Проект принципиально новой твердотельной аккумулирующей электростанции (ТАЭС) разработали специалисты новосибирской компании «Энергозапас», резидента инновационного центра «Сколково. башкортостанское предприятие СИБУРа, вводит в опытно-промышленную эксплуатацию солнечную электростанцию.
Курсы валюты:
- На кубанской ТЭС заработал энергоблок с первой отечественной турбиной
- Владимир Потанин анонсировал строительство АЭС
- В Якутии введена в эксплуатацию самая северная солнечная электростанция в России
- Как работает тепловая электростанция
- На кубанской ТЭС заработал энергоблок с первой отечественной турбиной
- Станции и проекты
Здесь ковали ядерный щит России: как работает единственная в мире подземная АЭС
Финальным этапом тестов станут 72-часовые испытания электроагрегата АТМ-1000 на базе дизельного двигателя ТМ-1000 в составе электростанции АБКЭхАТМ. Перспективы создания виртуальной электростанции в России обсудили участники сессии «Применение цифровых решений в ВИЭ» в рамках РМЭФ-2024. Это четвертый блок Нововоронежской АЭС и два первых блока Кольской АЭС. Электростанция состоит из двух газовых турбин SGT-800 Siemens мощностью 45 МВт каждая, работающих по простому термодинамическому циклу. После обнаружения нарушений экологических стандартов, Ириклинская ГРЭС, крупнейшая электростанция в Оренбургской области, была оштрафована за вред, причиненный водохранилищу. Главная» Новости» Тэс ударная новости.
Архив новостей
- Атомные электростанции России перевыполнили план по выработке электроэнергии.
- Смотрите также
- В Петербурге завершают испытания новой российской мегаваттной электростанции
- Немецкий стартап построит вертикальную плавучую солнечную ферму
- Подробности
- В России могут создать виртуальную электростанцию
ЭСН "Приобская" компании "РН-Юганскнефтегаз" выработала 25 млрд кВтч
Все это происходит еще на предприятии, где ядерное топливо производится. Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150—350 штук. Одновременно в активную зону реактора обычно помещается 200—450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора. Именно твэлы — главный конструктивный элемент активной зоны большинства ядерных реакторов. В них происходит деление тяжелых ядер, сопровождающееся выделением тепловой энергии, которая затем передается теплоносителю. Конструкция тепловыделяющего элемента должна обеспечить отвод тепла от топлива к теплоносителю и не допустить попадания в теплоноситель продуктов деления. В ходе ядерных реакций образуются, как правило, быстрые нейтроны, то есть нейтроны, имеющие высокую кинетическую энергию. Если не уменьшить их скорость, то ядерная реакция со временем может затухнуть. Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит.
Но наилучшим замедлителем является тяжелая вода D2O. Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые на тепловых нейтронах и быстрые на быстрых нейтронах. Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах. Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, — хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец.
Кроме того, в быстрых реакторах используется и другое топливо — уран-238 и торий-232. Причем уран-238 гораздо чаще встречается в природе, чем его «собрат» уран-235. Строительство атомных электростанций с реакторами на быстрых нейтронах способно значительно расширить топливную базу ядерной энергетики. Для того чтобы предотвратить попадание нейтронов в окружающую среду, активная зона реактора окружается отражателем. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях. Кроме того, наличие отражателя необходимо для повышения эффективности использования ядерного топлива, так как отражатель возвращает назад в активную зону часть вылетевших из зоны нейтронов. Парогенератор Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины. Применяются парогенераторы на двух- и трехконтурных АЭС.
Электростанция состоит из 842 солнечных панелей и имеет мощность 252 кВт. Установленные модули — российские. Система размещена на площади 1441 квадратов.
Гиперссылка должна размещаться непосредственно в тексте, воспроизводящем оригинальный материал novos. За достоверность информации в материалах, размещенных на коммерческой основе, несет ответственность рекламодатель. Instagram и Facebook Metа запрещены в РФ за экстремизм.
После нескольких лет сложной совместной работы турбина успешно прошла первые испытания на Ивановских парогазовых установках, а в конце 2022 года первый серийный образец был передан на ТЭС "Ударная" в Крымском районе Кубани.
Отечественная установка по техническим параметрам нисколько не уступает зарубежным аналогам: коэффициент полезного действия - более 36 процентов, мощность составляет 118 мегаватт. Она в состоянии работать на различных видах топлива: газообразном природный газ, попутный нефтяной газ и жидком дизельное топливо. В то же время сам двигатель имеет преимущество перед заграничными по весу и габаритам: он меньше примерно в 1,5 - 2 раза. С 2024 года планируем выпускать не менее двух таких турбин ежегодно с дальнейшим наращиванием производства. В середине января компания "Технопромэкспорт" госкорпорации Ростех провела комплексное опробование первого энергоблока ТЭС установленной мощностью 230 мегаватт, в ходе которого были подтверждены требуемые характеристики. Сейчас он работает при номинальной нагрузке и выдает электроэнергию в Единую энергосистему России. С октября теплоэлектростанция поставила более 120 миллионов киловатт-часов электроэнергии.
Она сократит энергодефицит и повысит надежность энергетической системы страны, а также обеспечит переток мощности в Крым. Теплоэлектростанция будет поставлять электроэнергию жилищно-коммунальному сектору и промышленным предприятиям Кубани. Эксплуатацию объекта обеспечат более 280 энергетиков высокой квалификации. Как рассказали корреспонденту "РГ" в госкорпорации Ростех, сейчас к комплексному опробованию и вводу в эксплуатацию готовится второй энергоблок. В ходе проверки он должен отработать трое суток на номинальной мощности.
Коломзавод изготовил двигатель для Курской АЭС-2
В Новокуйбышевске солнечная электростанция филиала АО «Транснефть – Приволга» выработала первый миллион киловатт часов электроэнергии. В состав компании на правах филиалов входят 11 действующих АЭС, на которых в эксплуатации находятся 37 энергоблоков суммарной установленной мощностью свыше 29,5 ГВт. Атомные электростанции по итогам 2021 г. находятся на четвертом месте в мире по объему произведенного электричества, уступив ГЭС, а также газовым и угольным станциям. При этом на электростанциях не выполняются самостоятельно следующие операции. Паропроизводящая часть угольной электростанции будет выведена из эксплуатации, освободив большую часть территории для размещения солнечной электростанции. В состав компании на правах филиалов входят 11 действующих АЭС, на которых в эксплуатации находятся 37 энергоблоков суммарной установленной мощностью свыше 29,5 ГВт.
Зачем нужна старая Цимлянская ГЭС
Электростанции сегодня — Глава МАГАТЭ назвал удары по ЗАЭС нарушением принципов ее безопасности. Гросси призвал прекратить удары по Запорожской АЭС. Это четвертый блок Нововоронежской АЭС и два первых блока Кольской АЭС. Эти реакторы отличаются от обычных АЭС тем, что они маломощные и компактные», — добавил эксперт.
Новости по теме:
- Публикации
- В Якутии начали строить Новоленскую ТЭС, которая станет второй по мощности в регионе
- Все материалы
- Зачем нужна старая Цимлянская ГЭС
- "РусГидро" приняла решение о строительстве двух новых ГЭС
- Солнечная электростанция «Транснефти» выработала первый миллион киловатт часов
Александр Ильенко: «Ограничение выработки СЭС и ВЭС является нормальной практикой»
В составе электростанции предусмотрены распределительные устройства 6 кВ и 35 кВ, а также дизель-генераторы, позволяющие производить запуск электростанции при полном отсутствии связи с энергосистемой. Предусмотрен как параллельный, так и изолированный режим работы генераторов. Ввод объекта в эксплуатацию позволит значительно повысить надёжность электроснабжения промысла, тем самым разгрузятся действующие электроподстанции питающей сети, прекратятся перебои с электричеством. Кроме того, новая ГТЭЦ позволит серьёзно снизить тарифы на электроэнергию, что приведёт к существенной экономии средств.
Следует отметить, что в последние годы и температуры, при которых ЕЭС России проходит годовые пики потребления, далеки от наиболее низких температур, регистрировавшихся в предшествующие годы, соответственно, и уровень потребления мощности был ниже потенциально возможного.
Некорректный учёт вышеуказанных факторов может привести к невозможности обеспечения электроснабжения потребителей. Поэтому необходимо иметь методику расчёта резервов, учитывающую указанные факторы. В настоящее время «Системный оператор» ведёт работу по имплементации подхода по расчёту необходимой величины резерва на основании расчёта балансовой надежности. Предполагается включение этой нормы в новую редакцию методических указаний по проектированию развития энергосистем. Это позволит нам, исходя из актуальных параметров работы энергосистемы, отвечать на вопрос, достаточно или нет генерирующих мощностей в конкретном энергорайоне или в целом по ЕЭС для покрытия потребления с заданной вероятностью.
Принципиально важным является указание на заданную вероятность. Чем большими резервами обладает энергосистема, тем выше её надежность и меньше вероятность отключения потребителей. Но чем выше надёжность, тем больше за неё в итоге платит потребитель. В энергосистеме экономически нецелесообразно иметь как «сверхнизкий», так и «сверхвысокий» уровень надёжности. В обоих случаях страдают потребители: в первом — от частых отключений, ущербов и отсутствия нормальных условий развития, во втором — от высокой финансовой нагрузки.
Расчёт балансовой надёжности позволяет оцифровать планируемое состояние энергосистемы с точки зрения вероятности отключения потребителей. Наша энергосистема — не «медная доска», её нельзя представить моделью, в которой вся мощность свободно передаётся между любыми её частями: она включает энергорайоны, которые имеют ограниченные возможности приёма и передачи. В этой связи крайне важно, чтобы расчётная модель, используемая для расчётов балансовой надежности, как можно более точно отражала реальные параметры функционирования энергосистемы. Модель, которую использует «Системный оператор», достаточно подробна. Она включает в себя порядка 100 зон надёжности — энергорайонов, для каждого из которых отдельно считается вероятность бездефицитной работы.
Такая подробная модель позволяет выявлять как территории, где существуют локальные проблемы с электроэнергетическим балансом и необходимо принятие решения о строительстве новых сетей или новых генерирующих мощностей, так и территории, где объём генерирующих мощностей заведомо избыточен и, соответственно, возможен вывод невостребованных мощностей. Сформировать расчётную модель и выполнить расчёты балансовой надёжности — это инженерная задача. В «Системном операторе» есть для этого все необходимые ресурсы и компетенции. Определение нормативных уровней надёжности — это уже вопрос технико-экономической политики государства. Задача состоит в том, чтобы найти оптимум, который с одной стороны не приведет к негативным последствиям для экономики страны в целом из-за ограничений электропотребления, а с другой — не будет перегружать экономику затратами на поддержание избыточной надёжности инфраструктуры.
В настоящее время идёт формирование нормативной базы в области вопросов балансовой надёжности. Первым стал приказ Минэнерго РФ от 30. На мой взгляд, именно принципы вероятностной оценки, формируемой на основании статистических и прогнозируемых параметров работы оборудования, являются наиболее корректным методом определения нормативных значений резервов в энергосистеме для любых видов долгосрочного планирования. Напомню, что в марте 2018 года «Системный оператор» провёл конкурентный отбор мощности новой генерации, по результатам которого в Юго-Западном энергорайоне Краснодарского края должна быть введена в работу новая электростанция с ПГУ-энергоблоками — ТЭС Ударная мощностью 500 МВт. Решают эти масштабные вводы ВИЭ проблему дефицита мощности?
Ответ — нет. Ввод даже существенных объёмов новых объектов ВИЭ не оказывает значимого влияния на обеспечение надёжности. Объекты ВИЭ — это замечательный источник чистой «зелёной» электроэнергии. Ключевое слово здесь — «электроэнергия». Чем больше в энергосистеме объектов ВИЭ, тем большую долю в балансе электроэнергии они будут занимать.
В балансе мощности ситуация принципиально иная. Пример даже одного дня наглядно показывает, что при формировании баланса мощности бессмысленно учитывать установленную мощность объектов ВИЭ. Какой уровень мощности ВИЭ может быть учтён в балансе мощности? Тот, который может быть гарантированно обеспечен. Как мы видим, для СЭС на сегодняшний день это ноль, для ВЭС расчёт на основе вероятностного подхода показывает, что мы можем рассчитывать на уровень загрузки порядка нескольких процентов от их установленной мощности.
Что касается вопроса ограничений выработки электроэнергии, то, на мой взгляд, здесь больше мифов и абстрактных рассуждений, чем реальных оценок масштаба проблемы. В любой точке энергосистемы можно построить любое количество объектов ВИЭ. Вопрос в том, какую часть их выработки сможет принять энергосистема? И это вопрос прежде всего экономический, а не технологический. В предельном случае объект генерации может быть построен на территории, где включение объектов ВИЭ будет в принципе невозможно без реализации значительных мероприятий по развитию сети.
Если инвестор реализует проект по вводу объекта ВИЭ за счёт собственных средств, все риски, в том числе что его выработка не будет принята энергосистемой, — это его собственные риски. Для объектов ВИЭ, строительство которых оплачивается на рынке мощности через механизм ДПМ, правилами оптового рынка предусмотрены механизмы, исключающие оплату мощности простаивающих объектов. В странах с большой долей ВИЭ ограничение выработки солнечных и ветровых электростанций является нормальной практикой управления режимом работы энергосистемы. У нас же не вызывает вопросов необходимость разгрузки тепловых электростанций и гидроэлектростанций в период прохождения ночного минимума нагрузки. Другой вопрос, что территорий, где одновременно с высокой инсоляцией или устойчивой ветровой нагрузкой существует развитая сетевая инфраструктура, не так много.
Выработка электрической энергии составила 25 млрд кВтч, сообщили в понедельник в пресс-службе компании. В настоящее время ЭСН занимает территорию площадью 8,71 га. Главный корпус включает в себя машинный зал, помещения электротехнических устройств, котельное отделение и отделение химводоочистки. Длина главного корпуса составляет 156 метров, высота машинного зала - 23 м. В состав основного оборудования входят семь энергоблоков с газотурбинными установками типа SGT-800, которые отличаются надежностью, высоким электрическим коэффициентом полезного действия и низким уровнем вредных выбросов. Все это достигается за счет применения новейших технологий в области турбостроения. Сырьем, являющимся топливом для газотурбинных установок и водогрейных котлов ЭСН, служит осушенный попутный нефтяной газ ПНГ , который подается на ЭСН с установки подготовки газа по трубопроводу.
Т-и , основной механизм инвестиционной поддержки таких проектов — это конкурсы на заключение ДПМ ВИЭ договоры о предоставлении мощности, программа стимулирования развития ВИЭ-генерации. Инвесторы могут менять площадку, и есть проекты, которые предполагалось таким образом реализовать на территории Татарстана. Но окончательное решение инвесторами на сегодняшний момент не принято. Вторая часть — это электросетевое строительство. Есть отдельные проекты, связанные с развитием сетевой инфраструктуры федерального уровня. Так, к 2025 году на этих объектах планируется не просто модернизация, но и внедрение современных систем дистанционного управления из диспетчерских центров. Эти планы на сегодняшний момент включены в проект Схемы и программы развития, которая должна быть до 1 марта утверждена Министерством энергетики РФ. То есть, резюмируя, энергосистема Татарстана будет и дальше прирастать по установленной мощности собственной генерации, с одновременным повышением эффективности действующих мощностей, а также наращивать сетевые связи. Во-первых, каково ее значение, во-вторых, если сравнить с регионами, похожими на нас, — может быть, в ОЭС Средней Волги, — в чем наша специфика? Уже в этом, 2023 году здесь был достигнут исторический максимум потребления мощности — 4947 МВт. А вообще в течение двух последних лет максимумы превышали значения, достигнутые в годы СССР: 4699 МВт — это был «советский рекорд» 1991 года. И не секрет — есть и планы дальнейшего развития, как минимум до 2028 года. Хотя мы пока достаточно консервативно оцениваем прирост. По тем договорам техприсоединения, по которым уже выполняются мероприятия по подключению новых потребителей, в прогнозе спроса учтено пока 130 МВт. Эти цифры, конечно, могут быть скорректированы, будем наблюдать за фактическим изменением энергопотребления. Во-вторых, хочется отметить, что за те 10 лет, которые энергосистема Татарстана развивалась, здесь было реализовано несколько крупных проектов генерации по переходу на парогазовый цикл. Среди них пять газотурбинных установок, работающих на оптовый рынок электрической энергии и мощности ОРЭМ , и девять — на розничном рынке. Но важнее и то, что существенным образом улучшилась топливная и экологическая эффективность, поскольку ПГУ — это более современные, более эффективные технологии производства электроэнергии. Эти станции работают в рынке, и после того, как они стали более эффективны, они стали больше вырабатывать, выигрывая ценовую конкуренцию. В свете сегодняшней ситуации с санкциями и возможными проблемами с сервисом зарубежного оборудования не становится ли эта особенность проблемой? Прежде всего, потому, что Татарстан — это часть Единой энергосистемы, с этой точки зрения здесь и не должно быть обеспечено самобалансирование. Как раз работа в составе «большой» ЕЭС позволяет наиболее эффективно вырабатывать электроэнергию на тех электростанциях, которые в настоящий момент работают в сети и готовы нести нагрузку. А ПГУ, как уже было сказано, это наиболее эффективное оборудование. Кроме того, установленная мощность собственной генерации в Республике Татарстан значительно превышает тот максимум потребления, который мы здесь фиксируем. И даже если по тем или иным причинам ПГУ выйдут из работы, технически можно будет все равно обеспечить электроэнергией всех потребителей в Татарстане. Другое дело, что тогда придется задействовать менее эффективные электростанции, и это может иметь некоторые ценовые последствия для потребителей. Но, повторю, с точки зрения энергобезопасности, обеспечения энергоснабжения, в том числе с учетом тех инвестиций, которые были сделаны в развитие сети, и, в частности, в расшивку сетевых ограничений — например, развитие электросетевой инфраструктуры позволило создать только в Казанском энергоузле сетевой резерв в 900 МВт, — мы рисков в Казани из-за ПГУ вообще никаких не видим. Одна из особенностей нашей энергосистемы — при установленном профиците мощности мы все равно закупаем электричество извне. Это в понимании обывателя — парадокс. Почему так получается и насколько в нынешних условиях региону важно быть самодостаточным? С точки зрения электрической энергии административных границ между регионами просто не существует. Существуют, конечно, «узкие места», определенные направления, по факту — конкретные линии электропередачи ЛЭП , по которым просто невозможно бывает передать объем электроэнергии выше определенной величины. Но технически сети в той части ЕЭС, где располагается Татарстан, достаточно хорошо развиты, и в этом смысле киловатт-часы могут быть поставлены как электростанциями Татарстана на оптовый рынок, то есть и в соседние регионы, так и из соседних регионов — через тот же ОРЭМ — в энергосистему Татарстана. Что и происходит. Все электростанции, которые работают на ОРЭМ, за исключением электростанций промышленных потребителей, продают все свои киловатт-часы именно на оптовый рынок. И потом уже с оптового рынка конечные потребители и сбытовые компании приобретают эту электроэнергию. В этом смысле закупки электричества извне — это вопрос не технического обеспечения электроэнергией конечных потребителей в республике. Это вопрос наиболее экономически эффективного способа покрыть потребности потребителей в киловатт-часах. Но это говорит лишь о том, что эта разница была приобретена на оптовом рынке, а фактически выработана иными, более эффективными электростанциями. Когда я говорил, что на казанских ТЭЦ, после того как на них построили ПГУ, вырос коэффициент использования установленной мощности, я говорил именно о таком эффекте.