Новости в попытке классификации молний араго

Франсуа Араго физик. В попытке классификации молний араго не был. Франсуа Араго физик. В попытке классификации молний араго не был.

Ученые доказали, что перевернутые молнии существуют

Шар размером с баскетбольный мяч диаметром около 25 см и цвета раскаленного докрасна металла искрился, как костер, но пламя отсутствовало. Он приблизился к воротам, «просочился» через зазор между их рамой и опорой с петлями, изменив свою форму, подобно жидкому веществу. Затем шар целиком вышел с другой стороны ворот, принял прежнюю форму, пролетел ещё примерно 1,5-2 м, приземлился на асфальтированную отмостку строения и с шипением сгорел. На воротах и на асфальте никаких следов воздействия не осталось. На месте приземления очевидцы обнаружили мелкие фрагменты, похожие на шлак. Случай и соответствующее расследование опубликованы в журнале РАН « Природа » [10]. Шар с двухметровым хвостом подпрыгнул к потолку прямо из окна, упал на пол, снова подпрыгнул к потолку, пролетел 2—3 метра, а затем упал на пол и исчез. Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар.

Все компьютеры зависли но не сломались , коммуникационное оборудование выбыло из строя на ночь , пока его не починили. Кроме того, был уничтожен один монитор [19]. Причём, как рассказала изданию хозяйка дома Надежда Владимировна Остапук, окна и двери в доме были закрыты и женщина так и не смогла понять, каким образом огненный шар проник в помещение. К счастью, женщина догадалась, что не стоит делать резких движений, и осталась просто сидеть на месте, наблюдая за молнией. Шаровая молния пролетела над её головой и разрядилась в электропроводку на стене. В результате необычного природного явления никто не пострадал, лишь была повреждена внутренняя отделка комнаты, сообщает издание. Обзор подходов для искусственного воспроизведения[ править править код ] Поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества например, обычной молнией , то большинство опытов проводилось по следующей схеме: создавался газовый разряд о свечении газовых разрядов широко известно , и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела.

Но у исследователей возникают только кратковременные газовые разряды сферической формы, живущие максимум несколько секунд, что не соответствует свидетельствам очевидцев природной шаровой молнии. Хазен выдвинул идею генератора шаровых молний, состоящего из антенны передатчика СВЧ, длинного проводника и импульсного генератора высокого напряжения [21]. Список заявлений[ править править код ] Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остаётся открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»? Первыми опытами и заявлениями можно считать работы Теслы [22] в конце XIX века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего опыта, так что воспроизвести эту установку затруднительно.

Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой, опять доставал… Первые подробные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом : ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением. Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения. Эти наблюдения привели к мысли, что шаровая молния — тоже явление, создаваемое высокочастотными колебаниями, возникающими в грозовых облаках после обычной молнии. Таким образом подводилась энергия, необходимая для поддержания продолжительного свечения шаровой молнии. Эта гипотеза была опубликована в 1955 г. Через несколько лет у нас появилась возможность возобновить эти опыты.

В марте 1958 г. Этот разряд образовывался в области максимума электрического поля и медленно двигался по кругу, совпадающему с силовой линией. Оригинальный текст англ. These observations led us to the suggestion that the ball lightening may be due to high frequency waves, produced by a thunderstorm cloud after the conventional lightening discharge. Thus the necessary energy is produced for sustaining the extensive luminosity, observed in a ball lightening. This hypothesis was published in 1955. After some years we were in a position to resume our experiments.

In March 1958 in a spherical resonator filled with helium at atmospheric pressure under resonance conditions with intense He oscillations we obtained a free gas discharge, oval in form. This discharge was formed in the region of the maximum of the electric field and slowly moved following the circular lines of force. В литературе [23] описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Науер [24] в 1953 и 1956 годах сообщал о получении светящихся объектов, наблюдаемые свойства которых полностью совпадают со свойствами световых пузырей. Попытки теоретического объяснения[ править править код ] В наш век, когда физики знают, что происходило в первые секунды существования Вселенной, и что творится в ещё не открытых чёрных дырах, всё же приходится с удивлением признать, что основные стихии древности — воздух и вода — всё ещё остаются загадкой для нас. Стаханов[ уточнить ] Экспериментальная проверка существующих теорий затруднена. Даже если считать только предположения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, довольно велико.

По признаку места энергетического источника, поддерживающего существование шаровой молнии, теории можно разделить на два класса: предполагающие внешний источник; Обзор существующих теорий[ править править код ] Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи. Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Списки предпочтительно основывать на вторичных обобщающих авторитетных источниках , содержащих критерий включения элементов в список. Гипотеза Курдюмова С. Примером могут служить солитоны, возникающие в различных нелинейных средах. Ещё сложнее с точки зрения определённых математических подходов — диссипативные структуры… на определённых участках среды может иметь место локализация процессов в виде солитонов, автоволн, диссипативных структур… важно выделить… локализацию процессов на среде в виде структур, имеющих определённую форму, архитектуру» [25]. Гипотеза Капицы П.

В этом случае шаровая молния оказывается как бы «нанизана» на силовые линии стоячей волны и будет двигаться вдоль проводящих поверхностей. Стоячая волна тогда отвечает за энергетическую подпитку шаровой молнии. Гипотеза Широносова В. Резонансная модель шаровой молнии П. Капицы наиболее логично объяснив многое, не объяснила главного — причин возникновения и длительного существования интенсивных коротковолновых электромагнитных колебаний во время грозы. Согласно выдвинутой теории внутри шаровой молнии, помимо предполагаемых П. Капицей коротковолновых электромагнитных колебаний, существуют дополнительные значительные магнитные поля в десятки мегаэрстед.

В первом приближении, шаровую молнию можно рассматривать как самоустойчивую плазму — «удерживающую» саму себя в собственных резонансных переменных и постоянных магнитных полях. Резонансная самосогласованная модель шаровой молнии, позволила объяснить не только её многочисленные загадки и особенности качественно и количественно, но и в частности наметить путь экспериментального получения шаровой молнии и аналогичных самоустойчивых плазменных резонансных образований, управляемых электромагнитными полями. Любопытно заметить, что температура такой самоудерживающейся плазмы в понимании хаотического движения будет «близка» к нулю из-за строго упорядоченного синхронного движения заряженных частиц. Соответственно время жизни такой шаровой молнии резонансной системы велико и пропорционально её добротности [28]. Принципиально другая гипотеза Смирнова Б. В его теории ядро шаровой молнии — это переплетённая ячеистая структура, нечто вроде аэрогеля , которая обеспечивает прочный каркас при малом весе.

Также издавна ходит поверье, что увидеть шаровую молнию - к беде, чтобы высказать свои претензии к проискам феномена потребуется жалобная книга. Все эти многочисленные истории - не более чем мифы, - так, по крайней мере, считает действительный член РАН Самвел Григорян.

Иллюзия или факт? Именно из-за «сверхъестественных историй», которые рассказывали очевидцы, ученые долгое время не воспринимали шаровую молнию всерьез, считая ее, скорее, оптической иллюзией, которая появляется вследствие поражения сетчатки глаза яркой вспышкой линейной молнии. Отчет знаменитого астронома и физика Доминика Франсуа Араго, опубликованный в 1838 году, ознаменовал собой начало эры серьезного подхода к изучению шаровой молнии. Араго удалось собрать и систематизировать многочисленные свидетельства очевидцев, однако, большинство историй по-прежнему вызывали в научных кругах скептические дискуссии. В 80-е годы прошлого столетия в Соединенных штатах вышла книга Дж. Бари, в которой все свидетельства очевидцев подвергаются проверкам на достоверность, в том числе американский специалист использует метод сопоставительного анализа, сравнивая разные рассказы об одном и том же факте. Так вот ты какой, «огненный шар» Исследования американца позволили нарисовать «портрет» шаровой молнии. Светящееся физическое тело сферической формы способно передвигаться в воздухе, преодолевая большие расстояния, и сохранять при этом целостность.

Размер шара колеблется от нескольких сантиметров до полутора метров. Продолжительность жизни молнии чрезвычайно мала: от нескольких секунд до двух минут. В большинстве случаев «огненный шар» рождается во время грозы, хотя может возникать и в ясную погоду.

Учёные пытаются объяснить загадочное явление Шаровая молния в Нидерландах, 2011 год Commons. Одно из них — шаровая молния. Об этом удивительном феномене, который обычно возникает во время грозы, выглядит как светящееся и плавающее в воздухе образование, способное перемещаться по непредсказуемой траектории, исследователи до сих пор знают крайне мало. А есть и те, кто считает его выдумкой или, на худой конец, оптической иллюзией, галлюцинацией впечатлительных людей.

Когда это похоже на магию Первым учёным, который взялся собрать и систематизировать случаи наблюдения шаровых молний, был французский физик и астроном Франсуа Араго. Книгу, в которой описано 30 случаев появления светящихся сгустков, он издал в первой половине XIX века. Араго не сомневался, что феномен связан с электричеством, но тогда многие его коллеги предполагали, что это либо оптическая иллюзия, либо явление иной, неэлектрической природы. Время шло, накапливалась статистика. Не замечать её было бы странно, тем более что огромное количество информации поступало от военных — людей, которым можно доверять. В годы Второй мировой войны огненные шары, двигавшиеся по необычной траектории, часто замечали пилоты такие объекты стали называть Foo fighters , о них сообщали моряки и даже подводники, которые наблюдали маленькие шаровые молнии в замкнутом пространстве субмарин при включении или выключении аккумуляторов и электромоторов. Шаровая молния на гравюре XIX века.

Фото: Public Domain Хватало свидетельств и со стороны гражданских лиц. Например, 6 августа 1944 года жители шведского города Упсала видели, как шаровая молния прошла сквозь закрытое окно, проделав в стекле дырку диаметром 5 сантиметров. Но бывает, что загадочное образование проникает сквозь препятствие, не оставляя никаких следов. По данным доктора физико-математических наук Александра Григорьева, таких случаев немного, но они есть: из 5315 свидетельств, собранных им и его коллегами — 42. Учёный предполагает, что шаровая молния, возможно, не проходит сквозь стекло, а порождает своим электрическим полем аналогичный объект по другую сторону преграды. Если это так, то это прямо-таки похоже на магию. Статья по теме Что такое шаровая молния?

Иногда встреча с огненным «гостем» завершается взрывом.

Откуда исходит излучение: с поверхности или из всего объема? Что определяет разницу температур шаровых молний? Ведь наряду со свидетельствами о полупрозрачных «шарах», температура которых вряд ли превышает 5 тысяч градусов, существуют наблюдения за объектами, цвет которых позволяет говорить о температуре не менее 8 тысяч градусов. Наконец, на что расходуется энергия, которую несет шаровая молния? Если только на световое излучение, то «шар» должен светиться много часов. О, «счастливчик»! Еще один дискуссионный вопрос - частота появления шаровой молнии. В 1966 году исследователи из NASA провели анкетирование двух тысяч человек, которых попросили ответить на два вопроса: видели ли они шаровую молнию, и если «да», то сопровождалось ли явление стандартными грозовыми разрядами? Ученые попытались определить частоту возникновения шаровой молнии по сравнению с линейными разрядами.

Из числа опрошенных только 409 человек наблюдали линейную молнию в непосредственной близости, при этом всего 200 анкетируемых встречались с шаровой молнией. Ученым повезло: среди участников эксперимента нашелся даже один «счастливчик», который наблюдал «огненный шар» аж восемь раз. Его свидетельства пополнили копилку косвенных доказательств того, что шаровая молния — не такое уж редкое явление. Кластерная теория Огромный вклад в изучение вопроса внес профессор Игорь Павлович Стаханов.

Похожие книги на "Приключение великих уравнений"

  • История классификации молний раньше чем Араго (5 видео)
  • Жизнь среди молний
  • Top-5 за всё время
  • ЕГЭ Русский язык. Подготовка к экзамену. - список вопросов -

«Приключения великих уравнений»

Попытки классифицировать молнии встречаются и задолго до Араго. Так, римляне разделяли молнии на увещевательные, угрожающие, наказующие и другие. В попытке классификации молний Араго [ ] не был первым. Древние римляне, например, делили молнии «по предназначению». В попытке классификации молний араго не был.

Владимир Карцев: Приключения великих уравнений

Но каждая маска эта была замечена, распознана среди других зоркостью и памятью многих поколений. В это время электрические явления еще не изучаются - огни святого Эльма, молнии, притягивающиеся кольца и пушинки, электрические рыбы служат пока объектом пассивного, но пристального созерцания. Жизнь среди молний В начале прошлого века знаменитый французский физик, астроном, математик, естествоиспытатель, а также дипломат Доминик Франсуа Араго, сменивший в жизни своей множество постов, начиная с директора обсерватории и кончая членом временного французского послереволюционного правительства 1848 года, написал очень интересную книгу. Название ее, как отмечают многие, напоминает морское проклятье - "Гром и молния", да и содержание - в большой мере - проклятье небесам, насылающим на беззащитное население бесчисленные кары в виде громов и молний. Книга содержит несметное количество фактов, относящихся к разновидностям молний и громов, которых Араго насчитывает сотни - редкая наблюдательность!

В книге интересны не только научные факты, но и картина общества того времени, которую Араго вольно или невольно дал. На широко распространенный призыв Араго к очевидцам - французам - сообщать ему о всех случаях грома и молнии он получил гору писем. Вот что написала великому Араго романтически настроенная госпожа Эспер: "Все это продолжалось около минуты.

Очень понравилась. В книге автор рассказывает про историю развития электричества, магнетизма, а в последствии и электромагнетизма. Книга мне эта попалась, когда писал реферат по философии по истории науки. Точнее эту книгу подсказал препод с нашей кафедры, хотя из этой книжки я практически ничего не использовал, но она меня заинтересовала. И вот, наконец, дошла и до нее очередь. Большая часть книги состоит из биографий известных физиков. Автор описывает то, как они попали в науку, основные их научные интересы, а потом рассказывает про эксперименты, с помощью которых они сделали свои открытия. Хотя иногда хотелось бы про эксперименты почитать поподробнее. В книге последовательно описываются исследования магнита и притяжение пылинок янтарем пока они изучались вместе. Потом Гильберт который был, кстати, врачем в XVIII веке разделит эти явления и они будут исследоваться независимо, пока их снова не объединит Ампер. Описываются эксперименты Франклина, Ломоносова и Рихмана по изучению молний. Интересно также наблюдать как изменялись методы изучения явлений, когда сначала просто накапливали факты, затем выводили закономерности, а после получения Максвеллом своих уравнений сам он их написал 12 штук, а ужу потом Герц и Хэвисайд отбросили лишние и оставили 4, которые и используются до сих пор стали математически предсказывать явления, которые потом долго не могли выявить экспериментально. Судя по всему автор в названии книги и имел в виду уравнения Максвелла, да и на обложке написаны они же. В книге описываются экспериментальные установки Герца, Попова и Маркони для обнаружения и использования электромагнитных волн, предсказанных Максвеллом. А завершается книга обзором квантовых эффектов и неудачными попытками обнаружения так называемых монополей - "магнитных электронов", математически описанных Дираком, который также предсказал наличие позитрона. А этой книги было три издания - в 1971, 1972 и, если не ошибаюсь, 1986 году. Я читал не то первое, не то второе издание, интересно было бы посмотреть на третье. Хотел начать читать другую книгу, которую тоже узнал благодаря реферату по философии - "Великие эксперименты в физике" Липсона, но нашел ее только в формате djvu в таком плохом качестве, что на КПК ее читать тяжеловато. Может быть попробую ее перегнать через FineReader, может что-нибудь из этого получится. Скачивание начинается. Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку. Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия. Напишите нам, и мы в срочном порядке примем меры. Описание книги "Приключение великих уравнений" Описание и краткое содержание "Приключение великих уравнений" читать бесплатно онлайн. Среди "делавших" эту историю мы найдем людей самых различных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы. В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества. Книга рассчитана на массового читателя.

Один из очевидцев помогал знакомому загонять во двор баранов. Удерживая распахнутые наружу ворота, они смотрели в сторону возвышенностей на востоке по направлению к станице Отважной и оба заметили приближающийся издалека около 500 м светящийся шар. Он летел со стороны станицы Ахметовской Лабинский р-н над восточной частью с. Траектория полета была прямолинейной, с некоторым наклоном к горизонту. Шар снижался. Наблюдение длилось несколько минут. Шар размером с баскетбольный мяч диаметром около 25 см и цвета раскаленного докрасна металла искрился, как костер, но пламя отсутствовало. Он приблизился к воротам, «просочился» через зазор между их рамой и опорой с петлями, изменив свою форму, подобно жидкому веществу. Затем шар целиком вышел с другой стороны ворот, принял прежнюю форму, пролетел ещё примерно 1,5-2 м, приземлился на асфальтированную отмостку строения и с шипением сгорел. На воротах и на асфальте никаких следов воздействия не осталось. На месте приземления очевидцы обнаружили мелкие фрагменты, похожие на шлак. Случай и соответствующее расследование опубликованы в журнале РАН « Природа » [10]. Шар с двухметровым хвостом подпрыгнул к потолку прямо из окна, упал на пол, снова подпрыгнул к потолку, пролетел 2—3 метра, а затем упал на пол и исчез. Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар. Все компьютеры зависли но не сломались , коммуникационное оборудование выбыло из строя на ночь , пока его не починили. Кроме того, был уничтожен один монитор [19]. Причём, как рассказала изданию хозяйка дома Надежда Владимировна Остапук, окна и двери в доме были закрыты и женщина так и не смогла понять, каким образом огненный шар проник в помещение. К счастью, женщина догадалась, что не стоит делать резких движений, и осталась просто сидеть на месте, наблюдая за молнией. Шаровая молния пролетела над её головой и разрядилась в электропроводку на стене. В результате необычного природного явления никто не пострадал, лишь была повреждена внутренняя отделка комнаты, сообщает издание. Обзор подходов для искусственного воспроизведения[ править править код ] Поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества например, обычной молнией , то большинство опытов проводилось по следующей схеме: создавался газовый разряд о свечении газовых разрядов широко известно , и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела. Но у исследователей возникают только кратковременные газовые разряды сферической формы, живущие максимум несколько секунд, что не соответствует свидетельствам очевидцев природной шаровой молнии. Хазен выдвинул идею генератора шаровых молний, состоящего из антенны передатчика СВЧ, длинного проводника и импульсного генератора высокого напряжения [21]. Список заявлений[ править править код ] Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остаётся открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»? Первыми опытами и заявлениями можно считать работы Теслы [22] в конце XIX века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего опыта, так что воспроизвести эту установку затруднительно. Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой, опять доставал… Первые подробные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом : ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением. Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения. Эти наблюдения привели к мысли, что шаровая молния — тоже явление, создаваемое высокочастотными колебаниями, возникающими в грозовых облаках после обычной молнии. Таким образом подводилась энергия, необходимая для поддержания продолжительного свечения шаровой молнии. Эта гипотеза была опубликована в 1955 г. Через несколько лет у нас появилась возможность возобновить эти опыты. В марте 1958 г. Этот разряд образовывался в области максимума электрического поля и медленно двигался по кругу, совпадающему с силовой линией. Оригинальный текст англ. These observations led us to the suggestion that the ball lightening may be due to high frequency waves, produced by a thunderstorm cloud after the conventional lightening discharge. Thus the necessary energy is produced for sustaining the extensive luminosity, observed in a ball lightening. This hypothesis was published in 1955. After some years we were in a position to resume our experiments. In March 1958 in a spherical resonator filled with helium at atmospheric pressure under resonance conditions with intense He oscillations we obtained a free gas discharge, oval in form. This discharge was formed in the region of the maximum of the electric field and slowly moved following the circular lines of force. В литературе [23] описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Науер [24] в 1953 и 1956 годах сообщал о получении светящихся объектов, наблюдаемые свойства которых полностью совпадают со свойствами световых пузырей. Попытки теоретического объяснения[ править править код ] В наш век, когда физики знают, что происходило в первые секунды существования Вселенной, и что творится в ещё не открытых чёрных дырах, всё же приходится с удивлением признать, что основные стихии древности — воздух и вода — всё ещё остаются загадкой для нас. Стаханов[ уточнить ] Экспериментальная проверка существующих теорий затруднена. Даже если считать только предположения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, довольно велико. По признаку места энергетического источника, поддерживающего существование шаровой молнии, теории можно разделить на два класса: предполагающие внешний источник; Обзор существующих теорий[ править править код ] Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи. Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Списки предпочтительно основывать на вторичных обобщающих авторитетных источниках , содержащих критерий включения элементов в список. Гипотеза Курдюмова С. Примером могут служить солитоны, возникающие в различных нелинейных средах. Ещё сложнее с точки зрения определённых математических подходов — диссипативные структуры… на определённых участках среды может иметь место локализация процессов в виде солитонов, автоволн, диссипативных структур… важно выделить… локализацию процессов на среде в виде структур, имеющих определённую форму, архитектуру» [25]. Гипотеза Капицы П. В этом случае шаровая молния оказывается как бы «нанизана» на силовые линии стоячей волны и будет двигаться вдоль проводящих поверхностей. Стоячая волна тогда отвечает за энергетическую подпитку шаровой молнии. Гипотеза Широносова В. Резонансная модель шаровой молнии П. Капицы наиболее логично объяснив многое, не объяснила главного — причин возникновения и длительного существования интенсивных коротковолновых электромагнитных колебаний во время грозы. Согласно выдвинутой теории внутри шаровой молнии, помимо предполагаемых П. Капицей коротковолновых электромагнитных колебаний, существуют дополнительные значительные магнитные поля в десятки мегаэрстед.

По свидетельству мастера спорта международного класса по альпинизму В. Кавуненко, в закрытой палатке появилась шаровая молния ярко-жёлтого цвета размером с теннисный мяч, которая продолжительное время хаотично перемещалась от тела к телу, издавая треск. Один из спортсменов, Олег Коровкин, погиб на месте от контакта молнии с областью солнечного сплетения , остальные смогли вызвать помощь и были доставлены в городскую больницу Пятигорска с большим количеством ожогов 4-й степени необъяснимого происхождения. Случай был описан Валентином Аккуратовым в статье «Встреча с огненным шаром» в январском выпуске журнала « Техника — молодёжи » за 1982 год [15]. В 2008 году в Казани шаровая молния залетела в окно троллейбуса. Кондуктор — Ляля Хайбуллина [18] с помощью валидатора отбросила её в конец салона, где не было пассажиров и через несколько секунд произошёл взрыв. В салоне находилось 20 человек, никто не пострадал. Троллейбус вышел из строя, валидатор нагрелся и побелел, но остался в рабочем состоянии [18]. Весной-летом примерно в 15-17 ч по московскому времени небо заволокло тучами, что создавало ощущение начала сумерек. Один из очевидцев помогал знакомому загонять во двор баранов. Удерживая распахнутые наружу ворота, они смотрели в сторону возвышенностей на востоке по направлению к станице Отважной и оба заметили приближающийся издалека около 500 м светящийся шар. Он летел со стороны станицы Ахметовской Лабинский р-н над восточной частью с. Траектория полета была прямолинейной, с некоторым наклоном к горизонту. Шар снижался. Наблюдение длилось несколько минут. Шар размером с баскетбольный мяч диаметром около 25 см и цвета раскаленного докрасна металла искрился, как костер, но пламя отсутствовало. Он приблизился к воротам, «просочился» через зазор между их рамой и опорой с петлями, изменив свою форму, подобно жидкому веществу. Затем шар целиком вышел с другой стороны ворот, принял прежнюю форму, пролетел ещё примерно 1,5-2 м, приземлился на асфальтированную отмостку строения и с шипением сгорел. На воротах и на асфальте никаких следов воздействия не осталось. На месте приземления очевидцы обнаружили мелкие фрагменты, похожие на шлак. Случай и соответствующее расследование опубликованы в журнале РАН « Природа » [10]. Шар с двухметровым хвостом подпрыгнул к потолку прямо из окна, упал на пол, снова подпрыгнул к потолку, пролетел 2—3 метра, а затем упал на пол и исчез. Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар. Все компьютеры зависли но не сломались , коммуникационное оборудование выбыло из строя на ночь , пока его не починили. Кроме того, был уничтожен один монитор [19]. Причём, как рассказала изданию хозяйка дома Надежда Владимировна Остапук, окна и двери в доме были закрыты и женщина так и не смогла понять, каким образом огненный шар проник в помещение. К счастью, женщина догадалась, что не стоит делать резких движений, и осталась просто сидеть на месте, наблюдая за молнией. Шаровая молния пролетела над её головой и разрядилась в электропроводку на стене. В результате необычного природного явления никто не пострадал, лишь была повреждена внутренняя отделка комнаты, сообщает издание. Обзор подходов для искусственного воспроизведения[ править править код ] Поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества например, обычной молнией , то большинство опытов проводилось по следующей схеме: создавался газовый разряд о свечении газовых разрядов широко известно , и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела. Но у исследователей возникают только кратковременные газовые разряды сферической формы, живущие максимум несколько секунд, что не соответствует свидетельствам очевидцев природной шаровой молнии. Хазен выдвинул идею генератора шаровых молний, состоящего из антенны передатчика СВЧ, длинного проводника и импульсного генератора высокого напряжения [21]. Список заявлений[ править править код ] Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остаётся открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»? Первыми опытами и заявлениями можно считать работы Теслы [22] в конце XIX века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего опыта, так что воспроизвести эту установку затруднительно. Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой, опять доставал… Первые подробные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом : ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением. Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения. Эти наблюдения привели к мысли, что шаровая молния — тоже явление, создаваемое высокочастотными колебаниями, возникающими в грозовых облаках после обычной молнии. Таким образом подводилась энергия, необходимая для поддержания продолжительного свечения шаровой молнии. Эта гипотеза была опубликована в 1955 г. Через несколько лет у нас появилась возможность возобновить эти опыты. В марте 1958 г. Этот разряд образовывался в области максимума электрического поля и медленно двигался по кругу, совпадающему с силовой линией. Оригинальный текст англ. These observations led us to the suggestion that the ball lightening may be due to high frequency waves, produced by a thunderstorm cloud after the conventional lightening discharge. Thus the necessary energy is produced for sustaining the extensive luminosity, observed in a ball lightening. This hypothesis was published in 1955. After some years we were in a position to resume our experiments. In March 1958 in a spherical resonator filled with helium at atmospheric pressure under resonance conditions with intense He oscillations we obtained a free gas discharge, oval in form. This discharge was formed in the region of the maximum of the electric field and slowly moved following the circular lines of force. В литературе [23] описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Науер [24] в 1953 и 1956 годах сообщал о получении светящихся объектов, наблюдаемые свойства которых полностью совпадают со свойствами световых пузырей. Попытки теоретического объяснения[ править править код ] В наш век, когда физики знают, что происходило в первые секунды существования Вселенной, и что творится в ещё не открытых чёрных дырах, всё же приходится с удивлением признать, что основные стихии древности — воздух и вода — всё ещё остаются загадкой для нас. Стаханов[ уточнить ] Экспериментальная проверка существующих теорий затруднена. Даже если считать только предположения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, довольно велико. По признаку места энергетического источника, поддерживающего существование шаровой молнии, теории можно разделить на два класса: предполагающие внешний источник; Обзор существующих теорий[ править править код ] Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи. Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Списки предпочтительно основывать на вторичных обобщающих авторитетных источниках , содержащих критерий включения элементов в список. Гипотеза Курдюмова С. Примером могут служить солитоны, возникающие в различных нелинейных средах.

Владимир Карцев - Приключения великих уравнений

Ученым из института Джорджии удалось зафиксировать удар перевернутой молнии в Оклахоме в 2018 году. В связи с тем, что появление шаровой молнии как природного явления происходит редко, а попытки искусственно воспроизвести его в масштабах природного явления не удаются, основным материалом для изучения шаровых молний являются свидетельства. В попытке классификации молний Араго был [ ] не первым.

Владимир Карцев: Приключения великих уравнений

Столики в залах стоят на круговой платформе со стеклянными ограждениями. Платформа медленно вращается, и посетители получают дополнительную возможность любоваться прекрасным видом столицы. Высота телебашни — 540 метров. В Европе и Азии Останкинская башня остается самой высокой. Она входит в Международную Федерацию высотных башен.

Использование числительных придает тексту достоверность, написание числительных цифрами характерно для публицистического стиля. Основной функцией приведенного текста является информирование. Наряду с общеупотребительной лексикой используется тематическая группа слов, отражающая проблематику текста вещание, телесигнал. Текст событийный, его речевая особенность — большое количество глаголов и кратких причастий построена, началось, возведена и цепочечное развитие действия.

Цель текста — представить в образной форме проблему с целью эстетического воздействия. Начало работы. Начало учебного года. Положить начало.

Начало главы. Начало улицы. Вести своё начало от чего-нибудь происходить от чего-нибудь. Организующее начало.

Сдерживающее начало. Основные положения, принципы какой-нибудь науки, учения. Начала химии. Способы, методы осуществления чего-нибудь.

Организовывать дело на новых началах.

Они верили, что молнии могут быть вызваны различными богами, и каждый бог отвечает за своего рода молнии. Например, Зевс, главный бог в греческой мифологии, управлял громом и молниями. Эта идея классификации была основана на связи между молнией и собственным божеством. Другая идея классификации молний возникла в средние века. Некоторые естествоиспытатели и философы предполагали, что молнии могут быть различными по форме и интенсивности. Например, Иоанн Гефствафий считал, что молнии могут быть горизонтальными, вертикальными или ветвистыми. Он также предположил, что интенсивность молний может изменяться, что зависит от места, времени года и других факторов. Хотя эти идеи о классификации молний были далеки от современных представлений, они являлись важным шагом в понимании и изучении этого явления.

Они позволили людям начать думать о молнии как о сложном и разнообразном явлении, требующем тщательного анализа и классификации. Видео:Лицо человека до и после Великой Отечественной войны на примере одного Героя Скачать Принципы классификации молний до Араго Долгое время классификация молний была предметом различных теорий и гипотез, которые основывались на наблюдениях и опыте. До исследований Франсуа Араго, собранных им в работе «О наблюдениях молний», не существовало единого принципа классификации молний. Несмотря на отсутствие систематического подхода, некоторые исследователи и наблюдатели молний выделяли основные признаки молнии и пытались классифицировать их на основе этих признаков. Одним из первых признаков, по которому классифицировали молнии, была их яркость. Так, молнии, которые сопровождались ярким световым эффектом, назывались блестящими молниями, а молнии, которые были менее яркими и меньше заметными, назывались тусклыми молниями. Также молнии можно было классифицировать по форме и направлению их движения. Например, молнии, которые имели форму прямой линии, назывались прямыми молниями, а молнии с извилистой формой — извилистыми молниями. Некоторые классификации молний основывались на их размерах.

Так, выделялись классы молний — малые, средние и большие молнии — в зависимости от их мощности и интенсивности. Разделение молний на виды С развитием науки и технологий, на протяжении веков люди постоянно интересовались феноменом молний. Изначально, люди рассматривали молнии как некий ужасающий и необъяснимый природный явление. Однако, с течением времени, ученые начали изучать молнии и пытались классифицировать их по разным критериям. Существует несколько основных видов молний: грозовые молнии, шаровые молнии, молнии шлейфовые и молнии плетенные. Каждый вид молний имеет свои характерные особенности и рассматривается в рамках определенной теории. Грозовые молнии — наиболее распространенный вид молний, который возникает во время грозы. Они образуются в результате разрядов электричества между заряженными облаками и землей, или между разными заряженными облаками. Грозовые молнии имеют яркую светящуюся ветвистую структуру и сопровождаются громом.

Шаровые молнии — редкий и загадочный вид молний, который проявляется в виде светящихся шаров или шароподобных образований. Они могут двигаться по земле или парить в воздухе и могут существовать в течение нескольких секунд или даже минут. Шаровые молнии не имеют ясного объяснения и до сих пор остаются одним из самых малоизученных феноменов в природе. Молнии шлейфовые — это необычные молнии, которые оставляют за собой яркую светящуюся дорожку на протяжении своего движения. Они образуются при выходе разряда из-за облака и могут быть видны несколько секунд после того, как основная ветвь молнии исчезла.

Люди не владели достаточными знаниями, необходимыми для логического обоснования явлений, не могли прогнозировать их ход, осознанно управлять ими для удовлетворения собственных нужд. Сверкание молнии, ее губительное действие, электризация некоторых материалов трением, электрические рыбы, огни святого Эльма, другие проявления электричества долгое время являлись предметом пассивного, но пристального созерцания. Последнее порождало различные легенды, которые часто уводили далеко от истины. Человек не мог даже связать отдельные проявления электричества, не улавливал в них общих свойств или особенностей.

Когда свидетельств и рассказов о проявлениях электрических сил накопилось достаточно много, закономерной была попытка объединить их в едином исследовательском труде. И это событие произошло только в начале ХIХ века. Доминик Франсуа Араго написал необычную книгу под названием «Гром и молния». Её автор был необычайно деятельным и любознательным человеком. За свою жизнь он проявил себя ученым-физиком и астрономом, математиком и дипломатом. Книгой он занимался попутно, собирая и мотивируя свидетельства и рассказы несметного числа очевидцев. Он получал горы писем и ни одного из них не оставил без внимания. Научная ценность этой работы состояла не только в сборе фактов.

Загадка природы GettyImages Однажды, в далеком 1838 году, астроному и физику Доминику Франсуа Араго удалось убедить многих ученых в существовании этого удивительного явления. Он основательно подошел к изучению шаровой молнии, собрав многочисленные свидетельства очевидцев. По его версии шаровая молния — это специфическое взаимодействие азота с кислородом, во время которого выделяется энергия, создающая молнию. В 1980-е годы прошлого столетия Дж. Бари также подверг проверкам все свидетельства очевидцев, сравнивая разные рассказы об одном и том же факте. Именно благодаря его исследованиям начал вырисовываться «портрет» шаровой молнии. Светящееся физическое тело сферической формы голубого, оранжевого или белого тонов хотя нередко можно увидеть и другие цвета, вплоть до черного возникает в основном во время грозы, но также были зафиксированы неоднократные случаи его появления и в солнечную погоду. Шар размером от 10 до 20 сантиметров способен передвигаться в воздухе, преодолевая большие расстояния, и сохранять при этом целостность.

Молнии араго - фото сборник

В попытке классификации молний. Одним из авторов этой книги [1, 13-16] сделана попытка классификации экспериментального материала по адсорбции на основе представлений о различии видов межмолекулярных взаимодействий. В попытке классификации молний. Страницы в категории «Погибшие при попытке побега через Берлинскую стену». Одним из авторов этой книги [1, 13-16] сделана попытка классификации экспериментального материала по адсорбции на основе представлений о различии видов межмолекулярных взаимодействий.

Скоропостижно выбежала лексическая ошибка

Чаще всего шаровая молния на попытки прикоснуться к ней отвечает электрическим разрядом либо взрывом. Идея классификации молний Араго позволила разделить молнии на несколько типов, различающихся внешним видом и способом образования. Одним из авторов этой книги [1, 13-16] сделана попытка классификации экспериментального материала по адсорбции на основе представлений о различии видов межмолекулярных взаимодействий. Страницы в категории «Погибшие при попытке побега через Берлинскую стену». Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. В попытке классификации Араго.

В попытке классификации молний араго

Нужно тут же оговориться, что в попытке классификации молний Араго вовсе не был первым. Древние римляне, например, делили молнии «по предназначению». Так, у них были молнии: национальные, семейные, индивидуальные. Кроме того, молнии могли быть: предупреждающие, подтверждающие чью-то власть, увещевательные, зующие, угрожающие и т. Считается, что древние довольно правильно оценивали свойства молнии, в частности стремление ее двигаться по металлам. Другие времена — другие нравы. Наставник императора Нерона философ Сенека писал: «Серебро расплавляется, а кошелек, в котором оно заключалось, остается невредимым». Плиний тоже когда-то заметил, что «золото, медь, серебро, заключенные в мешке, могут быть расплавлены молнией, а мешок не сгорит и даже восковая печать не размягчится». Издавна известны случаи, когда молнией был причинен значительный материальный ущерб. В декабре 1773 года разрушено в Бретани 24 колокольни. В январе 1762 года молния ударила в колокольню Бригской церкви в Корнуэлле.

Юго-западная башня в результате удара была разнесена на кусочки: один такой «кусочек» весом в полтора центнера был переброшен через крышу церкви на расстояние около 50 метров, другой, поменьше, — на расстояние 400 метров.

Так, вовремя грозы 14 - 15 апреля 1718 года в Куэньоне близ Бреста были замечены три огненных шара, диаметр каждого из которых был более одного метра. У доктора Гатье де Клобри, изуродованного шаровой молнией около Блуа, борода оказалась не только сбритой, но и уничтоженной навсегда; она никогда уже более не росла.

Доктор долго был болен после этого; голова его распухла до такой степени, что достигла полутора метров?! Другие сведения в известной степени повторяют то, что замечают и современные "молниеловы". Мы приведем здесь, с риском утомить читателя, несколько описаний шаровой молнии, выполненных сотни лет назад и в более близкие времена, для того, чтобы впоследствии попытаться в них разобраться, разумеется, лишь с той степенью достоверности, которая возможна сейчас, когда загадки шаровой молнии полностью еще объяснены быть не могут даже с помощью весьма ухищренных гипотез.

В марте 1720 года огненный шар упал во время грозы на землю в небольшом французском городке. Отскочив, он поразил каменную башню и разрушил ее. В 1772 году лондонские священники Уайтхауз и Питкери увидели в своей церкви окруженный черным дымом огненный шар величиной с кулак, который разорвался с грохотом артиллерийского залпа, распространяя запах серы.

Питкери был ранен. На его теле, обуви, часах, одежде остались следы, типичные для "обычной" молнии. Русский ученый Г.

Рихман был поражен в голову молнией, которая, по свидетельству гравера Соколова, "имела вид шара" 1752г. Десятки случаев относятся к "похищению" шаровой молнией драгоценностей и золота. В 1761 году молния проникла в церковь венской академической коллегии, сорвала позолоту с карниза алтарной колонны и отложила ее на серебряной кропильнице.

Молния походила на котенка средней величины, свернувшегося в клубочек и катящегося при помощи лап. Она подкатилась к ногам рабочего, как бы желая поиграть с ним, - тот в страшном испуге отодвинул тихонько ноги, тогда молния поднялась на уровень его лица. Рабочий, как мог осторожно, отвел голову назад.

Шар продолжал подыматься к потолку и направлялся, по-видимому, к тому месту в каменной трубе, где когда-то было пробито отверстие, теперь заклеенное бумагой. Молния отклеила бумагу, не попортив ее, затем по-прежнему тихо-благородно ушла в трубу, где и взорвалась со страшным грохотом и роковыми для трубы последствиями. Он, по-видимому, образовался за счет "обычной", перед тем ударившей молнии и проник на кухню через трубу и камин.

Женщины, находившиеся на кухне, посоветовали молодому крестьянину, у ног которого оказался шар, раздавить "эту мерзость" и загасить. Однако юноша этот бывал в Париже, где "электризовался" за пару су в день на Елисейских Полях и с тех пор чувствовал уважение к таинственным проявлениям электричества. Поэтому он оставил просьбы и советы товарок без внимания, а шар меж тем выкатился во двор, где и разорвался в соседнем хлеву - там его попыталась обнюхать свинья, отнюдь не знакомая с электрическими материями.

Непочтение стоило ей жизни. Большое число примеров "деятельности" шаровой молнии описывает в своей книге "Атмосфера" Фламмарион. Однако он, по-видимому, смешивает иногда шаровую молнию и падение метеоритов.

Результат - неверная трактовка шаровой молнии как явления, в котором обязательно присутствует "весомое вещество". Вот примеры из книги Фламмариона: 10 августа 1880 года в Невере шаровая молния попала в каминную трубу, в которой впоследствии нашли черный камень величиной с кулак, очень легкий и ноздреватый, похожий на губку. А 25 августа 1880 года во время очень сильной грозы в Париже наблюдатели видели, как из тучи выскочило очень блестящее продолговатое тело около 35 - 40 сантиметров в длину и 25 сантиметров в ширину с концами, вытянутыми в виде коротких конусов.

Это тело было видимо лишь несколько секунд, а затем оно вновь скрылось за тучами, оставив вместо себя небольшое количество какого-то вещества, которое упало на землю вертикально, как бы подчиняясь законам тяготения. При падении от него отделялись искры, или, скорее, красноватые шарики, без блеска, а сзади за ним тянулся блестящий хвост, который, подобно дыму, у самого падающего вещества стоял прямым, вертикальным столбом, и чем выше тем более становился волнистым. Падая, вещество рассыпалось, понемногу гасло и затем скрылось за домами.

Фламмарион был настолько убежден в том, что подобные примеры говорят в пользу "вещественной" материи молнии, что и сам неоднократно после ударов молний "находил" на камнях, деревьях, домах какие-то остатки смол и непонятных "черных порошков", а то и прямо "раскаленных камушков" занесенных, конечно, молнией. И в современных описаниях иной раз путают шаровую молнию с другими, в достаточной мере загадочными атмосферными или оптическими образованиями, такими, например, как НЛО неопознанные летающие объекты - научный термин, заменивший скомпрометировавшее себя название "летающие тарелки" или "летающие соусники". Вот пример: Наблюдатели одной из американских баз ВВС заметили в небе странное образование, напоминавшее "шарик мороженого с красной верхушкой".

Посланный на разведку самолет погиб вместе с пилотом.

Я только надвинул свою шляпу, которую ветер и сотрясение, произведенные электрическим взрывом, отбросили назад, и шел далее, безо всяких приключений до площади "Кале". Впрочем, кажется, за свое спокойствие молодой человек был наказан, так как далее он пишет: "Все ограничилось тем, что желудок мой не мог переваривать пищу в течение двух недель". Разобраться в грудах астрономических календарей, хроник, легенд, рукописей было под силу лишь действительно великому ученому. Араго удалось систематизировать факты, отделить зерна от плевел, отказавшись от сообщений типа "падал град величиной со слона", и воссоздать первую со времен Ломоносова научную картину природы грозы и ее наиболее драматических проявлений - грома и молнии. Он сделал также весьма ценную для позднейших исследователей попытку "сортировки" молний и громов.

Нужно тут же оговориться, что в попытке классификации молний Араго вовсе не был первым. Древние римляне, например, делили молнии "по предназначению". Так, у них были молнии национальные,.

Рихман был поражен в голову молнией, которая, по свидетельству гравера Соколова, «имела вид шара» 1752 г. Десятки случаев относятся к «похищению» шаровой молнией драгоценностей и золота.

В 1761 году молния проникла в церковь венской академической коллегии, сорвала позолоту с карниза алтарной колонны и отложила ее на серебряной кропильнице. Молния походила на котенка средней величины, свернувшегося в клубочек и катящегося без помощи лап. Она подкатилась к ногам рабочего, как бы желая поиграть с ним, — тот в страшном испуге отодвинул тихонько ноги, тогда молния поднялась на уровень его лица. Рабочий, как мог осторожно, отвел голову назад. Шар продолжал подыматься к потолку и направлялся, по-видимому, к тому месту в каменной трубе, где когда-то было пробито отверстие, теперь заклеенное бумагой.

Молния отклеила бумагу, не попортив ее, затем по-прежнему тихо-благородно ушла в трубу, где и взорвалась со страшным грохотом и роковыми для трубы последствиями. Он, по-видимому, образовался за счет «обычной», перед тем ударившей молнии и проник на кухню через трубу и камин. Женщины, находившиеся на кухне, посоветовали молодому крестьянину, у ног которого оказался шар, раздавить «эту мерзость» и загасить. Однако юноша этот бывал в Париже, где «электризовался» за несколько су на Елисейских Полях и с тех пор чувствовал уважение к таинственным проявлениям электричества. Поэтому он оставил просьбы и советы товарок без внимания, а шар меж тем выкатился во двор, где и разорвался в соседнем хлеву — там его попыталась обнюхать свинья, отнюдь не знакомая с электрическими материями.

Непочтение стоило ей жизни. Большое число примеров «деятельности» шаровой молнии описывает в своей книге «Атмосфера» Фламмарион. Однако он, по-видимому, смешивает иногда шаровую молнию и падение метеоритов. Результат — неверная трактовка шаровой молнии как явления, в котором обязательно присутствует «весомое вещество». Вот примеры из книги Фламмариона.

А 25 августа 1880 года во время очень сильной грозы в Париже наблюдатели видели, как из тучи выскочило очень блестящее продолговатое тело около 35—40 сантиметров в длину и 25 сантиметров в ширину с концами, вытянутыми в виде коротких конусов. Это тело было видимо лишь несколько секунд, а затем оно вновь скрылось за тучами, оставив вместо себя небольшое количество какого-то вещества, которое упало на землю вертикально, как бы подчиняясь законам тяготения. При, падении от него отделялись искры или, скорее, красноватые шарики, без блеска, а сзади за ними тянулся блестящий хвост, который, подобно дыму, у самого падающего вещества стоял прямым, вертикальным столбом, и чем выше, тем более становился волнистым. Падая, вещество рассыпалось, понемногу гасло и затем скрылось за домами. Фламмарион был настолько убежден в том, что подобные примеры говорят в пользу «вещественной» материи молнии, что и сам неоднократно после ударов молний «находил» на камнях, деревьях, домах какие-то остатки смол и непонятных «черных порошков», а то и прямо «раскаленных камушков», занесенных, конечно, молнией.

И в современных описаниях иной раз путают шаровую молнию с другими, в достаточной мере загадочными атмосферными или оптическими явлениями. Однако иногда наблюдателям удается не только уверенно распознать шаровую молнию, но и заметить ее типичные свойства, а порой даже суметь оценить ее температуру, энергию и т. Приведем эти «счастливые» случаи. Добравшись до столба, шар переломил его и исчез. Июньским днем 1914 года шаровая молния взорвалась на веранде небольшой гостиницы в немецком городе Ганенклее.

Звук напоминал пушечный выстрел и сопровождался дребезжанием электрических звонков и порчей электропроводки. Свет погас. Наконец, весьма интересная маленькая заметка, опубликованная 5 ноября 1936 года английской газетой «Дейли Мейл» в разделе «Письма редактору»: «Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном.

Вода кипела затем в течение нескольких минут, но когда она точно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке. Моррис Дерстоун, Херфордшир». Основываясь на всех этих данных, можно в приблизительных чертах набросать «портрет» шаровой молнии. Шаровая молния — прежде всего не всегда шар. Иногда форма ее грушевидная или вытянутая.

Размеры — примерно 10—20 сантиметров, иногда до нескольких метров. Цвет от ослепительно белого до оранжево-красного. Не исключены голубые и зеленые оттенки, а также смешанная раскраска. Время существования — от нескольких секунд до нескольких минут. Есть ли у нас возможности оценить энергию молнии?

Для этого имеются два «свидетельских показания»: одно — из газеты «Дейли Мейл», другое — сообщение пассажиров французского экспресса. В первом случае молния попала в бочку с водой, стоявшую на улице в ноябре. Температура воды, таким образом, может быть грубо определена. Вода была нагрета до кипения, ее было, как выяснилось, около 20 литров, причем некоторое количество — около 4 литров — выкипело. Молния была размером «с большой апельсин», шар не упал с неба, а, как указывает автор заметки, «спустился».

Следовательно, плотность вещества шаровой молнии лишь немного больше плотности воздуха иногда молнии «плавают» в воздухе — тогда их плотность равна плотности воздуха. Воздух в объеме большого апельсина весит примерно десятые доли грамма. Предположим, что молния весила 1 грамм. Подсчет прост. Какова должна была быть температура тела массой 1 грамм, чтобы оно могло нагреть 20 литров воды с 10 до 100 градусов и испарить 4 литра воды?

Расчеты тоже просты. Но тем неожиданней результат. Оказывается, температура такого тела должна составлять несколько миллионов градусов! Энергия молнии, тоже в соответствии с элементарными подсчетами, оказывается не столь уж колоссальной. Если температура поражает своей большой величиной, то энергия — скорее своей незначительностью.

Она составляет величину порядка 3 киловатт-часов, в переводе на деньги — около 12 копеек. Лишь 12 копеек стоит энергия, содержащаяся в странном, пугающем и непонятном шаре! Можно подойти, правда, к вопросу об энергии шаровой молнии и с другой стороны. Вспомним для этого телеграфный столб, который переломила молния. Для подрыва столбов диаметром 20 сантиметров с помощью толовых шашек используют шашку массой 400 граммов.

Если пойти таким путем, можно оценить энергию молнии как величину энергии, содержащейся в толовом заряде. Примерно такого масштаба разрушения мы и находим в большинстве описаний, касающихся шаровой молнии. Но вот плотность энергии — величина энергии, приходящаяся на единицу массы шара, у молнии в сотни раз больше, чем у тола, — это уже величина рекордная, не достижимая ни в каких сделанных руками человека сохраняющих энергию устройствах. Аккумулятор, например, в тысячи и тысячи раз менее емок. Грандиозным приобретением для человечества был бы аккумулятор нового типа с характеристиками, подобными свойствам шаровой молнии.

Тогда, имея небольшой по массе запас «топлива», самолеты могли бы преодолевать многие тысячи километров без посадки. Космические путешественники, как говорится, и в ус не дули бы, имея такие запасы энергии в своем распоряжении. А городской транспорт! Какого он мог бы достигнуть расцвета, если бы электромобили имели в качестве аккумуляторов что-нибудь, хоть отдаленно напоминающее по аккумулирующим свойствам шаровую молнию! Ведь основное препятствие, из-за которого жители больших городов и по сей день не могут освободиться от шумных и вредных для здоровья аппаратов — автомобилей с бензиновыми двигателями, — это отсутствие достаточно емких электрических аккумуляторов, ограничивающее скорость и пробег электромобиля без подзарядки.

И эти перспективы, и ущерб, причиняемый шаровой молнией, да и извечная страсть человечества к решению головоломных задач, то и дело встающих на его пути, заставляют нас взвешивать все новые и новые предположения, касающиеся природы шаровой молнии. Такие предположения многочисленны, насчитываются сотнями, и это верный признак того, что мы еще далеки от познания тайны. Практически любая теория возникновения шаровой молнии содержит в себе некие противоречия, не поддающиеся пока убедительному разрешению. Приведем несколько примеров. Шаровая молния — это горящие клубки газа так считал еще Франсуа Араго или каких-то гремучих смесей, образовавшихся при разрядке «обычной», линейной молнии.

Противоречие: в этом случае молния должна была бы быстро «выгореть». Согласно расчетам молния должна была бы исчезнуть через десятые доли секунды, а она иной раз живет целые минуты. Шаровая молния — это образование, вызванное созданием при ударе обычной молнии газообразных химически активных веществ, которые горят в присутствии катализатора, например частичек дыма или пыли известный советский физик-теоретик Я. Но, к сожалению, пока мы не знаем веществ с такой колоссальной теплотворной способностью, которой обладает вещество шаровой молнии. Шаровая молния — клубок горячей плазмы немецкий физик А.

Мейснер , бешено вращающийся за счет некоего начального импульса, данного сгустку материнской, линейной молнией. Расчеты показывают, однако, что и эта теория не в состоянии объяснить длительного существования шаровой молнии и ее грандиозной энергии. Известный советский электротехник Г. Бабат в первые месяцы Великой Отечественной войны, производя в нетопленой лаборатории эксперименты над высокочастотными токами, неожиданно для себя получил… искусственную шаровую молнию. Когда потенциал между электродами на кварцевой трубке внезапно возрос, из трубки со страшной скоростью вырвалось огненное кольцо, удивительно напоминавшее шаровую молнию.

Бабат разработал на основе этих экспериментов еще одну теорию шаровой молнии, основанную на том, что центростремительным силам, стремящимся разорвать огненный шар на куски, противостоят появляющиеся на большой скорости вращения силы притяжения между расслоившимися зарядами. Сразу после войны знаменитый советский ученый П. Капица создал во дворе своей дачи на Николиной горе «Избу физических проблем» — собственную лабораторию, оснащенную несложной техникой, приборами и станками. Здесь он обратился к совершенно новому классу физических задач — созданию мощных, непрерывно действующих генераторов сверхвысоких частот. Предварительно он решил сложную теоретическую задачу о движении электронов в генераторах сверхвысокочастотных колебаний.

Ему помогал сын Сергей и один из сотрудников. Новое устройство П. Капица назвал «ниготроном», два первых слога являются аббревиатурой названия местности, где расположена дача, — Николина гора». Мощность ниготрона получилась довольно большой — 175 киловатт. Это хорошая основа для разработки нового научного направления — электроники больших мощностей.

При одном из испытаний излучение ниготрона пропускалось через кварцевый шар, наполненный гелием. Вдруг вспыхнуло сильное, имеющее четкие границы, свечение. Через несколько секунд шар в одном месте проплавился, и свечение исчезло. Это, казалось бы, незначительное событие навело Капицу на мысль о сходстве того, что произошло в кварцевом шаре, с шаровой молнией. Он предположил, что шаровая молния получает энергию «со стороны» — при помощи высокочастотного излучения, возникающего в грозовых облаках после обычной молнии.

После снятия секретности на Курчатовские работы по управляемому термоядерному синтезу Капица был несколько обижен, что доклад об этом был сначала сделан в Харуэлле, а не в Академии наук, — выявилось некоторое сходство идеи ниготрона с идеей термоядерного реактора. Капица получал горячую плазму при помощи высокочастотных колебаний. Он смог достичь температуры в миллион градусов. Шаровая молния — это объемный колебательный контур, решил П. Сравнив шаровую молнию с облаком, образовавшимся после атомного взрыва и «высвечивающимся» в течение десятка секунд, Капица пришел к выводу, что молния должна высвечиваться в сотую долю секунды.

Раз этого не происходит, молния постоянно должна получать энергию со стороны. Молния улавливает радиоволны, возникающие во время грозовых разрядов. Теория изящно объясняет отмечаемое многими исследователями и случайными наблюдателями «пристрастие» молнии к всевозможным трубам и дымоходам — они являются для молнии волноводами, каналами для передачи энергии. Противоречие — рассказ очевидца из газеты «Дейли Мейл»: молния продолжала испарять воду, уже «утонув» в кадке с водой. А ведь коснувшись воды, молния уже не смогла бы быть объемным резонатором и получать энергию в виде радиоволн.

Однако раз вода кипела, значит, энергия откуда-то все-таки поступала. Шаровая молния, считают многие, — это встреча антивещества, прибывшего из неизведанных далей Вселенной, с веществом, например с пылинкой. Эта широко распространенная гипотеза может объяснить почти все, потому что «подробности» возможной встречи нами пока не изучены и здесь можно предполагать что угодно. Однако остается недоумение: почему шаровые молнии встречаются чаще всего во время гроз? Ведь, исходя из общих соображений, если и попадает на землю антивещество, то попадает оно независимо от того, неистовствует в это время в данной местности гроза или нет.

Предположение же о том, что и сами грозы обусловлены антивеществом, пока поддержки не получило. Шаровая молния устроена проще, чем шариковая авторучка, считает сотрудник Научно-исследовательского института механики Московского государственного университета Б. Если в последней — десяток деталей, то в шаровой молнии их всего две — тороидальная токовая оболочка и кольцевое магнитное поле. В результате их взаимодействия из внутренней полости шара выкачивается воздух. Если электромагнитные усилия стремятся разорвать шар, то давление воздуха, наоборот, стремится смять его.

Эти силы могут в некоторых случаях уравновеситься, и шаровая молния приобретает стабильность. Ток течет по внешнему кольцу, не затухая в течение нескольких минут. Наличие вакуума препятствует передаче энергии от молнии окружающей среде, поэтому шаровой молнии не требуются какие-нибудь новые, неизвестные источники энергии. Наличие быстро изменяющегося магнитного поля легко объясняет такие, казалось бы, необъяснимые явления, как пропажа колец и браслетов прямо с руки, а также «прощальный шум» — включение в домах электрических звонков, порча телевизоров и радиоприемников. В кольцах и браслетах, становящихся при быстром движении шара как бы вторичной обмоткой трансформатора, наводятся чудовищные токи, и металлы испаряются прямо с руки настолько быстро, что хозяйки этого даже не замечают!

По той же причине звонят звонки и портятся приемники и телевизоры. Не желая вселять в читателей излишний пессимизм, автор не собирается утверждать, что и эта теория, одна из последних по времени, внутренне противоречива. Он ограничится упоминанием, что и в ней имеются неясности по части источника энергии. А энергия эта очень велика. По свидетельству Максима Горького, он вместе с А.

Чеховым и В. Васнецовым видел на Кавказе, как «шар ударился в гору, оторвал огромную скалу и разорвался со страшным треском». Если эту энергию использовать, быть может, удастся создать устройства, которые показались бы сейчас по своим свойствам фантастическими. Надо сказать, что опыты по приручению шаровой молнии уже ведутся. Американским ученым удалось добиться частичного подтверждения теории П.

Капицы, получив в луче радиолокатора и сохранив в течение некоторого времени светящиеся плазмоиды — шарики плазмы. Советским ученым совершенно другим способом тоже удалось получить плазменные сгустки, очень напоминающие шаровую молнию. Однако еще ни разу не удалось получить в этих сгустках неповторимых и в чем-то пугающих свойств настоящей шаровой молнии. Тем интересней загадка. Маленькие лоцманы с Бермудских островов На базальтовых стенах и колоннах древнеегипетских храмов среди бесчисленных изображений ибисов, быков, воинов нет-нет да попадется изображение священной рыбы.

Специалисты без труда определили — это нильский электрический сом, близкий родственник хорошо знакомого всем нам европейского сома. Видимо, мощный электрический удар, который получали древние египтяне при соприкосновении с этой рыбой, немало способствовал присвоению ей священного титула. Электрические рыбы известны человечеству с древнейших времен. Еще Аристотель, гуляя со своими учениками по ухоженному парку, окружавшему Ликей, поведал им, что электрический скат, обитавший в Средиземном море, «заставляет цепенеть животных, которых он хочет поймать, побеждая их силой удара, живущего в его теле». А древнеримский врач Скрибоний, говорят, небезуспешно излечивал подагру стареющих римских патрициев с помощью освежающего удара электрического угря.

Планомерные исследования электрического ската начались лишь в наше время, когда появилась записывающая импульсы рыб аппаратура. Исследования показали, что среди 300 известных видов электрических рыб лишь немногие дают сильные и редкие импульсы. Так, двухметровый электрический скат способен создать электрический импульс напряжением 50—60 вольт при силе тока до 50 ампер — вполне достаточный, чтобы парализовать рыбу чуть поменьше его самого. Электрические угри, живущие в Амазонке и некоторых других южноамериканских реках, способны развить разность потенциалов 500 вольт — напряжение, опасное для жизни человека. Известный естествоиспытатель А.

Гумбольдт, много путешествовавший в бассейне Амазонки, рассказывал о том, как индейцы охотятся на эту рыбу. Перед охотой они выпускают в водоем, где обитают угри, лошадей. Обессилевшие от множества разрядов угри становятся легкой добычей индейцев. Зачем рыбам электрический разряд? У тех рыб, о которых мы только что говорили, — для нападения и защиты.

Электрическому скату, парализующему свою добычу электрическим ударом, овладеть ею другим способом было бы весьма непросто — ведь рот у него… на брюхе. Угорь, парализующий лягушку на расстоянии метра, использует свой удар и для защиты от многочисленных врагов, которые были бы не прочь полакомиться его вкусным мясом. Что представляют собой электрические органы рыб? В первую очередь это особые мускульные клетки, так называемые электрические пластинки, поразительно напоминающие по схеме соединения и конструктивному принципу электробатареи. У электрического ската эти органы занимают порой четверть тела, у электрического сома — большую часть, а у электрического угря ими не занята разве что голова.

Есть рыбы, электрические органы у которых невелики и как бы «разбросаны» по телу.

Охота за шаровой молнией. Учёные пытаются объяснить загадочное явление

В попытке классификации молний Араго был [ ] не первым. Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. Идея классификации молний Араго позволила разделить молнии на несколько типов, различающихся внешним видом и способом образования. В попытке классификации молний Араго [ ] не был первым. С башни сигнал принимают 8 спутников «Орбита», которые помогают донести новости для всех зрителей в стране. Франсуа Араго физик. В попытке классификации молний араго не был.

Похожие новости:

Оцените статью
Добавить комментарий