Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения.
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
Специальная программа, Voice2Med, позволяет врачам делать описание снимков за 15 минут вместо часа. В день медикам приходится расшифровывать более 150 снимков. При такой большой обработке данных, признаются, — это настоящее спасение. Особенность этой программы в том, что она распознает самые сложные медицинские термины, в том числе и латинскую лексику. То, что непонятно обычному человеку, машина узнает и прописывает без ошибок. Например, желчнокаменная болезнь, аневризма аорты, инфаркт миокарда, стенокардия напряжения второго функционального класса.
Помогают врачам и ученые из ИТМО. Они создали алгоритм, который может определить признаки инфаркта миокарда. Чтобы создать такой алгоритм, ученые обучили модель более чем на 20 тысячах записях ЭКГ.
Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных.
Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.
Нейросеть распознает 37 различных заболеваний. В ближайшие годы ИИ станет базовой медицинской технологией столицы. Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней. Также в ближайшем будущем обычной практикой станет телемедицина.
Вложения в медицинские проекты обычно характеризуются высоким риском для инвесторов и достаточно долгой окупаемостью. Тем не менее, интерес бизнес-сообщества к таким проектам, в том числе к цифровым решениям для здравоохранения, постоянно растет. Инвесторы понимают, что спрос на услуги медицины будет высоким всегда. Ведь инвестиции в свое здоровье - долгосрочная перспектива. В России стартапы по цифровизации здравоохранения с применением искусственного интеллекта находят дополнительную поддержку на государственном уровне: ряд институтов развития инвестируют в такие проекты на разных стадиях, а разработчики получают гранты по федеральному проекту «Искусственный интеллект». В своем послании Федеральному Собранию президент РФ Владимир Путин заявил о необходимости достижения самодостаточности и конкурентоспособности в области искусственного интеллекта, что позволит обеспечить «настоящий прорыв» в экономике и социальной сфере. Глава государства сообщил об утверждении обновленной Национальной стратегии развития искусственного интеллекта, включающей участие ИИ в создании цифровых платформ для здравоохранения. Например, на основе данных цифрового профиля он сможет получить дистанционное заключение специалиста федерального медицинского центра, а доктор, семейный врач — оценить именно целостную картину здоровья человека, прогнозировать возникновение заболеваний, предотвращать осложнения, выбирать индивидуальную и потому наиболее эффективную тактику лечения», - указал в своем послании глава государства.
Ранее вице-премьер Дмитрий Чернышенко обозначил основные глобальные тренды в сфере искусственного интеллекта. Первый тренд - стремление к технологическому суверенитету; второй - ужесточение борьбы за ИИ-специалистов; третий — движение к безопасному ИИ с упором на конкретного человека; четвертый — развитие больших языковых моделей и генеративного ИИ и пятый - рост экономического эффекта от использования ИИ. Интеллектуальные технологии помогают прогнозировать возникновение и развитие заболеваний, выявлять их на раннем этапе, что увеличивает шанс на успешное лечение.
Искусственный интеллект в медицине: новая эпоха в диагностике и лечении
- Чем так хорош искусственный интеллект в медицине?
- Топ-7 прорывов в медицине в 2023 году | Главная
- Виртуальная реальность в медицине
- Искусственный интеллект в медицине: новая эпоха в диагностике и лечении
- Ставит диагнозы и придумывает лекарства
Искусственный интеллект в медицине: новая эпоха в диагностике и лечении
- Ставит диагнозы и придумывает лекарства
- Искусственный интеллект в медицине: добро или зло?
- Топ-7 прорывов в медицине в 2023 году | Главная
- Искусственный интеллект в медицине: применение и перспективы
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных. Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии. Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких. Он помогает медику быстрее и точнее интерпретировать флюорограммы и рентгенограммы. Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям.
Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США. В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань. Справа — ткань с развитием фиброза При этом Insilico подчеркивают, что они еще не доказали, что новый препарат эффективнее существующих лекарств. Однако время и затраты, которые ушли у ученых на создание потенциальных лекарств, куда меньше, чем у традиционных методов фармации. Их работа должна была продемонстрировать огромный потенциал систем на основе искусственного интеллекта в сфере разработки новых лекарственных средств. Сейчас же ученые нацелены на совершенствование технологии и, естественно, на проверку эффективности новых препаратов, разработанных ИИ.
Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься. Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером. Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране. Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов. Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы. Есть мощный тренд: мы от статистической доказательной медицины переходим к персональной медицине , но тоже доказательной. Однако пока ни в одной стране полного перехода к ней так и не произошло. И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете. Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью. Персонализация является одной из частей современного подхода к здравоохранению, известного как концепция 4П-медицины. Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка». И система рассчитывала интегральный показатель для каждого вещества, который показывал степень риска приёма средства для конкретного пациента. Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту. Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии? Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»? Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом. Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее. Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона.
Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом. Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение. Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению. Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний. О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова. Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова. Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии. Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность. На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов.
Будущее рядом: как нас будет лечить искусственный интеллект?
С её помощью можно изменять практически любые гены и делать хромосомную перестройку. Эти свойства широко используются даже в лечении онкологических заболеваний. Технология была открыта в 1987 году во время изучения кишечной палочки Escherichia coli. Ученые обнаружили в её ДНК странные повторяющиеся последовательности, но не смогли выяснить их предназначение. Бактерии производят специальные ферменты, когда пытаются бороться с вирусами.
Это помогает бороться с будущими вирусными атаками. Бактерия использует сохраненный генетический материал и производит белки Cas9, которые способны при совпадении генов с геном вируса быстро его нейтрализовать.
ИИ помогает ускорить процесс, а также оптимизировать их дозирование. Обработка и анализ больших объемов медицинских данных. Самое важное применение ИИ, позволяющее улучшить диагностику и лечение пациентов.
ИИ-сервисы используются, чтобы обрабатывать большие объемы медицинских данных и проводить предварительный анализ, например, с целью выявления тех или иных специфических заболеваний на начальных стадиях. Автоматический анализ медицинских изображений. ИИ-сервисы, основанные на глубоком обучении, могут быстро и точно анализировать медицинские изображения, такие как рентгеновские снимки, МРТ, КТ и другие визуальные данные, и выявлять на них патологии, что позволяет врачам быстро и точно определять диагноз и начинать лечение. Помощь в принятии врачебных решений. Это одна из очевидных сфер использования ИИ.
Сервисы могут предоставить наиболее подходящие варианты лечения на основании собственной базы знаний, включающей потенциально лучшие варианты лечения и предсказание эффективности их использования. Автоматизация рутинных задач. ИИ-системы используются для заполнения медицинских карт, создание отчетов и др. ИИ может улучшить координацию и коммуникацию между медицинскими работниками, например, путем обучения и мониторинга основных симптомов. Как обучают нейросети для медицины Обучение нейросетей начинается со сбора большого объема данных, содержащих информацию о здоровье и заболеваниях пациентов.
Они могут быть представлены в виде медицинских записей, результатов тестов, изображений, видео и других типов файлов. Далее, данные обрабатываются и подготавливаются для обучения нейросети.
Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций. Окончательный диагноз все равно ставит только врач. И тем более никакой искусственный интеллект не сможет конкурировать с опытом, мудростью и непосредственным общением доктора с пациентом, а ведь все это играет важную роль при постановке диагноза и выработке схемы лечения. Как начать доверять машинам? С какими проблемами сталкиваются сами разработчики и производители медицинского программного обеспечения? В ней содержится информация о тех исследованиях, которые проводятся в ходе обследования — например, флюорография, узи, МРТ, рентген.
Ключевой продукт — это система описания, рекомендации и статистики. В нее входит набор протоколов разной степени формализации, которые позволяют эффективно описывать те или иные нозологии, чтобы потом иметь возможность организовать общение врачей — диагностов и клиницистов, а также помочь пациенту понять, о чем говорится в заключении». Весной 2020 года компания обратилась к проблеме коронавируса и применила к этому заболеванию формализованный протокол. Получился продукт, который определяет в ходе исследования объем поражения легких и позволяет визуализировать поражения. Модуль искусственного интеллекта заполняет необходимые поля, предлагая врачу те или иные решения, а тот может или согласиться с ними или заменить своими данными. Аналогичная работа будет продолжаться в области онкологии. По словам С. Дьяченко, сложности есть, и заключаются они, в основном, в «недоверии к машинам», непонимании роли искусственного интеллекта, скепсису относительно инновационных методов диагностики и лечения, низкому уровню знаний современных компьютерных технологий особенно в регионах.
По мнению разработчика, чтобы снять барьеры, нужно популяризировать ИИ среди врачей и пациентов, добавить соответствующие курсы в программу как технических, так и медицинских вузов, сформировать систему поощрения применения технологий искусственного интеллекта для медицинских учреждений и для поставщиков, а также непременно проводить открытое общественное обсуждение. Все это так, но не надо забывать, что хороший продукт продает себя сам. Если эффект очевиден, то излишняя стимуляция может даже навредить.
Медицинское изображение сразу попадает в Единый радиологический информационный сервис ЕРИС города Москвы, откуда по заданным правилам оно автоматически отправляется на анализ ИИ. Результат работы ИИ в виде дополнительной серии в изображении с цветовой маркировкой находок и текстовым описанием в формате Dicom SR автоматически возвращается в ЕРИС. Врач-рентгенолог при интерпретации исследования может воспользоваться выводами и расчетами искусственного интеллекта.
Готовое описание сохраняется в ЕРИС и сразу доступно лечащему врачу и пациенту в электронной медицинской карте. Результаты Реализация проекта позволила создать рынок сервисов искусственного интеллекта в лучевой диагностике, где поддерживается конкурентная среда разработчиков ИИ-сервисов. В результате эксперимента разработаны и внедрены уникальные научные методологии, на основе которых подготовлено свыше 200 эталонных наборов данных, создана первая в Российской Федерации официальная библиотека наборов данных для сферы здравоохранения.
Машины лечат людей: как нейросети используют в российской медицине
Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Одним из важных направлений применения искусственного интеллекта в медицине является его использование в диагностике различных заболеваний. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность?
Собянин: ИИ превратится в базовую медицинскую технологию в Москве
Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Многие россияне опасаются применения ИИ в медицине. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине.
Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
Искусственный интеллект в медицине — не конкурент, но помощник Искусственный интеллект в медицине — не конкурент, но помощник 19. Novamed 2021». Одна из сессий была посвящена перспективам цифровизации и использования искусственного интеллекта в здравоохранении. Цифровизация здравоохранения идет огромными шагами. Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. Но тема эта насколько интересна, настолько и сложна.
Программные продукты с искусственным интеллектом дают поистине колоссальные возможности, но несут риски, которые не всегда можно просчитать. Как обеспечить доступ на рынок этих продуктов и при этом соблюсти интересы пациентов и медицинских работников в части обеспечения безопасности лечебного процесса? Искусственный интеллект как медицинское изделие Понятие «искусственный интеллект» присутствует в нашей жизни давно, но на официальном уровне признание произошло лишь пару лет назад. Тогда были сформулированы основные понятия, которые используются при обращении этого продукта. В том числе появилось и определение для самого искусственного интеллекта — комплекс технологических решений, позволяющий имитировать когнитивные функции человека включая самообучение и поиск решений без заранее заданного алгоритма и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека.
Но что такое ИИ для здравоохранения? Как вписать его в нормативно-правовые документы? Заместитель начальника Управления организации государственного контроля и регистрации медицинских изделий Федеральной службы по надзору в сфере здравоохранения Мария Суханова рассказала, что после выхода указа Президента Росздравнадзор совместно с Минздравом и профессиональным сообществом образовали рабочую группу, которая создала критерии отнесения программных продуктов к медицинским изделиям и ввела классификацию медицинских изделий как по классам потенциального риска применения, так и по видам номенклатуры Приказ Минздрава России от 06. Важным результатом совместной работы стало введение одноэтапной процедуры государственной регистрации программных продуктов для медицины. Говорит заместитель руководителя Федеральной службы по надзору в сфере здравоохранения Дмитрий Павлюков: «Нам нужно понимать, насколько вообще несет в себе риски этот продукт и как его дальше регулировать.
Мы вывели на рынок 11 программных продуктов с искусственным интеллектом.
Средство массовой информации сетевое издание «Городской информационный канал m24. Учредитель и редакция - АО «Москва Медиа». Главный редактор сетевого издания И. Адрес редакции: 125124, РФ, г.
Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.
Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах. Значительная часть систем ИИ рассчитана на автоматизацию естественных интеллектуальных способностей человека. Технический комитет является представительным органом РФ в международной организации по стандартизации ИИ, и сейчас по инициативе российской стороны там рассматривается возможность разработки международного стандарта клинических испытаний систем с ИИ. Опыт и мудрость не заменить Медицина все больше переходит на цифру, и требуются новые цифровые инструменты обработки цифровых данных. Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг. Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие. Было обработано 3,8 млн исследований, подготовлено 104 дата-сетов механизмов хранения информации, предоставляющих быстрый доступ к большим объемам данных. Говорит главный внештатный специалист по лучевой и инструментальной диагностике, директор ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» Сергей Морозов: «За время эксперимента мы увидели, что искусственный интеллект значительно снижает длительность подготовки описания результатов. Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов.
Применение искусственного интеллекта в московском здравоохранении
Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом. Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо.
В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить.
По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал.
Из миллиона выбирается 50 самых лучших, и уже эти 50 мы синтезируем и проверяем". По словам специалиста, если раньше этап ранней разработки занимал 36 месяцев, то благодаря ИИ он может сократиться до 10-12 месяцев. Помимо ускорения процесса ИИ также увеличивает вероятность получения нужного препарата. Третья его задача - уменьшение стоимости разработки. Следующая цель - использовать ИИ на самом продолжительном и дорогом этапе разработки: клинических исследованиях.
Нарек Владелец клиники Нейросеть iiMed. Это интеллектуальный инструмент, создающий привлекательные и актуальные рекламные тексты объявлений и описание акций.
Благодаря этому сервису мы стали публиковать контент в своих соцсетях регулярно и сразу заметили повышение активности аудитории. Однозначно рекомендую iiMed, особенно тем, у кого есть проблемы с регулярностью создания и публикацией классного контента. Анастасия Управляющая сетью аптек Использование нейросети iiMed стало настоящим прорывом для нашей сети клиник. Я была поражена, когда увидела на что способен искусственный интеллект. Что меня особенно впечатлило, так это то, как нейросеть понимает наши потребности и угадывает предпочтения.
Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной. Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом. Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче — именно он выносит окончательное решение о диагнозе и лечении. ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений. ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше. Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту. Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время — его можно уделить более тщательной диагностике, которую пока нельзя доверить технике. Этика применения ИИ Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом.
Применение искусственного интеллекта в московском здравоохранении
Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. В частности, Всемирная организация здравоохранения указала на негативные последствия применения искусственного интеллекта в медицине, если в основе его разработки и использования не будут заложены этические принципы и защита прав человека. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике.