После обнаружения взрыва астрофизики несколько дней наблюдали за космосом и смогли сделать достаточно интересные дополнительные открытия. То есть, звезда взрывается примерно каждые 80 лет, притом яркость ее увеличивалась более чем в 600 раз. После взрыва она превратилась в гипермассивную нейтронную звезду с чрезвычайно мощным магнитным полем, но уже через несколько миллисекунд коллапсировала в черную дыру.
Что произойдет, когда Бетельгейзе станет сверхновой?
Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой. Взрывы сверхновых происходят, когда у массивных звезд заканчивается топливо для ядерного синтеза. Взрыв произошел на безопасном для нас расстоянии — около 20 тысяч световых лет внаправлении центра нашей Галактики, но по яркости сверхновая не уступала Юпитеру и сияла на небе около 1 года, постепенно угасая.
«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик
Это меньше, чем считалось, на фоне чего снижается и вероятность стремительной трансформации светила в сверхновую. По оценкам ученых, взорваться звезда может спустя 100 тысяч лет. Автор: Марина Вебер.
Мелани Джонстон-Холитт , сотрудник Международного центра радиоастрономических исследований: «Мы наблюдали выбросы энергии в центрах галакатик и раньше, но в этот раз произошел действительно гигантский взрыв. Мы не знаем, почему он такой большой. Это произошло очень медленно — как взрыв в замедленном движении, который длился на протяжении сотен миллионов лет».
Люди выходили на улицы и диву давались. Распространялись панические настроения. А астроном Тихо Браге решил померить до нее расстояние. Оказалось, она дальше Луны, дальше Сатурна и вообще за пределами Солнечной системы. Нам этот вывод кажется естественным, но тогда он потряс основы науки — ученые думали, что выше Луны вообще не может быть никаких изменений, там «вечность». Вспышка сверхновой — это самое катастрофичное явление во Вселенной. Именно в таких взрывах образуется все химическое разнообразие окружающей нас жизни: ведь изначально во Вселенной был только водород, все остальное синтезировано в сверхновых. То есть сверхновые — это химические и ядерные реакторы. Ваши тела состоят из элементов, которые когда-то были произведены там. Но есть и плохие новости: вспышки сопровождаются выбросом мощной радиации.
Грозит ли нам радиоактивный душ из Большой Медведицы? К счастью нет. Радиация летит медленнее света и не по прямой. Ее отклоняют силовые линии магнитного поля галактик. Пока к нам долетит, если долетит, все рассеется. Так что на сверхновую можно спокойно смотреть. А где и как? Берите ручку «ковша». Две крайние звезды.
Эти результаты должны быть подтверждены другой командой астрономов, после чего их внесут в реестры. В любом случае, событие такого масштаба случается редко — раз в десятилетия или даже столетия. Подобные события открывают перед учеными уникальную возможность лучше понять происхождение элементов тяжелее железа. Ученые из США обнаружили, что гамма-вспышки ведут себя странно. Они не становятся ярче и не затухают равномерно, а мерцают. Исследователи смогли объяснить эту загадку в плазме, которая движется то медленнее, то быстрее скорости света.
Взорвется ли звезда Бетельгейзе? И что будет после этого с нами?
Сверхновые звезды: Что это такое, как они появляются и какова их роль в жизни Вселенной | Они пронзили звезду, которая, вероятно, в 30-40 раз больше Солнца, после чего произошло рентгеновское и гамма-излучение в космос. |
Зафиксирован крайне редкий тип взрывов в космосе | Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды». |
Звезда Эта Киля, взрыв сверхновой | Астрономы из Университета Шеффилда зафиксировали крайне редкий тип взрыва звезды в космосе — асферический. |
Впервые обнаружены следы взрыва уникальной сверхновой — 30.09.2022 — В мире на РЕН ТВ | Примерно с начала апреля и по сентябрь в ночном небе на расстоянии 3 000 световых лет можно будет увидеть мощный взрыв. |
Астрономы зафиксировали мощнейший взрыв в истории Вселенной
«Будет видно невооруженным глазом»: в 2024 году в небе взорвется уникальная звезда | В качестве льтернативы, другое распространённое взрывное явление в космосе, тип Ia сверхновой, происходит, когда остатки звёзд, называемые белыми карликами, стягивают материю у партнёрской звезды. |
Взорвётся ли Бетельгейзе и чем это нам грозит? | Космос | Мир фантастики и фэнтези | И одна из возможных в ближайшее время катастроф — взрыв звезды Бетельгейзе. |
Мертвая звезда осветила мощной вспышкой соседнюю галактику
В созвездии Кассиопея только что взорвалась звезда - RW Space | Это называется взрывом сверхновой звезды. |
Сверхновые взрываются по всему Млечному Пути — почему мы их не видим? | Радует, что если взрыв произойдет, то Земля останется в безопасности при такой дистанции (мы в зоне риска лишь при дистанции в 50 световых лет), а исследователи получат возможность изучить сверхновую вблизи. |
Ученые впервые увидеи смерть звезды — почему это важно | 360° | Британские астрономы обнаружили крупнейший за всю историю наблюдения космический взрыв, который длится уже более трех лет. |
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике – Новости Крыма – Вести Крым | Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой. |
Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды» - Телеканал «Моя Планета» | И когда пройден критический предел, атомные ядра в ядре звезды начинают бешеную реакцию синтеза в огромном количестве, что приводит к взрыву. |
Зарегистрирован самый мощный за всю историю космический гамма-всплеск
Это очень редкое явление, поскольку обычно взрывы звезд во Вселенной сопровождаются шарообразной формой, ведь сами светила сферические. Авторы предполагают, что этому может быть несколько объяснений: взрыв звезды образовал диск непосредственно перед тем, как она погибла; или же это недосформированная сверхновая, у которой ядро превращается в результате коллапса в черную дыру или нейтронную звезду, а затем поглощает остальную часть светила.
Однако нас интересуют только различные сценарии рождения новых звезд. Они практически всегда реализуются при аккреции вещества водородной оболочки звезды-донора на белый карлик.
Это тесные бинарные системы, состоящие из не утратившей активности звезды и белого карлика. Аккреционный диск всегда нагревается внутренним трением и охлаждается собственным излучением. При сбалансированности этих процессов он находится в тепловом равновесии, при нарушении которого в диске могут возникнуть волны тепловой нестабильности, резко увеличивающие генерацию фотонов.
Светимость диска за несколько месяцев может вырасти на один-три порядка, составив от одной до десяти светимостей Солнца. Эти «внутридисковые» катаклизмы называются карликовыми новыми. Первая карликовая новая была замечена в созвездии Близнецов еще в 1855 г.
Куда эффектней классические новые звезды, или просто новые. Они вспыхивают в результате падения со скоростью порядка тысячи км в секунду на поверхность белого карлика вещества аккреционного диска. Поскольку при термоядерных реакциях интенсивно выделяется энергия, на поверхности белого карлика возникают ударные волны, которые буквально взрывают его внешний слой и выбрасывают сверхгорячую плазму в окружающее пространство.
Светимость системы в течение нескольких суток возрастает на три-шесть порядков, достигая 100 тыс. Согласно теории, классические новые могут периодически загораться с интервалом в 10 тыс. Эти весьма редкие «звери» космического «зоопарка» в нашей Галактике их известен всего десяток увеличивают свою яркость в среднем не больше, чем тысячекратно, зато вспыхивают каждые 10—100 лет.
Механизм этих вспышек пока в точности неизвестен. Предполагается, что они возникают при интенсивной до одной десятимиллионной солнечной массы в год аккреции водорода на поверхность самых массивных белых карликов, масса которых лишь немногим меньше предела Чандрасекара. Они возникают в звездных парах, состоящих из пульсирующего красного сверхгиганта на последней стадии своей эволюции и молодого, а потому очень горячего белого карлика средней массы.
Звезда-донор в заключительной фазе интенсивно сбрасывает вещество своей оболочки и приближается к превращению через несколько миллионов лет в белый карлик. Считается, что именно этот процесс лежит в основе специфического характера спектра симбиотических новых, хотя многие детали еще не ясны. Самый блистательный и в прямом, и в переносном смысле!
Согласно стандартному сценарию а есть и другие , она происходит, когда приток аккретированного вещества доводит массу карлика-акцептора до предела Чандрасекара. Поскольку в этом случае давление вырожденного электронного газа уже не может противостоять гравитации, карлик сжимается примерно в три раза, и температура его центральной зоны резко возрастает. Когда она достигает 400 млн К, начинается термоядерное горение углерода, которое дополнительно нагревает ядро.
Поскольку при этом давление вырожденного газа не увеличивается вспомним, что оно не зависит от температуры! Фронт термоядерного горения движется от ядра карлика к его поверхности, скорее всего, сначала с дозвуковой, а потом и со сверхзвуковой скоростью. В результате карлик взрывается без остатка, разбрасывая «новорожденную» если угодно, новосинтезированную материю по окружающему пространству.
В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130—250 солнечных масс, хотя физические механизмы совершенно различны. Поскольку углеродно-кислородный карлик лишен водорода, линии этого элемента в спектре излучения сверхновой отсутствуют, из-за чего ее и относят к I типу, а конкретно, к подтипу Ia. К подтипам Ib и Ic, напротив, относят бедные водородом коллапсирующие сверхновые а сверхновым Ic не хватает еще и гелия.
Принято считать, что эти звезды лишились внешних слоев еще до взрыва, что и объясняет их спектральные аномалии. Сверхновые подтипа Ia очень эффектны. При распаде ядер никеля и кобальта возникает гамма-излучение, которое нагревает остатки взорвавшейся звезды и заставляет их интенсивно светиться в рентгеновском и видимом диапазонах.
Эти сверхновые обладают замечательной особенностью, за которую их очень любят астрономы и космологи: у них примерно одинаковая пиковая светимость, в четыре миллиарда раз превышающая солнечную. Поэтому наблюдение таких сверхновых сыграло первостепенную роль в открытии ускоренного расширения Вселенной, состоявшемся два десятилетия назад. Но это уже совсем другая история.
Исследование звездных вспышек сейчас ведется весьма активно: и посредством наблюдений, и через обсчет моделей. Так, в 2010 г. Уже зарегистрировано полтора десятка таких звезд, но механизм их появления на свет пока неизвестен.
В наши дни эти исследовательские программы осуществляются на базе новейшей многоканальной астрономии multimessenger astronomy с широким использованием ресурсов астроинформатики. Эта новая научная дисциплина, возникшая в последнем десятилетии, стимулировала очень плотную кооперацию между астрономами и специалистами по вычислительным системам и компьютерным кодам. Перефразируя великого Булгакова, не побоюсь предречь, что этот научный «роман» принесет еще сюрпризы.
Литература Сурдин В. Шкловский И. Звезды: их рождение, жизнь и смерть.
Сверхновые звезды и связанные с ними проблемы. Branch D. Supernova Explosions.
Springer, 2017. Lequeux J. Birth, Evolution and Death of Stars.
World Scientific Publishing Co. Loeb A. Princeton U.
Press, Princeton, N. Поделись с друзьями!
Сигнал, названный GRB 221009A, был обнаружен 9 октября, хотя сама вспышка произошла 1,9 млрд лет назад. Луч энергии прибыл из созвездия Стрелы и был виден на протяжении десяти часов — один из самых долгих гамма-всплесков за всю историю наблюдений, пишет Phys. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Кроме того, гамма-всплеск GRB 221009A оказался самым мощным из всех известных астрономам.
Энергия этих событий обычно измеряется в гигаэлектронвольтах ГэВ , но у некоторых она достигала 1 ТэВ. Когда образуются черные дыры, они выбрасывают мощные струи частиц, которые развивают околосветовую скорость. Они проходят через останки взорвавшейся звезды, излучая в космос волны рентгеновского и гамма-излучения.
Это удалось сделать благодаря огромному количеству излучаемого ею света. Мощную вспышку ученые зафиксировали осенью того же года. Последующие данные только подтвердили, что взорвался тот самый красный сверхгигант в галактике NGC 5731, который был в 10 раз массивнее Солнца. За последствиями взрыва ученые следили на протяжении года.
Впервые они выяснили, что задолго до взрыва красные сверхгиганты могут эволюционировать. Многое теперь станет понятным Сверхгиганты — это звезды большой массы, объяснил в беседе с «360» астроном, научный сотрудник Астрономического института имени Штернберга Владимир Сурдин. Пока они живут нормальной жизнью, их масса ненамного крупнее Солнца, а только в пять — 10 раз, пояснил эксперт. В общем, это характерно для любой старой звезды, но тела большой массы раздуваются очень сильно, в тысячу раз больше по размеру становятся, поэтому их видно издалека», — отметил собеседник «360».
Такие звезды, по его словам, обнаружены давно, ученые знают эти особенности жизни, вот только не знают, чем заканчивается их жизнь в самые последние мгновения.
В космосе произошёл мощнейший взрыв повторной новой звезды
Хаббл наблюдает, как сверхгигант Бетельгейзе медленно восстанавливается после взрыва на поверхности звезды. В последний раз сверхновая взрывалась неподалеку в 1572 году, это была звезда в нашей Галактике, и всего в 7500 световых лет от нас. В качестве льтернативы, другое распространённое взрывное явление в космосе, тип Ia сверхновой, происходит, когда остатки звёзд, называемые белыми карликами, стягивают материю у партнёрской звезды.
Зарегистрирован самый мощный за всю историю космический гамма-всплеск
Так что, это удовольствие для продвинутых любителей астрономии. За эти несколько дней астрономы уже выяснили, что сверхновая принадлежит ко II типу. Это означает, что мы наблюдаем гравитационный коллапс умирающего гиганта — звезды, превосходящей по массе Солнце примерно раз в 10, или более. Именно такие процессы обогащают наш мир тяжелыми химическими элементами. Всё, что тяжелее железа просто так синтезироваться в недрах звёзд не может, нужен на порядок более высокоэнергетический катаклизм.
Взрыв сверхновой II типа как раз такой. И в целом для галактики M101 это событие полезное — будет, из чего строить новые планеты и зарождать на них жизнь. Но для ближайших окрестностей эпицентра — в радиусе порядка 100 световых лет — он опасен, ближе 10 световых лет губителен. Нам вспышка сверхновой звезды SN 2023ixf не страшна, ведь происходит она в галактике удаленной от нас на расстояние в 21 миллион световых лет.
Это очень далеко по человеческим, и даже по звёздным меркам. Но в масштабах галактического мира это «вечеринка в соседнем дворе», ведь «Вертушка» — одна из ближайших к нам галактик.
Заинтригованная этим несоответствием группа астрономов недавно выяснила, насколько сложно обнаружить сверхновые и где в небе они, скорее всего, будут видны. В предварительной статье, которая еще не рецензировалась, опубликованной на arXiv , они объявили о странном результате. В то время как общее количество исторических сверхновых подтверждается, все они находятся в «неправильных» местах. Крабовидная туманность — остаток сверхновой 1054 года. Группа ученых, в которую также вошли студенты-исследователи Таннер Мерфи и Джейкоб Хоган, начала свой анализ с работы других исследователей, анализирующих, где в Млечном Пути наиболее вероятно появление сверхновых. Они рассматривали галактику как два жареных яйца, сложенных желтками наружу: в итоге получился плоский диск который мы видим сбоку как яркую полосу звезд с круглой выпуклостью посередине.
Сверхновые должны быть более распространены в центре галактики, где звезды, особенно раздувшиеся красные гиганты, готовые вот-вот лопнуть, плотно сбиваются в кучи. Расчеты, составленные по такой модели Млечного пути, ранее предположили, что в среднем по одной звезде умирает где-то в выпуклости или диске каждые несколько десятилетий. Но не все взрывы привлекают внимание звездочётов. Пыль и газ, выброшенные из звезд предыдущих поколений, делают всю галактику — и особенно ее центр — «затуманенной», из-за чего сверхновые на другой стороне диска могут быть трудноразличимы с Земли. При этом, чтобы войти в историческую хронику, сверхновая должна быть не просто видимой, но, как выразился Филдс, «сверкать как новогодняя елка». Его команда подсчитала, что в лучшем случае только одна из пяти сверхновых вспыхивает достаточно ярко, чтобы прожечь пыльную дымку и светить в течение 90 дней, а это означает, что такое исключительное событие можно ожидать в лучшем случае раз в пару столетий — о чем и свидетельствуют исторические записи. Остаток Сверхновой Кеплера SN 1604 — последней яркой сверхновой в Млечном пути, которую можно было наблюдать полтора года.
Нужно найти созвездие Волопас, похожее на большого воздушного змея, а за ним будет дуга из семи звезд — это и есть та самая Северная Корона.
Звезда Тау расположена у левого ее края. Если сейчас начать наблюдение, то через какое-то время можно будет заметить, что эта звезда стала гораздо ярче — это и есть взрыв. Звезда будет такой же яркой, как Полярная звезда в ночном небе. Через неделю Тау снова погаснет. Оно по форме напоминает венец. Звезды в созвездиях имеются буквами греческого алфавита по степени яркости.
Они проанализировали сведения, собранные в течение последних 100 лет астрономами-любителями.
За счет компьютерного моделирования установлено, что диаметр Бетельгейзе находится в пределах от 702 до 880 диаметров Солнца. Это меньше, чем считалось, на фоне чего снижается и вероятность стремительной трансформации светила в сверхновую. По оценкам ученых, взорваться звезда может спустя 100 тысяч лет.
Маленькая чёрная дыра уничтожила звезду и устроила сверхмощный взрыв
Их могут захватить атомы, которые потом распадаются на более тяжелые элементы, включая теллур. При этом выделяется излучение, которое ученые видят как яркий взрыв, известный как килоновая звезда. Ранее убедительных доказательств участия килоновых звезд в производстве тяжелых металлов не было, уточнили ученые. Ранее Владимир Путин поручил кабмину разработать нацпроект по развитию космической сферы до 1 июля 2024 года.
В центре Крабовидной туманности также, как и у Кассиопеи А, нейтронная звезда, но иного типа. Это пульсар — то есть, излучение от нее исходит в виде импульсов.
Звезда вращается со скоростью около 30 раз в секунду, и луч от нее, если фиксировать с земли, напоминает маяк — только космический. Когда молодой пульсар, как в Крабовидной туманности, замедляется, рядом с ним скапливается большое количество энергии. В частности, высокоскоростной ветер, исходящий от звезды и состоящий из частиц материи и антиматерии, врезается в окружающую туманность — это порождает волну наподобие ударной, которую можно увидеть в фильме как расширяющееся кольцо. А перпендикулярно этому кольцу можно различить потоки материи и антиматерии, которые порождают рентгеновское излучение. В этом году планируется очередное наблюдение Крабовидной туманности с помощью «Чандры», чтобы проследить за изменениями вокруг сверхновой, которые могли произойти с 2022 года.
Тогда ядро без этих реакций начинает сжиматься, коллапсировать, от этого ещё больше раскаляется и нагревает свою внешнюю оболочку. И она начинает раздуваться до невообразимых объёмов. Надо сказать, такие массивные звёзды, к сожалению, сгорают быстро. Бетельгейзе даже, оказывается, меньше девяти миллионов лет. Нашему ничем не примечательному Солнцу, для сравнения, 4,5 миллиарда лет, и ему ещё далеко до старости. В масштабах всего основного цикла эволюции звезды стадия красного гиганта довольно короткая. У Солнца она, правда, может растянуться и на целый миллиард лет, потому что оно само по себе долгожитель, а вот у такой однодневки, как Бетельгейзе, разве что на 100 тысяч лет, не больше.
И сколько существует человечество, столько оно и наблюдает её именно в таком виде. Поэтому трудно сказать, когда именно она состарилась. Может, 50 тысяч лет назад, а может, и 100. А что же будет, когда этот этап закончится?
В апреле этого года телескоп Уэбба сфотографировал останки звезды в среднем инфракрасном диапазоне. Благодаря разрешающей способности NIRCam мы теперь видим, как умирающая звезда абсолютно разнеслась при взрыве, оставив после себя нити, похожие на крошечные осколки стекла.
После стольких лет изучения Cas A действительно невероятно рассмотреть эти детали, которые дают нам представление о том, как взорвалась звезда. Звезды питаются за счет термоядерной реакции, которая выталкивает энергию из их ядер наружу. Но когда стареющие гигантские звезды исчерпывают топливо, их собственная гравитация преодолевает термоядерную реакцию. Звезда коллапсирует со взрывом, который разбрасывает ее вещество по космосу.
Что произойдет, когда Бетельгейзе станет сверхновой?
Их отличие от простых новых звезд — в периодичности: последние вспыхивают в сотни и тысячи раз реже. Для того, чтобы произошел взрыв, необходимо, чтобы на поверхности белого карлика оказалось достаточно водорода от красного гиганта. Соответственно, в случае с повторными новыми это вещество накапливается на нем гораздо быстрее. Кстати, Владимир Наумов месяц назад открыл теплый сезон астрономических наблюдений! Теплый потому, что вечером устанавливаются слабоположительные температуры, а не потому, что не холодно. В середине апреля на Комсомольской площади хабаровчане наблюдали за Солнцем. Ну, а вскоре астроном планирует показать и вечернюю Луну — с кратерами и морями, как полагается.
Они сумели заснять редкое и уникальное астрономическое явление - вспышку звезды явление, когда звезда резко увеличивает свою яркость в соседней галактике. Такие редкие кадры можно получить один раз за век.
Красный гигант выбрасывает материал на поверхность белого карлика. Звезды вращаются друг вокруг друга и находятся очень близко друг к другу. Когда на поверхность белого карлика сбрасывается достаточное количество вещества, температура становится настолько высокой, что на поверхности белого карлика начинается термоядерный взрыв, объясняют ученые. Руководитель отдела метеороидной среды НАСА Билл Кук говорит, что это очень яркое событие — земляне смогут увидеть, как на небе начинает появляться новая звезда. Раньше для того, чтобы увидеть T Северной Короны, мог понадобиться телескоп, но она вспыхнет так ярко, что ее можно будет увидеть и невооруженным глазом.
По словам Кука, точную дату явления назвать невозможно, но его «будет видно невооруженным глазом». Уникальность звезды в том, что ее взрыв происходит примерно каждые 80 лет. Кук сравнил ее яркость с Полярной звездой.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Интересно, что этот взрыв не самое яркое явление, когда-либо наблюдавшееся. Это остаток сверхновой, взрыв которой был таким ярким, что в 1054 году ее заметили астрономы в Китае. Взрыв произошел на безопасном для нас расстоянии — около 20 тысяч световых лет внаправлении центра нашей Галактики, но по яркости сверхновая не уступала Юпитеру и сияла на небе около 1 года, постепенно угасая. Новость о зафиксированном учеными огромном взрыве в космосе, который стал самым большим за всю историю наблюдений, вызвала широкий резонанс в научном сообществе.