Вчера команда телескопа Event Horizon заявила, что нашла нечто «ошеломляющее» в нашем Млечном Пути. Результаты 11 новостей.
Ученые сфотографировали тень космического монстра в сердце Млечного Пути
Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. Целью этого международного сотрудничества радиотелескопов и обсерваторий телескопа "Горизонт событий" было получение первого изображения черной дыры. свежие новости - CT News. Изображение: Event Horizon Telescope. Настройка Event Horizon Telescope — это технический подвиг, на который потребовались годы работы, чтобы сделать вчерашнее наблюдение.
Получена первая в истории фотография черной дыры
Впервые столкновение черных дыр было «услышано» в 2015 г. Гравитационно-волновой обсерваторией с лазерным интерферометром. Теперь их можно было рассматривать как чернильный портал небытия, обрамленный кружащимся бубликом из лучистого газа в центре галактики Мессье 87. Картина появилась на первых полосах газет по всему миру, а копия сейчас находится в постоянной коллекции Музея современного искусства в Нью-Йорке. Вид на Мессье 87 в созвездии Девы, телескопом Европейской южной обсерватории Исследователям потребовалось еще два года, чтобы получить поляризованные изображения. В М87 излучение всех форм энергии растекается на более чем 100 000 световых лет от черной дыры.
Недавно обработанное изображение позволяет астрономам выявить происхождение этих полей до их происхождения в горячем хаотическом кольце наэлектризованного газа или плазмы, диаметром около 30 миллиардов миль, что больше в четыре раза орбиты Плутона. Это достижение стало возможным, потому что свет от диска частично поляризован, вибрируя больше в одном направлении, чем в других. В течение многих лет астрономы обсуждали, были ли магнитные поля, окружающие так называемые черные дыры низкой светимости, такие как M87, слабыми и турбулентными или «сильными» и когерентными. В этом случае, сказал доктор Чаэль, магнитные поля достаточно сильны, чтобы прервать падение газа и передать энергию от вращающейся черной дыры к струе.
Масса газа, падающего в черную дыру, достигает примерно одной массы Солнца каждые десять лет. Возможность увидеть это при помощи гигантского виртуального интерферометра стала одним из наиболее интересных достижений в астрофизике в течение последних десятилетий. Естественно, что сразу после первого опыта ученые решили сосредоточиться на наиболее важной для Земли черной дыре, которая находится в центре нашей галактики Млечный Путь. Астрофизики довольно давно высказывают предположение, что в центре спиральных галактик, к которым относится и Млечный Путь, должно находиться сверхмассивное небесное тело, которое служит центром масс и вокруг которого вращается галактика. Еще в прошлом веке говорилось, что таким телом может быть сверхмассивная черная дыра — именно такой вывод подсказывали уравнения Эйнштейна.
Such material, which is converted to plasma, moves past the black hole at a very high rate of speed, which is why they are called jets. Data for this new effort was obtained by the EHT telescope array going back to 2017. Doing the same for the NRAO 530 quasar proved more challenging due its greater distance—approximately 7. Study of the quasar has shown it to be optically violent—and it is also a blazar; a type of quasar that is oriented such that its jets point nearly directly toward the Earth. By combining data from multiple telescopes, the research team was able to create two images.
Черная дыра в центре Млечного Пути располагается в 26 000 световых лет от нашей планеты Интересный факт Команда потратила пять лет на анализ данных, полученных в апреле 2017 года. В 2019 году исследователи опубликовали первое изображение черной дыры в галактике Messier 87. Лично я доволен тем фактом, что мы наконец доказали существование черной дыры в центре нашей галактики, — рассказал журналистам The Guardian член коллаборации EHT профессор Зири Юнси из Университетского колледжа Лондона. Вселенная переполнена галактиками и черными дырами. Это — научный факт Астрофизики полагают, что в центре практически всех галактик во Вселенной, включая Млечный Путь, располагаются черные дыры. Когда свет засасывает в бездну вместе с перегретым газом и пылью, он изгибается и скручивается под действием гравитации. Кстати, в будущем ученые намерены явить миру первое в истории видео черной дыры и того, как она поглощает все вокруг себя. Подробнее о революционных планах астрономов мы рассказывали в этой статье , не пропустите. Чем питаются черные дыры В ходе пресс-конференции 12 мая 2022 года астрономы представили изображение , полученное с помощью EHT. В том числе потому, что черная дыра в Млечном Пути ведет себя неспокойно. Читайте также: Могут ли гравитационные волны разрешить кризис космологии?
Новый покупатель
- Телескоп горизонта событий
- Последние комментарии
- 3. Представлено первое фото черной дыры в центре нашей Галактики / Наука / Независимая газета
- Впервые получено изображение тени черной дыры в центре Млечного Пути
- Телескоп горизонта событий заметил колебание тени черной дыры
Поделиться
- Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* • AB-NEWS
- Event Horizon Telescope releases first ever black hole image |
- Stories from those working behind the scenes on the biggest discovery of the year
- Подписка на дайджест
- Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live
- 5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб
Time variability of the Galactic Center black hole Sgr A*
- Navigation Menu
- Куда смотрел телескоп
- Первое в истории изображение черной дыры уже стало мемом
- A story of overcoming differences between people and telescopes
- Получено первое изображение черной дыры в центре Млечного Пути
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
Search code, repositories, users, issues, pull requests... | Ученые из коллаборации Телескопа горизонта событий (EHT) показали первое в истории изображение тени сверхмассивной черной дыры, находящейся в самом центре. |
Первый снимок чёрной дыры в центре нашей Галактики | Важным результатом наземных наблюдений стало получение Телескопом горизонта событий (Event Horizon Telescope, или EHT) изображений сверхмассивных черных дыр в центре нашей Галактики и в галактике M87. |
Астрономы впервые получили фото черной дыры в центре Млечного Пути | По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных. |
3. Представлено первое фото черной дыры в центре нашей Галактики / Наука / Независимая газета | Event Horizon Telescope Collaboration (testing-general-relativity-with-the-event-horizon).jpg 2,358 × 1,762; 674 KB. |
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры | Телескоп Event Horizon Telescope (EHT) запечатлел квазар под названием NRAO 530. |
Впервые представлено фото черной дыры и горизонта событий
The event horizon is a team of programmers and specialists in the field of cryptocurrencies. Телескоп горизонта событий (англ. Event Horizon Telescope, EHT) — проект по созданию большого массива телескопов. Event Horizon Telescope Collaboration Stub. Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT (Телескоп горизонта событий).
Event Horizon Telescope
Однако с черной дырой ситуация совсем другая: обладая крайне сильной гравитацией, она отклоняет и изгибает траекторию движения света настолько, что мы фактически можем видеть то, что находится за ней. И, учитывая, что сама по себе черная дыра не излучает свет, ожидаемое изображение представляет собой яркое кольцо, состоящее из всех отклоненных ею лучей. И то, что мы увидели, отлично согласуется с моделями», — добавил Роман Голд из Франкфуртского университета им. Гете, также участник проекта «Event Horizon Telescope». Расположение радиотелескопов глобальной сети. Credit: ESO Всего за 2017 и 2018 года «массив размером с Землю» выполнил около 60 часов наблюдений, собрав в общей сложности примерно 10 петабайт данных. Ученые потратили полтора года, чтобы откалибровать и перепроверить гигантский объем информации и, в итоге, преобразовать его в изображение источника — сверхмассивной черной дыры в галактике Messier 87.
Но, разместив телескопы по всему миру для создания телескопа размером с Землю, был достигнут этот беспрецедентный результат, предвещающий новую эпоху в исследовании черных дыр и прокладывающий путь для дальнейших научных прорывов», — прокомментировали событие в Европейской южной обсерватории ESO , чьи телескопы добавляют ощутимую мощь глобальной сети «Event Horizon Telescope».
Целью будущих исследований может стать «Единорог» — ближайшая к Земле черная дыра Все восемь радиотелескопов на разных континентах синхронизируются друг с другом при помощи атомных часов и суперкомпьютеров для обработки данных. Стоимость этого уникального проекта составляет около 60 миллионов долларов, 28 из которых поступили от Национального научного фонда США. Снимок, представленный на официальной пресс-конференции 12 мая, составлен из нескольких тысяч изображений черной дыры. Еще больше интересных статей о звездах, галактиках и тайнах Вселенной читайте на нашем канале в Яндекс.
Там регулярно выходят статьи, которых нет на сайте В конечном итоге ученые надеются, что наблюдение за целым рядом черных дыр, как довольно спокойных, так и турбулентных, может помочь ответить на многочисленные вопросы об эволюции галактик — сегодня ответа на вопрос о том, что появилось раньше — галактика или черная дыра — не существует. Еще один немаловажный аспект нового открытия — это эмоциональная связь с сердцем родной Галактики. Согласитесь, есть что-то захватывающее в том, что мир наслаждается снимком центра Млечного Пути. Впервые в истории. По мнению исследователей, работа над проектом объединяет: язык, континенты и даже галактики не могут стоять на пути великих возможностей человечества.
Ведь чтобы добиться революционных открытий, мы должны работать сообща и трудиться для всеобщего блага.
This example of global teamwork required close collaboration by researchers from around the world. Thirteen partner institutions worked together to create the EHT, using both pre-existing infrastructure and support from a variety of agencies. This timeline provides an overview.
Это стало возможным благодаря модернизации проекта EHT и применения новых методов обработки получаемых данных. Таким образом, у астрономов появилось окончательное доказательство существования столь массивного компактного объекта в центральной зоне нашей галактики. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру. О том, как благодаря EHT астрономам удалось увидеть тень черной дыры, и что это дало науке можно узнать из материалов «Взгляд в бездну» и «Заглянуть за горизонт».
Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры
Чтобы убедиться в этом, нужно подключать телескоп «Джеймс Уэбб». Он поможет проследить за образованием массивных черных дыр и хотя бы в теории приготовиться к опасностям, которые они могут скрывать. Скопление газов и магнитных полей на краю сверхмассивной черной дыры в галактике M87 — снимок на «Телескоп горизонта событий» в поляризационных лучах ESO Джеймс Уэбб поможет заглянуть в глубину истории космоса У него высокая мощность и позиция в точке без помех С помощью «Хаббла» а также более ранних космических обсерваторий вроде COBE — Cosmic Background Explorer ученые смогли посмотреть на действительно древние галактики, которые существовали в промежутке между 400 и 800 миллионами лет после Большого Взрыва. Ученые предполагают, что до этого Вселенная представляла собой крайне горячий туман, состоящий из энергии и бурлящей плазмы, сквозь которую не мог проникнуть свет. Данный временной промежуток называют «темными веками» космоса.
Известно, что по мере того, как Вселенная расширялась и охлаждалась, самые ранние звезды, преобразовывая плазму вокруг себя, выкачивали водород и гелий. По идее, они очень сильно отличались от современных, но пока никто не знает, как именно. Вполне вероятно, что «Джеймс Уэбб» поможет заглянуть в это время, фиксируя не свет, а другие виды излучения небесных тел. Можно говорить о промежутке вплоть до 100 миллионов лет после рождения Вселенной.
Известный снимок Ultra Deep Field, который сделали с помощью «Хаббла».
Но астрономы связывают два или более радиотелескопов и объединяют свои сигналы с помощью интерферометрии, чтобы эффективно работать вместе как одна большая тарелка. Постоянно расширяющийся спектр связанных удаленных телескопов значительно увеличил разрешающую способность наблюдений.
Шепард Доулман из Гарварда дерзко предположил, что объединение радиотелескопов в отдельный мир может достичь разрешающей способности для изображения черной дыры. Чтобы справиться с этой задачей, команда телескопов Event Horizon насчитывает более 200 ученых и 8 радио обсерваторий, расположенных на четырех континентах. Чтобы объединить наблюдения в виртуальные с помощью интерферометрии, требуется объединение радиосигналов с изысканной синхронизацией, чтобы они были практически одновременными.
Самые точные в мире атомные часы использовались для отметки времени всех записанных данных с радиотелескопов. Соединения с Интернетом были недостаточны для передачи огромного количества данных, поэтому они были записаны и физически отправлены в компьютерные центры в США и Германии для анализа. Приборы, разработанные учеными из Berkeley SETI, внесли свой вклад в замечательные электронные и аналитические возможности операции.
Первой целью была сверхмассивная черная дыра в галактике M87. Астрономы уже видели, что массивные струи заряженных частиц простираются на тысячи световых лет от центрального источника, но двигатель, приводящий в действие выбросы, оставался невидимым см. Фото выше эмиссионной струи, снятой с телескопа Хаббла.
В связи с тем, что погода сотрудничала во многих местах, в апреле 2017 года проводились одновременные наблюдения в течение большей части десятидневного периода. Для интерпретации данных и восстановления изображения по сигналам, полученным со всех телескопов, потребовалось почти два года. Их сравнивали с сотнями компьютерных симуляций, которые применяли математику общей теории относительности к моделируемым параметрам, включая массу черной дыры, вращение, ориентацию оси вращения черной дыры и окружающего аккреционного диска и многое другое.
На историческом изображении изображена темная «дыра в космосе», окруженная кольцом света, которое становится немного размытым из-за предела разрешения. Термин «светлый» используется в общем смысле; обнаруженное здесь излучение имеет длину волны в миллиметрах, которая не видна глазу, и отображается в произвольных цветах. Этот темный край обозначает внутренний предел стабильной орбиты фотоны вокруг черной дыры.
Это примерно в два раза больше фактического горизонта событий. Эффекты относительности сильно искажают путь света, излучаемого окружающим аккреционным диском и фоновыми источниками. Можно подумать, что черная дыра действует как такая мощная линза, что она не только направляет лучи света к нам, но и заставляет некоторых вращаться по орбитам, как спутник, вращающийся вокруг Земли.
Фотоны, отклоняющиеся внутрь от «последней стабильной фотонной орбиты», навсегда теряются в горизонте событий, в то время как другие могут двигаться к нам. Наилучшее совпадение изображения с компьютерным моделированием, а также с известным направлением радиоструй свидетельствует о том, что мы наблюдаем черную дыру почти над ее осью вращения и она вращается по часовой стрелке с нашей точки зрения. Его сферическая форма согласуется с предсказаниями общей теории относительности.
Увеличенная яркость нижнего квадранта обусловлена релятивистским усилением световых волн, движущихся к нам.
В 2018 году было записано 3500 ТБ данных, большая часть которых посвящена одному объекту — черной дыре из галактики M87. Чтобы отправить этот массив информации в вычислительные лаборатории, решили использовать не Интернет, а обычную почту и множество жестких дисков, потому что с помощью Интернета за сутки получится передать только 1 ТБ. Данные послали в Массачусетский Технологический институт и Радиоастрономический институт Макса Планка, чтобы получить два независимых результата. В апреле 2019 года человечеству показали первую живую фотографию черной дыры, которая находится в 55 млн световых лет от нас.
Первая презентация изображения черной дыры в галактике M87. Фото: www. Messier 87 — более чистый объект. В фоновом режиме ТГС наблюдает и за ними. Дальше — больше.
На это делаются большие ставки, ведь живого видео никто никогда не делал. Как, впрочем, и фотографий черной дыры до недавнего времени. Вообще работы у Телескопа Горизонта Событий хватит на несколько лет вперед. В октябре группа ученых из Университета Огайо открыла особый вид черных дыр — сверхмалые, масса которых всего в 3,3 раза больше Солнца.
Вид на Мессье 87 в созвездии Девы, телескопом Европейской южной обсерватории Исследователям потребовалось еще два года, чтобы получить поляризованные изображения. В М87 излучение всех форм энергии растекается на более чем 100 000 световых лет от черной дыры.
Недавно обработанное изображение позволяет астрономам выявить происхождение этих полей до их происхождения в горячем хаотическом кольце наэлектризованного газа или плазмы, диаметром около 30 миллиардов миль, что больше в четыре раза орбиты Плутона. Это достижение стало возможным, потому что свет от диска частично поляризован, вибрируя больше в одном направлении, чем в других. В течение многих лет астрономы обсуждали, были ли магнитные поля, окружающие так называемые черные дыры низкой светимости, такие как M87, слабыми и турбулентными или «сильными» и когерентными. В этом случае, сказал доктор Чаэль, магнитные поля достаточно сильны, чтобы прервать падение газа и передать энергию от вращающейся черной дыры к струе. В результате, по словам доктора Доулмана, «это придает излучаемым радиоволнам азимутальный поворот», наблюдаемый в изгибе новых поляризованных изображений. Он отметил, что азимутальный поворот будет «прекрасным названием для коктейля».
По словам доктора Доулмана, побочным продуктом этой работы стало то, что астрономы смогли оценить скорость, с которой черная дыра питается окружающей средой. По-видимому, она не очень голодна; черная дыра съедает «ничтожную» одну тысячную массы Солнца в год.
Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live
Ученые сфотографировали тень космического монстра в сердце Млечного Пути - | Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов. |
Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live | Now that the Event Horizon Telescope collaboration has released its image of the Milky Way's black hole, the team is focusing on making movies of the two photographed black holes and finding other distant black holes large enough to study. |
#Event Horizon Telescope | Именно эта идея и легла в основу проекта «Телескоп горизонта событий», объединившего свыше 300 учёных из шести десятков научных учреждений по всему миру. |
Event Horizon Telescope | Junhan Kim | Ученые хотят использовать Телескоп Горизонта Событий, чтобы заснять на видео, как черная дыра Sagittarius A* в центре нашей галактики затягивает в себя то, что находится вокруг. |
Event Horizon 💻 – Telegram | В среду представители сети Event Horizon Telescope показали первый в истории снимок окрестностей горизонта событий черной дыры в центре галактики М 87. |
Впервые получено изображение тени черной дыры в центре Млечного Пути
В 2019 году с помощью «Телескопа горизонта событий» (Event Horizon Telescope) удалось сделать первый снимок крайней части невероятно большой черной дыры из галактики M87, вокруг которой скапливаются специфические газы. Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Телескоп Event Horizon Telescope (EHT) запечатлел квазар под названием NRAO 530.