Новости теория струн кратко и понятно

Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на. Теория струн кратко и понятно. В начале XX века учёные, благодаря классической физике, считали, что поняли, как устроен мир.

Струны Вселенной

  • Популярные материалы
  • Симфония вселенной: теория струн для начинающих | Futurist - будущее уже здесь
  • Что такое теория струн?
  • Теории струн быть
  • Теория струн кратко и понятно. Теория струн для чайников. | Наука для всех простыми словами

Теория струн, или Теория всего

Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести.

В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.

Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся.

Однако, в 1926 году на сцену вышел великий Вернер Гейзенберг со своим принципом неопределенности и все изменилось в одночасье. Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн.

Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн.

Когда она появилась, то буквально очаровывала своей кажущейся простотой и лаконичностью, объединяя то, что раньше казалось невозможным. Однако с течением времени стало понятно, что эта красивая теория только кажется простой и, к великому сожалению многих исследователей, порождает куда больше вопросов, чем ответов.

Эта теория описывает одномерные, вибрирующие волокнистые объекты, называемые «струнами», которые распространяются в пространстве-времени и взаимодействуют друг с другом. Несмотря на то, что сегодня популярностью среди физиков пользуются другие теории, ученые постепенно, кусочек за кусочком, продолжают открывать и расшифровывать фундаментальные струны физической Вселенной с помощью математических моделей. Так, согласно результатам нового исследования, математики из университета штата Юта обнаружили новое доказательства теории струн. В теории струн мироздание похоже на невероятно малые, вибрирующие нити энергии, способные извиваться, растягиваться и сжиматься.

Физики-теоретики считают, что все сущее состоит из струн, однако проверить это экспериментальными методами до сих пор никому не удалось. Струны Вселенной Искусно сочетая в себе идеи квантовой механики и общей теории относительности ОТО , струнная теория, как полагают физики, должна построить будущую теорию гравитации. Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает.

В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. На данный момент теория струн вроде бы объясняет все. Все, кроме черных дыр — здесь пока ученые больше предполагают, чем знают.

Знаниевый реактор

  • Струны Вселенной
  • Предсказания теории струн.
  • Теория струн | Наука | Fandom
  • Квантовые поля
  • Читайте также

Теория струн простыми словами

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Теория струн и квантовая механика

Струны могут колебаться, прчём на строго определённых частотах. И каждой частотет соответствует своя частица. Именно колебательным состоянием струны и определяется масса, заряд и все другие параметры абсолютно всех частиц. Струны могут сливаться друг с другом, разрываться - поглощение и излучение частиц соответственно. Почему до этого нельзя было так сделать? Причина - в структуре Пространства и Времени. В Теории Относительности - оно гладкое и ровное на любых масштабах. И раз у них есть масса и энергия, то они...

Из-за чего оно становится искривлённым и неровным. На самом деле есть и другая причина. В квантовой теории поля силы возникают благодаря обмену частицами, а в теории относительности - из-за кривизны Пространства-Времени. И если всё объединять, то должна существовать частица - переносчик Гравитации, гравитон, но если рассматривать его как точечный объект как в стандартной модели , то это фееричный провал: Раз он крошечный, вокруг него возникает мегасильное гравитационное поле, такое, что оно порождает вторичные гравитоны, те, в свою очередь - другие поля, и так далее, до бесконечности. Насчёт других частиц ученые как-то разобрались, но вот что делать с гравитонами? Поэтому возникновение вторичных гравитонов не носит лавинообразный характер. Но что касается темной материи и тёмной энергии - Теория Струн не предлагает готового решения да-да!

Но она настолько гибкая, что наверняка сможет и их тоже объяснить. Надо только дать время доработать теорию... Похожее по теме... Говоря простыми словами, гравитация - это притяжение между двумя любыми объектами во вселенной. Первая версия Теории Струн, разработанная ещё в 1960 годах, значительно отличается от текущей, вроде бы название почти одно и то же, а по сути - многое различно.

Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics , теория струн все же, имеет право на существование.

Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы.

Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик.

Ученые решили развернуть последовательность рассуждений. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. Сама по себе эта теория является попыткой избавиться от расхождений релятивистской квантовой теории и общей теории относительности. Первые идеи были предложены еще в 1960-х годах при исследовании адрона.

Почему теория струн нравится физикам Замена частиц на соответствующие им струны приводит к некоторым крайне важным следствиям.

Изучив свойства колеблющейся петли, ученые пришли к выводу, что они удивительно схожи с характеристиками гравитона — на данный момент не открытой частицы, которой отводится роль переносчика гравитации. Теория струн, имеет все шансы разрешить главный спор в физике XX века — включить гравитационное взаимодействие в Стандартную модель. Длина, ширина, высота Ни для кого не секрет, что мы живем в трехмерном мире — у каждого объекта есть длина, ширина и высота. К трем измерениям добавляется еще четвертое — время. Со временем ученые выяснили, что теория струн «работает» только в пространстве с десятью или одиннадцатью измерениями. Они предполагают, что шесть или семь из них имеют очень малые размеры, порядка самой частицы, и на практике не наблюдаются. Впоследствии была даже придумана геометрическая форма сжатых измерений: физики предполагают, что они похожи на клубок спутанной пряжи. Из-за малых размеров мы просто не замечаем движения в них.

Это все хорошо, но… У теории струн есть один основной недостаток — она еще не описана математически. Существует не один, не два, а целых шесть разных вариантов, но ученые до сих пор не смогли объяснить, как именно должна «работать» струнная квантовая гравитация и как в таком случае возникла вся Вселенная. Это задача для будущих поколений, ведь вера в теорию струн по-прежнему сильна.

Теория суперструн кратко и понятно

Стромиджер и Вафа, струнные теоретики, с помощью теории струн смогли отыскать микроскопические компоненты чёрных дыр экстремального типа. Теория струн кратко и понятно. Видео от пользователя. Просто о сложном_ структура Вселенной, квантовая физика, теория относительности. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. О чем теория струн? Самое простое и понятное объяснение.

Теория струн, или Теория всего

одна из наиболее восхитительных и глубоких теорий в современной теоретической физике. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Описание теории струн простым и понятным языком, или как принято говорить "Для чайников".

Теория суперструн кратко и понятно

В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. На данный момент теория струн вроде бы объясняет все. Все, кроме черных дыр — здесь пока ученые больше предполагают, чем знают.

Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся. Ударить сильнее — звук станет громче. В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов.

Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся. Ударить сильнее — звук станет громче. В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов.

Верно ли, что за этой вывеской скрывается несколько теорий? Я прекрасно понимаю, о чем вы говорите, но я бы так не сказал. Я бы сформулировал это по-другому: теория струн — это единый теоретический инструмент, позволяющий формулировать модели того, как Вселенная в принципе может работать. При этом какого-либо критерия отбора модели, имеющей отношение к нашей конкретной Вселенной, у нас нет. Есть идея, что так получилось, потому что каждая из этих моделей в некотором смысле реальна — просто она описывает какую-то другую Вселенную, где-то там, далеко. Такая вот радикальная интерпретация наших неудач. Применительно к теории струн регулярно вспоминают теорию Янга-Миллса с ней связан один из вопросов , за решение которых Математический институт Клэя обещал миллион долларов. Расскажите, что это такое? В 50-е годы прошлого века ученые обнаружили тогда без участия идей из теории струн , что уравнения для описания сильного и слабого взаимодействия в квантовой механике можно записать в особой симметричной форме. Симметрии, о которых идет речь, напоминают симметрии снежинки — если ее поворачивать на некоторый угол, то она переходит сама в себя. Так же и эти уравнения после определенного «поворота» оказывались такими же. Такой подход оказался очень удобным, и физикам удалось много чего посчитать с его помощью. Сами Янг, Миллс и их последователи смогли заложить единую и очень изящную с математической точки зрения основу для Стандартной модели. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. То есть пойди история теоретической физики немного по-другому вполне возможно, так и произошло где-нибудь на другой планете или в другой Вселенной , теория Янга-Миллса была бы обычным следствием теории струн. То есть этот факт можно рассматривать как теоретическое а не экспериментальное подтверждение теории струн? В некотором смысле — да. В такую игру с теорией струн можно играть достаточно долго: из теории струн естественным образом вытекает теория Янга-Миллса, разного рода дискретные симметрии, играющие важную роль в квантовой механике. Теория струн также позволяет объяснить, почему элементарные частицы объединяются в семейство — например, фермионы и бозоны. То есть многое из того, что приходилось добавлять в уравнения вручную, исходя из экспериментальных соображений, в теории струн возникает само собой. Это не является, конечно, доказательством истинности теории, но с математической точки зрения означает, что теория включает в себя все, что мы знали до сих пор. У квантовой механики есть множество интерпретаций — копенгагенская, многомировая, теория квантовой информации и прочие. У них имеется общий математический аппарат, однако они кардинально различаются в описании того, что представляет собой реальность. Есть ли такие же интерпретации у теории струн? Во-первых и это, конечно, тема для совершенно отдельного и большого разговора, совсем не связанного с темой нашей беседы , я бы не согласился с первой частью вашего утверждения. Различные интерпретации квантовой механики различаются не только на уровне интерпретации, но и на уровне механики, которую они используют. Точнее, аккуратно определяя квантовую механику в рамках той или иной интерпретации, вы обнаружите, что эти интерпретации либо некорректно определены, либо дают разные теории. Они могут отличаться как предсказаниями, так и в онтологическом смысле — то есть они расходятся в том, что реально, а что — нет. Например, копенгагенская интерпретация не полна — она не говорит, что происходит во время так называемого коллапса волновой функции, вызванного наблюдением. Многомировая интерпретация и теория де Бройля-Бома дают различные уравнения для описания квантового мира. Поскольку теория струн использует квантовую механику, то, с одной стороны, последняя никак не меняется. С другой стороны, если в квантовой механике есть какие-то вопросы, которые нужно интерпретировать, то они есть и в теории струн. Все эти многомировые и прочие вещи тут присутствуют в полной мере. Сама же теория при этом никаких дополнительных факторов, требующих интерпретации, не привносит. То есть мы имеем дело с квантовомеханическими вопросами и только с ними. Теория всего - гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия сильное, слабое, электромагнитное и гравитационное. Первые три взаимодействия описываются в настоящий момент квантовой механикой, последнее - теорией относительности С другой стороны, в теории струн есть эффект, называемый двойственностью. Его, если угодно, можно считать двоюродным братом вопроса интерпретации. Дело в том, что в теории одна и та же физическая ситуация допускает несколько математических описаний математических интерпретаций, если угодно. В некотором смысле противоположная история. Главное отличие двойственности в том, что это не источник споров или философских диспутов о том, как и что надо понимать, а мощный инструмент для работы. Расскажу из личного опыта. Некоторое время назад я как раз занимался зеркальной симметрией. Дело в том, что, как уже говорилось выше, дополнительные измерения в теории струн компактифицированы — то есть свернуты особым образом, так что на первый взгляд наш мир видится четырехмерным. Оказывается, возможные формы дополнительных измерений, то есть то, каким образом они свернуты, существуют парами. В каждой паре элементы могут отличаться геометрией, топологией, но при этом дают одну и ту же физическую теорию. Так как физика одна и та же, то один и тот же эксперимент — скажем, рассеивание частиц — дает информацию о строении сразу двух объектов. Благодаря зеркальной симметрии физикам удается получить информацию о математике, которая стоит за этими объектами. То есть смотрите, пусть мы знаем, что наша теория описывает именно нашу Вселенную. Мы хотим предсказать результаты экспериментов по рассеиванию частиц. Начинаем считать — офигеть, не получается, слишком сложная математика. Тут мы вспоминаем о зеркальной симметрии и говорим себе: «Стоп! Мы же можем заменить одно пространство на другое, ведь физика, как известно, будет той же самой». Мы так поступаем, и оказывается, что в зеркально-симметричной ситуации тот же эксперимент описывается много проще и мы все можем посчитать. И что, есть примеры, когда эта схема работает? И таких примеров множество. Другое дело, что мы пока точно не знаем, каким параметрам соответствует именно наша Вселенная. Вот в чем проблема. А как устроены эти симметрии, которые дают в результате два пространства? Исходное и зеркальное пространство связаны через подходящий орбифолд — грубо говоря, фактор многообразия по дискретной группе изометрий. А сама симметрия — это, конечно, просто действие Z2. Никаких континуальных симметрий, только дискретные. Вы говорите очень интересные вещи о математике. На первый взгляд математические утверждения можно получать только с помощью самой математики. А вы говорите, что можно что-то узнать с помощью эксперимента... Ну это относится даже не к теории струн, а ко всей физике элементарных частиц.

Теория струн. Возникновение теории, ее приложения

Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару.

Однако согласно теории струн, внутри этих кварков будут вибрирующие нитки, похожие на струны.

Уровни строения мира: 1. Макроскопический уровень 2. Молекулярный уровень 3. Атомный уровень 4.

Субатомный уровень 5. Субатомный уровень 6. Ramos Особенности Теории струн 10-ое измерение Однако проблема заключается в том, что эти струны не могут существовать в четырех измерениях. Согласно теории струн в нашей Вселенной существует больше измерений, чем четыре.

Конфигурация размеров определяет, как вибрирует струна и, следовательно, какая частица образуется. Струны вибрируют в одиннадцати измерениях, и частота, с которой вибрирует струна, зависит от того, как струна ориентирована в одиннадцати измерениях. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Будь то сила гравитации или электромагнитная сила, все это связано с вибрирующими струнами. В теории струн одно из многих колебательных состояний струны соответствует гравитону, квантовомеханической частице, которая несет гравитационную силу. Таким образом, можно сказать, что теория струн является теорией квантовой гравитации. Следует отметить, однако, что не было найдено никаких доказательств в поддержку теории струн. Ни одно из предсказаний не было подтверждено ни экспериментом, ни наблюдением.

Новая теория струн не только заставила всех просветлиться, но и вбросила говна на вентилятор: по ней получалось, что для каждого бозона должен существовать соответствующий фермион, то есть между бозонами и фермионами должна существовать определённая симметрия.

Такой вид симметрии предсказывался и раньше — под названием «суперсимметрия». Фейл заключался в том, что никто и никогда не наблюдал эти самые суперсимметричные фермионы. Объяснение тому нашли простое: по расчётам, суперсимметричные фермионы должны обладать огромной для микромира массой, и потому в обычных условиях их хрен получишь. Для того, чтобы зарегистрировать их, нужны огромные энергии, которые достигаются при столкновении лёгких частиц на почти световых скоростях. Физики, осознав, в какой жопе они оказались, стали плакаться в жилетку всем, кому ни попадя, и причитать «бида-бида, канец науке». Неизвестно, кому они продали душу , но в итоге им удалось разжалобить больших дядь на серьёзные бабки для строительства Большого адронного коллайдера и пары коллайдеров поменьше. Да-да, именно так, Анон — одной из целей воздвижения этой НЁХ было именно получение суперсимметричных фермионов. Доводы школолофизика о 9-и измерениях, часть рас часть два Итак, теорию струн заменили теорией суперструн, но легче не стало: не успели физики прийти в себя от бодуна после празднования новой теории, как во все дыры полезли новые глюки. В итоге помощь пришла оттуда, откуда совсем не ждали.

Ещё в далёком 1919 году никому тогда не известный немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию: наша Вселенная, вполне может статься, не трехмерная, а измерений может иметься более 9000. В своих работах Калуца делал допущение, что на самом деле Вселенная может быть четырехмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Эйнштейна письмо не впечатлило ещё бы, он только что придумал охуительно сложную теорию, хочется дать продохнуть мозгам, а тут ещё какой-то укуренный немец лезет со своим атсралом , и он ответил лишь « Окей ». В 1926 году физик Оскар Клейн заинтересовался работами Калуцы и усовершенствовал его модель. По Клейну получалось, что дополнительное измерение действительно может существовать, но оно находится в «свёрнутом» и зацикленном на самом себе виде. Причём свернуто четвёртое измерение очень туго — до размеров элементарных частиц, поэтому мы его и не замечаем. Вспомнили о Калуце в восьмидесятых годах, когда теория струн в очередной раз оказалась в жопе. Воспалённые мозги физиков в попытке объяснить несоответствия теории струн с квантовой механикой докатились до того, что было выдвинуто предположение — вся хуйня в расчётах была в том, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная. Вот если бы струны могли бы колебаться в четырёх измерениях… О, да тут же был какой-то Калуца, кстати, где он?

Расчёты показали, что и в этом случае следует неиллюзорный фейл, но зато число противоречий в уравнениях вроде уменьшилось. Взбодренные физики продолжали увеличивать число измерений, пока не ввели все 9!!! И тогда физики громогласно провозгласили, что на самом деле мы живём в десятимерной Вселенной, в том числе одно измерение во времени, три знакомых нам измерения развернуты до космических размеров, а остальные шесть свернуты в микроскопических масштабах и потому незаметны. Такие дела. Причём ни подтвердить, ни опровергнуть это на эксперименте практически никак нельзя, ибо речь идёт о таких малых масштабах струн и свернутых измерений, что современная аппаратура ничего не найдёт. Физики были счастливы, общественность охуевала и окончательно утвердилась в мысли, что физика — бесполезная наука. Рождение M-теории[ править ] Двумерная проекция трехмерной визуализации пространства Калаби-Яу Окрыленные новыми успехами, физики ринулись в бой, но скоро опять стали раздаваться возгласы: « WTF? Основным успехом явилось то, что физикам удалось по крайней мере, на бумаге установить общий вид шести свернутых измерений, необходимый для того, чтобы наш мир при этом оставался таким, какой он есть. Оказалось, что этот вид соответствует некоторым математическим объектам из группы под названием «Многообразия Яу» названа по имени развеселого и улыбчивого китайского математика по фамилии Яу, описавшего ее.

Главный фейл — то, что хотя общий вид этих объектов и вычислили, но точный вид, как оказалось, нельзя установить без эксперимента. Без нахождения точного вида пространства Калаби-Яу нашей Вселенной вся теория струн скатывалась практически в гадание на кофейной гуще. Впрочем, работы продолжались, и постепенно физикам удалось вычленить из общей массы гипотез пять более-менее правдоподобных теорий, которые могли бы описать нашу Вселенную. Ситуация сложилась вообще аховая — теперь теорий стало больше, чем надо, и это было нехорошо. Авторитет теории струн падал, дальнейшие направления для исследований не виделись, учёные пинали хуи целыми месяцами и потихоньку начали тухнуть. Но в середине девяностых годов прошлого века произошла так называемая вторая революция в теории струн. Неизвестно, чем и куда упоролись физики, но путём фатальных разрывов мозга один из них родил гипотезу, что десять измерений — это, конечно, хорошо, но всё выглядит так, будто чего-то не хватаэ. Оказалось, что введение ещё одного измерения со скрипом, но укладывается в ложе квантовой теории и ОТО, и более того — снимает очень многие накопившиеся проблемы в теории струн. В том числе успешно скрещивает все пять недотеорий в одну-единственную убертеорию.

Вот её-то и назвали без фантазии M-теорией, и именно она на сегодня является высшим достижением матанщиков в деле познания Вселенной. Есть, однако, теория, согласно которой мы очень даже наблюдаем многомерные браны и иные измерения, только ещё не догадываемся об этом. Согласно этой теории, загадочная тёмная материя есть вовсе не какие-то несуществующие слабовзаимодействующие частицы, а самая обычная материя - только существующая не в нашем измерении, а в параллельных. Гравитация, согласно этой теории, одна на все измерения, и непонятная гравитация, порождаемая невидимой материей, на самом деле долетает к нам из измерения Зен. О как! Переименование старого брэнда «теория струн» было оправданно, ибо по M-теории получается, что основа Вселенной — не только одномерные струны. К ужасу всего научного сообщества, оказалось, что могут существовать и двухмерные аналоги струн — мембраны , и трёхмерные, и четырёхмерные… Эти конструкции были названы бранами струна — 1-брана, мембрана — 2-брана, и так далее. На то, что эти самые браны нигде не были экспериментально зарегистрированы, физики дружно положили болт — хули, не впервой, и вообще мы тут делом заняты, а вы мешаете своими претензиями. Браны у нас на данном этапе принципиально ненаблюдаемы.

Что имеем в итоге? Не проходит и пары месяцев, как объявляется о каком-либо очередном серьёзном успехе. Неудивительно, ибо туева хуча физиков по всему глобусу денно и нощно занимаются изучением и развитием теории струн. Большинство из них ведёт голубая мечта — что в один прекрасный день теория струн таки станет Единой теорией всего. Профита от теории струн пока вроде как не намечается, а вот бабла хавает будь здоров один БАК чего стоит. Зато, если окончательный вин таки будет достигнут, то человечество поднимет своё ЧСВ до поистине заоблачных высот; будет что предъявить перед Б-гом. Но вот будет ли вин — ещё большой вопрос: вспоминаем, как физики ещё после Ньютона полагали, что все законы природы познаны, и больше ловить на этом поле нечего. Как бы то ни было, мозголомка по всему миру продолжается, пока ты сидишь в интернетах.

Теория струн, Мультивселенная

Обнаружено новое доказательство теории струн Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме.
Что такое теория струн? одна из наиболее восхитительных и глубоких теорий в современной теоретической физике.
Что такое Теория струн и существует ли 10-ое измерение Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной.

Теория струн, Мультивселенная

Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. одно из направлений теоретической физики (можно сказать - физики элементарных частиц). Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.

Теория струн и квантовая механика

Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация.

Струны, обладающие ей, имеют пару с противоположным направлением.

При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. Поскольку температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и её дальнейшему снижению. В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свернуты до минимальных размеров порядка планковской длины. Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свернуты в многомерный комок планковских размеров.

Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции принимают наблюдаемую теперь форму. Модель Венециано и Гасперини[ ] После работы Бранденбергера и Вафы физики непрерывно продвигаются вперёд к пониманию струнной космологии. В числе тех, кто идет во главе этих исследований — Габриэле Венециано и его коллега Маурицио Гасперини из Туринского университета. Эти учёные представили свой вариант струнной космологии, который в ряде мест соприкасается с описанным выше сценарием, но в других местах принципиально отличается от него. Как Бранденбергер и Вафа, для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели, они опирались на существование минимальной длины в теории струн. Однако вместо вывода о том, что в силу этого свойства Вселенная рождается из комка планковских размеров, Гасперини и Венециано предположили, что существовала доисторическая вселенная, возникшая задолго до момента, который называется нулевой точкой, и породившая этот космический « эмбрион » планковских размеров.

Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень сильно различаются. Согласно Гасперини и Венециано, Вселенная не являлась раскаленным и плотно скрученным клубком измерений, а была холодной и имела бесконечную протяженность. Затем, как следует из уравнений теории струн, во Вселенную вторглась нестабильность, и все её точки стали, как и в эпоху инфляции по Гуту, стремительно разбегаться в стороны. Гасперини и Венециано показали, что из-за этого пространство становилось всё более искривлённым и в результате произошел резкий скачок температуры и плотности энергии. Прошло немного времени, и трёхмерная область миллиметровых размеров внутри этих бескрайних просторов преобразилась в раскалённое и плотное пятно, тождественное пятну, которое образуется при инфляционном расширении по Гуту. Затем все пошло по стандартному сценарию космологии Большого взрыва , и расширяющееся пятно превратилось в наблюдаемую Вселенную. Поскольку в эпоху до Большого взрыва происходило своё инфляционное расширение, решение парадокса горизонта, предложенное Гутом, оказывается автоматически встроенным в этот космологический сценарий.

По выражению Венециано в интервью 1998 г. Изучение струнной космологии быстро становится областью активных и продуктивных исследований. Например, сценарий эволюции до Большого взрыва уже не раз был поводом горячих споров, а его место в будущей космологической формулировке далеко не очевидно. Однако нет сомнений, что эта космологическая формулировка будет твёрдо опираться на понимание физиками результатов, открытых во время второй суперструнной революции. Например, до сих пор не ясны космологические следствия существования многомерных мембран. Иными словами, как изменитcя представление о первых моментах существования Вселенной в результате анализа законченной М-теории? Этот вопрос интенсивно исследуется.

Косвенные предсказания[ ] Несмотря на то, что арена основных действий в теории суперструн недоступна прямому экспериментальному изучению, ряд косвенных предсказаний теории суперструн всё же можно проверить в эксперименте. Во-первых, обязательным является наличие суперсимметрии. Ожидается, что вступающий в строй в 2007 году Большой адронный коллайдер сможет открыть некоторые суперсимметричные частицы. Это будет серьёзной поддержкой теории суперструн. Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в доли миллиметра.

Сасскинд понял - формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, сасскинд представил революционную идею струн. К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель. В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что вселенная намного богаче, чем это можно было себе представить. Это был настоящий "Демографический Взрыв" элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, - не хватало даже букв для их обозначения. Но, увы, в "Родильном Доме" новых частиц ученые так и не смогли отыскать ответ на вопрос - зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию - они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы - переносчики взаимодействий. Таковым, например, является фотон - частица света. Чем больше этих частиц - переносчиков - тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами - переносчиками - есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. Ученые считают, что если мы перенесемся к моменту сразу после большого взрыва, когда вселенная была на триллионы градусов горячее, частицы - переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну - един ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную "Суперсилу". Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема - она не включала в себя самую известную силу макроуровня - гравитацию. Для не успевшей "Расцвести" теории струн наступила "осень", уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион - частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик - теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе. Ученый уже решил забросить свое гиблое дело, и тут его осенило - может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных "Героев" теории - струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, "Струнщики" превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона - частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн - Майкл Грин. Субатомные матрешки. Несмотря ни на что, в начале 1980-х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщества взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом теории всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц - электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц - кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров солнечной системы, струна была бы размером с дерево.

Однако, в 1926 году на сцену вышел великий Вернер Гейзенберг со своим принципом неопределенности и все изменилось в одночасье. Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн.

Похожие новости:

Оцените статью
Добавить комментарий