания графически и наглядно разобраны, приведены коды программ. Эмулятор станции КЕГЭ, который позволяет проводить тренировку экзамена по Информатике и ИКТ в компьютерной форме. В статье описано решение задания 20 ЕГЭ по информатики с поэтапным выполнением. Представлен подробный разбор 21 задания егэ по информатики.

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

Поэтому шкала меняется, если меняется экзамен или массово меняются результаты его прохождения. Мы полагаем, что в 2024 году проходной балл будет 40 вторичных баллов, но это может измениться. Какие типы заданий встретятся на ЕГЭ по информатике — 2024 На ЕГЭ-2024 все задания будут с кратким ответом: больше не нужно писать подробные объяснения по теории игр и сдавать программный код на проверку на бумаге. Но это не значит, что все задания идентичны. Посмотрим, какие именно типы заданий встретятся на экзамене. Задания, которые можно решить «вручную» Хотя ЕГЭ по информатике и проходит в компьютерной форме, в КИМ по-прежнему остаются задания, которые можно решать, как на бумаге, так и на компьютере. Это задания 1, 2, 4—8, 11—15, 19—23, в них необходимо получить число или последовательность букв в ответе. Ты можешь написать программу на компьютере или использовать электронные таблицы, а затем записать в ответ получившееся значение. За каждое задание можно получить 1 балл.

Задания, которые решаются с помощью компьютера Все такие задания бывают трех типов: Работа с предложенным файлом. Написание программы и получение ответа, используя предложенный файл. Разберемся с каждым типом отдельно. Работать только с предложенным файлом нужно в заданиях 3, 9, 10, 18 и 22. Чтобы решить эти задания, нужно знать, какие функции есть у текстовых редакторов и редакторов электронных таблиц, а также теория по реляционным базам данных.

Это не значит, что мы должны искать максимальный размер только среди тех чисел, которые участвовали, когда мы подсчитывали максимальное количество файлов.

Возможно, найдётся один файл такой, при котором, количество будет такое же, но сам размер файла будет больше, чем те, которые мы рассматривали. Чтобы найти максимальный размер файла проходим массив уже с наибольших чисел. Если количество файлов будет таким же, как и с исследуемым файлом, то мы нашли то что нужно. Кабанов Спутник «Фотон» проводит измерения солнечной активности, результат каждого измерения представляет собой натуральное число. Перед обработкой серии измерений из неё исключают K наибольших и K наименьших значений как недостоверные. По заданной информации о значении каждого из измерений, а также количестве исключаемых значений, определите наибольшее достоверное измерение, а также целую часть среднего значения всех достоверных измерений.

Входные и выходные данные. В первой строке входного файла 26-k2. В следующих N строках находятся значения каждого из измерений все числа натуральные, не превышающие 1000 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее достоверное измерение, а затем целую часть среднего значения всех достоверных измерений. В начале откроем файл и посмотрим количество измерений и количество исключённых значений. Затем, считаем измерения в массив.

Отсортируем массив методом пузырька. Исключим максимальные и минимальные значения и найдём среднее арифметическое и максимальное значение достоверных значений.

Этих детей просто подставили. А ваша наверное все же пошевелилась вчерашние варианты-то посмотреть? Anonymous Сколько агрессии.... Спокойнее надо быть, тогда и спокойный ребенок лучше думает Anonymous 26. Моя дочь тоже писала в первый день,когда мозги от жары плавились и когда были последние задания, которых никто не ожидал. И перенервничала, металась по трем последним и не решила. Да, обидно, но БВИ есть. В крайнем случае, если не наберет минимальные останется без аттестата на отличие и медали.

Да, будет обидно, но не критично. Все кто писал в первый день, не знали эти номера. А вот вчера знали. Были разборы всех номеров на ютубе и глупо говорить, что дети, которые вчера писали не смотрели их. Да, кто писл во второй день очень повезло.

Вам необходимо по заданному протоколу определить номер ряда с наибольшим количеством светлых точек в чётных позициях. Если таких рядов несколько, укажите минимально возможный номер. Входные данные Первая строка входного файла содержит целое число N — общее количество частиц, попавших на экран.

ЕГЭ по информатике с решением

Объяснение решения 26 задания ЕГЭ по информатике о программной обработке целочисленной информации с использованием сортировки. задание 26 решение. Задание 27. Во всех задачах этого типа необходимо выделить из всех данных те из них, которые лучше подходят для целей задачи и распределить их по остаткам. Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки.

Похожие новости:

Оцените статью
Добавить комментарий