Новости фрактал в природе

Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Смотрите 51 фото онлайн по теме фракталы в природе фото.

Фракталы. Чудеса природы. Поиски новых размерностей

Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен как описанный выше зачастую приводит к фрактальным структурам. Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например. Ну и добавлю еще одно соображение.

Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры.

Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой. Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными. В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны. Пятая глава книги «Фрактальная геометрия природы» посвящена, на первый взгляд, довольно простому вопросу: «Какова длина береговой линии Британии?

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера. Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США.

Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности. Чем меньше мера при измерении, тем больше измеряемая длина Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность. Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность».

Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений. В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия. В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию.

Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS. Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб.

Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе. XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

Такие структуры обладают самоподобием на различных масштабах и нередко встречаются в природе. Результаты опубликованы в журнале Physical Review A. Фракталы — это объекты, для которых характерно самоподобие, то есть точное или частичное совпадение фрагментов различных размеров. С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью.

Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой.

Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину. Является самоподобным или приближённо самоподобным.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы. Слайд 4 Описание слайда: Природные объекты, обладающие фрактальными свойствами Природные объекты отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры.

Навигация по записям

  • Что такое фрактал? Фракталы в природе
  • Откройте свой Мир!
  • Фрактальная природа
  • Бесконечность фракталов. Как устроен мир вокруг нас

Фракталы в природе.

Поделиться: Фрактал — это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Высказывания выдающихся ученых прошлого и современности, которые опеделяют содержание темы: "Прямая линия ведет человечество к упадку.

Тирания прямой стала абсолютной. Прямая линия - это нечто трусливое, прочерченное по линейке, без эмоций и размышлений, это линия, не существующая в природе. И на этом насквозь прогнившем фундаменте построена наша обреченная цивилизация.

Если даже и возникает где-то мысль, что прямая линия напрямик ведет к гибели, ее курсу все равно продолжают следовать дальше... А написана она на языке математики, и ее буквами являются треугольники, окружности, другие геометрические фигуры, без которых человеку невозможно разобрать ни единого слова, без них он подобен блуждающему во тьме. Галилей, 1623 г.

Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сфера, горы - это не конусы, линия берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой... Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности.

Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные, - задачи исследования морфологии аморфного. Математики однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать.

Если мы описываем увиденное и известное по опыту на языке логики - это наука; если же предоставляем в формах, внутренние взаимосвязи которых недоступны нашему сознанию, но которые интуитивно воспринимаются как осмысленные, - это искусство. И для искусства, и для науки общим является увлечение чем-то стоящим выше личного, свободным от условного. В космическом хаосе, говоря словами Гете, есть "законы, охраняющие сокровища жизни, которыми украшает себя Вселенная".

На каждой новой ступени организации материи вступают в силу новые правила. Это не означает, что известные до сих пор законы природы неверны, но это лишь означает, что трудно обнаружить все скрытое в них. Приведем примеры.

Долгосрочный прогноз солнечной системы невозможен уравнения являются неинтегрируемыми. Невозможность осуществления до настоящего времени управляемого термоядерного синтеза связана с тем, что нет адекватного представления о хаотическом движении заряженных частиц в системе магнитных линз. Изучение развития яиц насекомых показывает, что морфогенез невозможно понять только из знания молекулярного строения соответствующего генома.

Нелинейные процессы приводят к ветвлению. Система может выбрать ту или иную ветвь, последствия выбора однозначно предсказать невозможно, поскольку для каждого из этих решений характерно усиление отклонений. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна.

Рано или поздно начальная информация о состоянии системы становится бесполезной. В ходе эволюции генетическая информация генерируется и запоминается. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю.

Хаос - фундаментальное понятие философии, социологии и естествознания. Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру.

И здесь нам приходят на помощь фракталы. Фрактал — это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Как мы уже узнали, снежинки имеют сложную и красивую геометрию, которая состоит из множества лучей, каждый из которых имеет форму зигзага и петель. Эти лучи также могут быть разделены на множество более мелких лучей, каждый из которых является копией всего луча. Таким образом, снежинка является прекрасным примером фрактала в природе. Также примером фракталов в природе являются деревья. Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева. Эта структура позволяет деревьям эффективно собирать солнечный свет и питательные вещества из почвы.

Еще одним примером фракталов в природе является грозовая туча. Грозовые тучи имеют сложную структуру, которая может быть разделена на множество более мелких туч, каждая из которых является копией всей тучи. Эта структура позволяет грозовым тучам эффективно переносить воду из одного места в другое.

Фракталы в природе.

В процессе самосборки белки становятся симметричными: каждая отдельная цепочка белков организована так же, как ее соседи. Такая симметрия приводит к тому, что в крупном масштабе форма выглядит однородной. Фрактальный белок нарушает правило симметрии. Разные цепочки белков вступают в различных точках фрактала в не полностью идентичные взаимодействия. Пока исследователям не ясно, несет ли такая фрактальная структура фермента цианобактерии какую-то пользу. Возможно, это всего лишь безобидная случайность эволюции. Недавно ученые из США открыли «нейтронные молекулы».

Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды. Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y, то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости. Такую плоскость называют фазовой. Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство. Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором от английского глагола to attract - притягивать , - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса. Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором. Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно. Предсказание будущего - Из-за такой малости! Из-за бабочки! Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени? Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям. Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск. Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл. Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое? Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой. Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории.

Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе. Жюлиа — Мандельброт Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру каждый цвет соответствует определенному числу итераций. Данное графическое изображение получило имя «фрактал Мандельброта». Карпентер: искусство, созданное природой Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе фыва , он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил. Решение Карпентера Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения.

Уникальная сборка Изображение белковой молекулы было получено с помощью электронного микроскопа. В процессе своего роста фрактал образует внутри себя треугольные пустоты, что не делает ни одна из ранее известных белковых структур. Такая особенность обуславливается тем, что различные белковые цепи в разных положениях по-разному взаимодействуют друг с другом. Это приводит к нарушению симметрии и препятствует формированию обычной регулярной решетки.

Что такое фрактал?

Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Деревья, как и многие другие объекты в природе, имеют фрактальное строение.

Компьютерные игры

  • Порядок в хаосе
  • Прекрасные фракталы в природе
  • Случайность как художник: учёные обнаружили первую фрактальную молекулу
  • Фрактальные закономерности в природе | Северные инновации и управление
  • Обнаружен первый в природе молекулярный фрактал: Наука: Наука и техника:

Прекрасные фракталы в природе

В данном разделе вы найдете много статей и новостей по теме «фрактал». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых журналов. Деревья, как и многие другие объекты в природе, имеют фрактальное строение. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Фото подборка встречающихся в природе или искусственно созданных фракталов. ПРОСТО ФРАКТАЛ. Фракталы в природе. Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа».

Войти на сайт

Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе.

Немного сухих фактов

  • Впервые в природе обнаружена микроскопическая фрактальная структура
  • Что такое фрактал?
  • Феномен жизни во фрактальной Вселенной
  • Прекрасные фракталы в природе: topbloger — LiveJournal
  • ФРАКТАЛЫ КАК СПОСОБ ОПИСАНИЯ ОКРУЖАЮЩЕГО МИРА

Математика в природе: самые красивые закономерности в окружающем мире

Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».

Похожие новости:

Оцените статью
Добавить комментарий