Доб Регулятор мощности. Фазовый регулятор позволяет изменять мощность в диапазоне от 0 до 97% от номинального значения мощности нагрузки. Народ, подскажите, нужен регулятор мощности до 10 кВт, 220В, пременного тока. Регулировать мощность нужно для тенов в печах.
Что такое ШИМ-регулятор
- ШИМ-регуляторы мощности: принципы работы, основные характеристики
- Устройство регулятора мощности своими руками
- Тэн и регулятор напряжения.
- Регуляторы напряжения на 220 В своими руками
Регулятор мощности на тиристоре ку202н схема из журнала радио
Трехфазные регуляторы мощности MEYERTEC DRU3 для резистивной нагрузки. Регулятор мощности/диммер поставляется в стандартном пакетике и имеет небольшие габариты. Тиристорный Регулятор мощности Maxwell T-7-3-75-220-5. Главная › Форумы › Конструкторское бюро › Автоматизация › Регулятор мощности 5 кВт – проблема.
Как работает ШИМ-регулятор мощности
- Регулятор мощности на симисторе вта12 600 – Tokzamer
- Как избежать 3 частых ошибок при работе с симистором.
- Регулятор мощности для паяльника своими руками: схемы и готовые решения
- Сравнительный обзор регуляторов мощности Мастер Кит
- Регулятор мощности на симисторе и тиристоре
- От чего зависит его мощность
Регулятор мощности на тиристоре ку202н схема из журнала радио
Ключ включается и выключается в момент перехода сетевого напряжения через ноль, за счет чего в течение одного или нескольких полупериодов нагрузка оказывается обесточенной. Среднее значение напряжения и тока зависит от количества пропущенных полупериодов. Минусом данного метода является наличие больших пауз между подачами питания. Это может привести, например, к заметному миганию ламп накаливания, поэтому такой способ применим только к устройствам, обладающим большой тепловой инерцией электроплиткам, паяльникам и т. Циклический способ управления напряжением В цепях постоянного напряжения удобно использовать метод широтно-импульсной модуляции ШИМ. При этом напряжение источника остается стабильным, а нагрузка запитывается импульсами, следующими с одинаковой частотой и амплитудой, но разной ширины.
В зависимости от ширины импульсов меняется среднее напряжение а значит, и средний ток на нагрузке. Такой метод применяют, например, для управления яркостью свечения светодиодов. Принцип широтно-импульсной модуляции В большинстве случаев ШИМ применяют в низковольтных устройствах. Но этот способ применим и для построения устройств на 220 вольт — в них сетевое напряжение сначала выпрямляется, затем «нарезается» на импульсы. ШИМ-регуляторы также не генерируют помехи в питающую сеть.
Для работы в качестве ключа тиристоры в цепях постоянного тока непригодны — их сложно выключить. Поэтому для коммутации в схемах ШИМ обычно применяют транзисторы. Схемы регуляторов напряжения на 220в Устройства, регулирующие напряжение на нагрузке, можно построить на разной элементной базе и на различных принципах. От этого будет зависеть их область применения. Устройство для изменения напряжения на тиристоре Несложный регулятор напряжения на нагрузке можно выполнить на базе тиристора КУ202Н или другого подходящего по току и напряжению.
Устройство работает по фазовому принципу. Как только конденсатор заряжается до уровня, необходимого для открытия тиристора, ключ открывается и ток идет в нагрузку. Цепочка резисторов R1 и R2 определяет время заряда конденсатора С1. Чем позже он заряжается до уровня, тем большая часть синусоиды «вырезается», тем меньше среднее напряжение на нагрузке. В момент перехода напряжения через ноль тиристор закрывается, и в следующем полупериоде цикл повторяется.
В качестве нагрузки можно использовать паяльник, электрическую лампочку накаливания, электроплитку, прочую инерционную нагрузку с небольшой реактивной составляющей. Регулятор напряжения на тиристоре Для диммирования LED-светильников это устройство непригодно. Светодиодные осветительные приборы оснащаются драйверами, задача которых — поддерживать ток через светоизлучающие элементы стабильным, независимо от напряжения на входе. То есть, они выполняют задачу, противоположную действию регулятора напряжения. Регулятор напряжения на симисторе Более мощный прибор с меньшим количеством деталей можно построить на симисторе.
Потом уже сделав ее по чертежам я понял что это самое то. В чем ее основное отличие -один раз настроил и куришь до тех пор пока хвосты не подойдут Ответить.
Напряжение на нагрузке, Uнагр. На данный момент цена на них существенно снизилась, а функционал вырос, что делает продукцию на полупроводниках отличным решением для промышленных объектов и систем процессов автоматизации производств. В качестве нагрузки возможны: различные тэны, инфракрасные нагреватели, лампы освещения, трансформаторы и т.
Отключаешь 220, замеряешь сопротивление потенциометра. Допустим, 110 кОм. Теперь снова подключаешь сеть, крутишь потенциометр пока мощность не станет 2 кВт. Снова отключаешь сеть и снова замеряешь сопротивление. Допустим, 50 кОм. Теперь осталось подобрать пару постоянных резисторов и правильно их подключить. Есть 2 варианта. Параллельно 60-килоомному подключить контакты прессостата.
Транзисторные и тиристорные регуляторы мощности
Регулятор мощности на КР1182ПМ1. Скорей всего правильней было бы назвать регулятор мощности так как напряжение, и ток импульсный, а мощность она и Африке мощность. Как собрать регулятор напряжения 220 В на тиристоре или симисторе своими руками, какие существуют варианты схем и как они работают. Регулятор напряжения, мощности, нагрева 220 вольт 4000 Вт в корпусе тиристорный симисторный диммер оборотов. Простой регулятор мощности 220 вольт своими руками. Диммер AC 220 В 4000 W регулятор напряжения Испытания и Тест Регулятор мощности с Али.
Регулятор мощности РМ-2Н new
Простой регулятор мощности на 220 Вольт из 5 деталей. Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением.
Симисторный регулятор мощности 2000Вт 220В
Эксплуатация и обслуживание При эксплуатации РМ-2 необходимо соблюдать следующие меры безопасности: Использовать нагрузку в соответствии с паспортными данными Исключить попадание воды в корпус регулятора Не эксплуатировать в условиях сильной вибрации и высокой температуры окружающей среды Регулярно проверять качество заземления и затяжку контактов Для контроля работоспособности РМ-2 рекомендуется периодически измерять выходное напряжение при различных уровнях задания. При обнаружении отклонений или нестабильности параметров следует проверить исправность симистора и радиатора охлаждения. Основные неисправности: Отсутствие индикации - проверить питание прибора Нестабильное или пониженное выходное напряжение - проверить симистор и радиатор охлаждения Периодические "провалы" напряжения - увеличить сечение проводов нагрузки Ресурс работы РМ-2 определяется ресурсом симистора и составляет не менее 30-50 тысяч часов. Рекомендуется замена симистора раз в 3-5 лет. Дополнительные модули и аксессуары Для расширения функциональности можно использовать следующие дополнительные устройства: GSM-модуль для удаленного управления по SMS или звонку Жидкокристаллическая панель индикации параметров.
Конденсаторы С2 и С3 серии Х1 или Х2. В [7] описана схема симисторного диммера с фазоимпульсным регулированием: Данная схема предназначена регулировки освещения и, при установке симистора на теплоотвод, позволяет управлять нагрузкой до 1 кВт. Резистор R4, при использовании диммера в прямом назначении, желательно применить совмещенный с выключателем. Налаживания диммер не требует, однако возможно придется подобрать R3 по максимальной яркости ламп. Источник: В. Карапетьянц Усовершенствование регулятора мощности. Дзанаев Симисторный регулятор мощности паяльника, не создающий помех. Гаврилов Регулятор мощности с малым уровнем помех. Кузнецов Симисторный регулятор мощности с низким уровнем помех. Дзанаев Симисторный диммер с фазоимпульсным регулированием. При отсутствии тока во входной цепи нагрузка Rн отключена, а при пропускании тока значением 1.. При отсутствии тока во входной цепи вход узла заземлен, оставлен свободным или на него не подано никакого напряжения тринистор VS1 закрыт, конденсатор С1 заряжен через диод VD1 до амплитудного значения напряжения сети. В это время ток через управляющий электрод симистора VS2 не идет, так как для прохождения переменного тока управляющего электрода симистора конденсатор С1 должен перезаряжаться, а цепь его разрядки отсутствует. При возникновении входного тока тринистор VS1 открывается и тем самым создает цепь разрядки для конденсатора С1, что вызывает прохождение переменного тока через, управляющий электрод симистора VS2 и открывание его. Резисторы R1, R3 и R4 предназначены для шунтирования токов утечки, а резистор R2 — для ограничения броска тока при включении тринистора VS1 и оптимизации фазового сдвига при работе. Вместо резистора R3 можно включить миниатюрную лампу накаливания на ток накала около 50 мА, например, коммутаторную КМ60-55 — она будет выполнять функцию индикатора работы цепи нагрузки. Ниже показана схема управления трёхфазным потребителем. Источник: О.
Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер. Четыре вывода — к питанию, к выходам. Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку лампу , моторчик, тот же светодиод в нашем примере он. Двигаем регулятор — наблюдаем изменение напряжения. Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819. Другие варианты маломощных транзисторных схем С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует отпирает первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный. Мощная сборка Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. Так создается возможность очень плавной настройки огромных токов на нагрузке. Схема самодельного РН 220 В с тиристорами Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления. Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1—VD4 на радиаторы охладители , то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2. В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности. C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет. Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 транзисторы — это состав маломощного тиристора. Второй вариант Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное. Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку. С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке. Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится.
С вывода 1 микросхемы DD2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Хотя резистор R5 переменный, регулировка за счет работы DD2. Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт. Конструкция и детали регулятора температуры Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами. Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется. Микросхемы DD1 и DD2 любые 176 или 561 серии. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт. Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу. Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей. Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209. Как снизить уровень помех от тиристорных регуляторов Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо. Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны.
Китайский регулятор мощности на симисторе
От этого будет зависеть их область применения. Устройство для изменения напряжения на тиристоре Несложный регулятор напряжения на нагрузке можно выполнить на базе тиристора КУ202Н или другого подходящего по току и напряжению. Устройство работает по фазовому принципу. Как только конденсатор заряжается до уровня, необходимого для открытия тиристора, ключ открывается и ток идет в нагрузку. Цепочка резисторов R1 и R2 определяет время заряда конденсатора С1. Чем позже он заряжается до уровня, тем большая часть синусоиды «вырезается», тем меньше среднее напряжение на нагрузке.
В момент перехода напряжения через ноль тиристор закрывается, и в следующем полупериоде цикл повторяется. В качестве нагрузки можно использовать паяльник, электрическую лампочку накаливания, электроплитку, прочую инерционную нагрузку с небольшой реактивной составляющей. Регулятор напряжения на тиристоре Для диммирования LED-светильников это устройство непригодно. Светодиодные осветительные приборы оснащаются драйверами, задача которых — поддерживать ток через светоизлучающие элементы стабильным, независимо от напряжения на входе. То есть, они выполняют задачу, противоположную действию регулятора напряжения.
Регулятор напряжения на симисторе Более мощный прибор с меньшим количеством деталей можно построить на симисторе. В отличие от тиристора, этот ключевой элемент работает в цепях переменного тока, и ему не нужен выпрямительный мост. Устройство для регулирования мощности на симисторе Принцип действия прибора — такой же, как у предыдущего устройства. Момент открывания симистора зависит от скорости зарядки конденсатора С1. Динистор VS1 формирует импульсы для открывания ключевого элемента.
В устройстве можно применить, кроме указанных, любой динистор с напряжением открывания 20.. Но он должен быть с запасом рассчитан на полный ток нагрузки. Интересно, что эта микросхема является отечественной разработкой, и импортных аналогов не имеет. У КР1182ПМ1 «на борту» есть два встроенных тиристора, но при необходимости увеличить мощность можно управлять и внешними ключами. Именно так построена схема регулятора мощности, приведенная на рисунке.
Циклический регулятор Циклический регулятор напряжения Устройства, работающие по циклическому принципу, не так распространены, но для примера можно рассмотреть одну схему. На микросхеме DD1 собран генератор, импульсы которого синхронизированы с моментом перехода сетевого напряжения через ноль. Импульсы следуют с одинаковой частотой, а резистором R1 можно регулировать скважность. Симистор управляется через ключи на транзисторах VT1, VT2. Читайте также Схема и сборка самодельного блока питания с регулировкой напряжения и тока Регулятор тока Мощность на нагрузке можно регулировать, изменяя не только напряжение, но и ток в цепи.
Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам. Читайте также: Изготовление перосъемной машины своими руками Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала. При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.
Практические примеры для повторения Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом. Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке. Доминирующая схема Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.
Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе. Читайте также: Изготовление тонкого жала для паяльника своими руками При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается.
При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь. В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.
Ее можно использовать для снижение 380в до 220в? Саян, если вы о своем FUW-315, то нельзя... У вас практически активная нагрузка выпрямитель с фильтром , но один глюк а тут риск весьма велик , и на движок пойдет 400в постоянки..
Для автоматизированного управления функцией "разгона" ее отключение при достижении заданной температуры применяется внешнее включение-выключение через размыкающий контакт таймера регулятора отбора ШИМ-2 с декрементом , с 2-мя встроенными независимыми терморегуляторами для реализации одновременного регулирования скорости отбора управление электромагнитным клапаном и контроля нагрева емкости на максимальной мощности ТЭНа. С помощью регулятора мощности РМ-2, возможно регулировать и поддерживать на одном уровне яркость освещения, нагрев ТЭН ов, обогревателей, дистилляторов, ректификационных колонн, работу асинхронных электродвигателей. Принцип работы регулятора мощности РМ 2 состоит в том, что он подает управляющие импульсы на силовой элемент симистор , и таким образом, то открывая, то закрывая его, удерживает на выходе высокоточное и стабильное среднеквадратичное значение заданного напряжения. Полученная форма питания подходит не для всех потребителей, но для их большинства. Можно применять для всех активных нагрузок и для некоторых реактивных. Применение для реактивных нагрузок определяется степенью искажения синусоидальной формы напряжения зависит от разницы Uвх сети и Uвых заданного, больше разница — больше искажения и ее воздействием на конкретный прибор с емкостной или индуктивной составляющей. Определяется паспортными данными или методом испытания. Надо понимать, что данная схема не является стабилизатором напряжения и не может выдать величины, более тех, что поступают на ее вход. Для примера: нельзя получить стабильные 210 вольт, если у нас на входе 180-200. Может уменьшить, но не может увеличить. Методика правильного расчета мощности ТЭНа и напряжения для получения нужных показателей нагрева, приведена в описании его полного аналога, но в уменьшенном варианте корпуса с 3-х до 2-ух модулей для экономии места в РЩ - модель РМ-2-mini.