Нейросети вместо человека: каким специалистам впору задуматься о смене профессии. Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты. Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать. Специалист по нейронным сетям: подробный обзор профессии Профессия нейротехнолог – как стать, где обучиться, востребованность.
Что такое нейросети, как они работают и что нужно освоить новичку в AI
Промпт-инженер от англ. Суть новой профессии заключается в том, чтобы выяснять задачи и требования заказчика, переделывать их в промпты и получать результат с помощью нейросетей. Задачи промпт-инженера не ограничиваются составлением запросов. Он тренирует нейросети, настраивает параметры и логику их самообучения, а также участвует в разработке и тестировании продуктов на основе ИИ. Поэтому знание языков программирования, структур данных и инструментов big data будет весомым преимуществом для кандидата и поможет быстрее расти в профессии. Зарплаты у промпт-инженеров более чем достойные. Правда, на момент выхода публикации удалось найти только одну актуальную вакансию. В одном из них, например, искали специалиста с опытом 3—6 лет — притом что сама профессия появилась в этом году. Сегодня же на популярных карьерных площадках, таких как HeadHunter и Superjob, вакансий нет.
Импортонезависимость Руководитель практики машинное обучение и искусственный интеллект Axenix бывшая Accenture Алексей Сергеев в беседе с CNews отметил, что ИИ даст возможность специалистам во многих сферах направить когнитивные усилия на решение более сложных и творческих задач. При этом бояться, что машины заменят людей, не стоит, уверен эксперт. Технологии, в частности разработки в области ИИ, скорее трансформируют рынок труда, занимая рутинизированные области деятельности, ИИ «поднимает» базовую линию навыков выше. Появление GPT и будущие улучшения языковых моделей гарантировано окажут сильное влияние на все сферы деятельности человека, на все профессии — от специализаций в области коммуникаций обслуживание, продажи, маркетинг , до вполне интровертских — исследовательских, инженерных и творческих — ролей». Это чат-бот с искусственным интеллектом , в основе которого лежит языковая модель GPT-3. Чат-бот дает ответы на большую часть вопросов, умеет писать текст и программные коды. Интерес к технологии появился сразу у нескольких крупнейших корпораций: стало известно, что Microsoft собирается внедрить эту технологию в свой поисковик Bing. Заинтересовался чатботом и китайский поисковик Baidu , а в начале февраля 2023 г.
Обучение нейросети скоро стартует, первые интеграции ожидаются до конца 2023 г. В Google после презентации нейросети ChatGPT, впрочем, заявили , что она угрожает ее поисковой системе. Дело в том, что ChatGPT, способна давать простые ответы на большую часть вопросов и не раздражает всплывающей рекламой, которая является главным источником доходов компании. В России популярность новой технологии вызвала нешуточное беспокойство: так, Национальная комиссия по этике в сфере искусственного интеллекта попросила Минобразования создать регламент использования нейросетей в учебном процессе. Тема обострилась после того, как нейросеть ChatGPT написала диплом российскому студенту, который тот успешно защитил.
Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да? Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов. Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо. Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос. Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта. Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое. Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро. Но фактически это просто расширяет, как сказать, перераспределяет усилия людей. То есть сейчас мы видим, что появляются новые профессии. Они такие, околодизайнерские: наполовину дизайнерские, наполовину технические. Люди, которые занимаются промт-инжинирингом, которые учатся взаимодействовать с этим инструментом, задавать ему правильные вопросы и получают правильные ответы. Но по факту это тот же дизайн, просто инструментом дизайнера является уже не кисть, уже не какие-то программы редактирования графики. А просто нейросеть. Поэтому ничего не меняется на самом деле, просто трансформируются инструменты производства. И это было и 100 лет назад, когда происходили какие-то переходы от ручного труда к фабричному, так и сейчас. Так я себе это представляю. Гребенников: Правильно, если простым языком сказать, когда нам говорили, что появилось телевидение, то театр умрет. Точно так же, как не умер театр, не умерло телевидение после появления интернета, точно так же и с появлением искусственного интеллекта, мне кажется, у дизайнера просто появилось больше инструментов для того, чтобы творить. Кулинкович: Да. Совершенно верно. Более того, интересный эффект, что тот крафт, ручная такая работа, которая… Вот этот рынок объединял в себе большое количество профессионалов и сейчас кажется, что пришли нейросети и этот рынок разрушили. И, конечно, вода из этого моря утекла в моменте. Но при этом останутся мастера, как в случае с театрами, есть гениальные постановки, которые собирают огромные залы и оказываются суперактуальными и, возможно, даже более редкими и более неожиданными, чем они были ранее. Потому что ранее это был такой массовый продукт, то сейчас это штучный. Поэтому, когда все говорят, что нейросети убивают работу дизайнера, здесь, наоборот, я это вижу, как создание каких-то интересных локальных ниш, которые, наоборот, создают возможности. Они как бы преумножают варианты применения каких-то творческих усилий. Коротнева: Сергей, вопрос о том, появится ли новая профессия на стыке дизайна и около какой-то научной истории Data Science. Вы уже сказали про профессию промт-инжиниринг. Кулинкович: Разные люди это называют по-разному. Мы в студии называем это «нейровод» — человек, который выбирает финальный вариант, потому что вариантов очень много, выбрать из них конечный — это и есть одна из самых сложных задач. У нас есть специальные нейроводы. Которые делают дизайн мозгами Николая, но принимают ответственность за принятие финального решения. Гребенников: Сергей, такой вопрос. Николай — это все-таки когда-то был реальный человек или полностью вымышленный персонаж?
В конце каждого параграфа есть несколько проверочных вопросов, которые помогут закрепить знания. Другой способ — подать заявку на участие в школе AI-тренеров. Для поступления нужно успешно выполнить тестовое задание. Обучение в школе бесплатное, состоит из двух частей. Курс включает лекции, практические занятия и их разбор. Очный этап. Проходит в московском офисе «Яндекса», где под руководством опытных шеф-редакторов ученики решают реальные задачи.
Лучшие онлайн курсы программирования для детей: топ 20
- Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности
- ИИ вам в помощь: почему самозанятым нужно учиться работать с нейросетями
- Какие профессии заменит искусственный интеллект
- Россиянам назвали самые перспективные профессии на ближайшие пять лет
«Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой
Чтобы получить эту работу, нужно быстро и хорошо писать и корректировать, уметь проверять факты и аргументированно объяснять, чем один текст лучше другого. Для этой должности хорошо подойдут перепрофилированные копирайтеры, журналисты, редакторы, переводчики. Знание английского будет большим преимуществом. Как устроиться на работу Главный наниматель в России — Яндекс. В своих материалах компания рассказывает, как стать AI-тренером: предлагает бесплатные уроки и проводит курсы для специалистов. Чтобы устроиться на работу, нужно пройти ряд тестовых испытаний, собеседование не предусмотрено.
Специалист по этике Специалист по этике искусственного интеллекта решает сложные ситуации, которые возникают при использовании нейросетей. Востребованность этих специалистов связана с тем, что ИИ проникает во все области жизни человека, и из-за этого возникают этические сложности: защита персональной информации, соблюдение личных границ пользователей, предвзятость и спорные решения, которые принимает или предлагает модель машинного обучения. Что нужно знать и уметь Чтобы работать в этой профессии, нужно иметь глубокие познания в одной из сфер: культурология, юриспруденция, информационная безопасность. Специалист должен оценивать действия ИИ и направлять алгоритмы в правильное русло. Большим преимуществом при найме будет знание принципов машинного обучения и работы нейросетей.
Сколько зарабатывает Это низкоконкурентная ниша, где размер зарплаты определяется индивидуально во время собеседования. Как устроиться на работу Чтобы устроиться на работу, нужно предоставить документ об образовании и пройти собеседование. На эту должность в пределах одной компании могут переходить специалисты из параллельных направлений, например юристы. Технические специальности Развитие искусственного интеллекта создает множество новых рабочих мест для технических специалистов. Огромное число задач, которые решают нейросети, требует большого количества профессионалов для создания прикладных решений.
В разделе «Нейросети» блога click. Также в нем мы делимся полезными советами по использованию ИИ в работе. В нашем сервисе также используются возможности нейросетей. Например, у нас есть инструмент автоматического написания объявлений для контекстной рекламы. Инженер искусственного интеллекта Инженер по искусственному интеллекту — специалист, который разрабатывает, обучает и затем внедряет модели искусственного интеллекта.
Профиль его рабочих задач достаточно широкий: от идеи до практической реализации нейросети. Такой программист нужен в любой компании, которая намерена внедрять ИИ в свои бизнес-процессы промышленность, логистика, финансовый и банковский сектор. Что нужно знать и уметь Обучение инженера искусственного интеллекта может происходить по направлениям «математика», «физика», «информатика», «кибернетика» и т. Читайте также: Инженеры искусственного интеллекта: кто это и сколько они зарабатывают Сколько зарабатывает инженер искусственного интеллекта На уровне Junior специалист может получать зарплату в размере от 80 до 100 тыс. На грейде Middle — до 150 тыс.
Senior — до 300 тыс. Как устроиться на работу Работодатели обычно ожидают релевантного опыта на должности инженера-программиста по искусственному интеллекту. Как правило, решение о приеме на работу принимается после выполнения тестового задания. Инженер по машинному обучению Специалист по машинному обучению Machine Learning Engineer — это инженер-программист, который создает и настраивает нейросети под выполнение конкретных задач. С помощью разработанных этим специалистом решений бизнес может оптимизировать и автоматизировать многие процессы.
В частности, они применяются для сбора данных, лучшего понимания аудитории, формирования персональных предложений, увеличения продаж. Что нужно знать и уметь Для качественного выполнения работы специалисту необходимы математические знания теория вероятностей, статистика, линейная алгебра и умение моделировать данные. В зависимости от работодателя может потребоваться умение работать с библиотеками Keras, scikit-learn, Pandas, NumPy. Также специалист в области машинного обучения должен обладать логическим складом мышления и владеть английским языком. Сколько зарабатывает инженер по машинному обучению В зависимости от опыта и навыков зарплата специалиста по машинному обучению может варьироваться от 40 тыс.
Читайте также: Специалист по машинному обучению: в чем специфика и сколько можно заработать Как устроиться на работу На рынке машинного обучения наблюдается дефицит квалифицированных кадров, поэтому за хорошими специалистами компании «охотятся» сами. Если на такую вакансию откликнется начинающий соискатель, работодатель попросит выполнить тестовое задание и пройти собеседование. Документы о профильном образовании и релевантный опыт работы будут преимуществом. Специалист по анализу данных Data Scientist Data Scientist — специалист, работающий на стыке трех направлений: программирования, статистики и машинного обучения. Главной его задачей является создание прикладных решений для бизнеса.
Например, это могут быть умные ленты социальных сетей и стриминговых сервисов, инструменты для комплексного маркетингового анализа и стратегического планирования. Специалист по анализу данных работает с огромным объемом информации и разрабатывает пути ее применения. Обязательным требованием является владение Apache Spark, Hadoop Mapreduce или аналогичными инструментами. Как и в любой другой IT-специальности, аналитик Data Scientist должен хорошо знать английский язык. Сколько зарабатывает Data Scientist В вакансиях для Data Scientist зарплатная вилка начинается от 90 тыс.
Обычно уровень зарплаты определяется непосредственно на собеседовании. Читайте также: Профессия Data Scientist: задачи, применение, заработок Как устроиться на работу От кандидата требуют опыта работы на такой же должности от 1 года.
Медицинские профессии В медицине нейросети могут быть использованы для диагностики заболеваний, определения прогноза и выбора лечения. Например, нейросети могут анализировать медицинские изображения, такие как рентгеновские снимки или МРТ, для определения наличия определенных заболеваний. Они также могут использоваться для анализа генетических данных и предсказания риска заболевания определенными заболеваниями. Финансовые профессии В финансовой сфере нейросети могут быть использованы для прогнозирования цен на акции, анализа финансовых отчетов компаний и рискового управления. Нейросети могут анализировать большие объемы данных, чтобы предсказывать будущие изменения цен на акции и определять наиболее перспективные инвестиционные возможности. Маркетинговые профессии В маркетинге нейросети могут быть использованы для анализа данных и определения наилучших стратегий маркетинга.
Так как профессия только зарождается, компания решила подготовить специалистов своими силами. Можно пройти вводный курс, длительностью 1-2 часа. Он поможет освоиться в теме за 5 уроков. Достоверность ответов: из чего состоит и как проверять. Важное о структуре ответов нейросети и видах текстов. От лучшего к худшему: что такое ранжирование ответов. В конце каждого параграфа есть несколько проверочных вопросов, которые помогут закрепить знания.
Среди них — маркетологи, преподаватели, социологи, судьи и другие, уверены исследователи. В некоторых сферах технология ChatGPT в буквальном смысле начнет отбирать хлеб у дипломированных специалистов. Больше всего технология повлияет, как минимум, на 20 профессий, пишет Cbcnews. Умение искусственного интеллекта быстро и качественно обрабатывать большие объемы информации и генерировать связный текст, превращает его в полезный для работников ресурс. Так, профессионалы в сфере недвижимости используют ChatGPT для составления различных списков, юристы — для написаний завещаний. В то же время чатбот может не только помогать сотрудникам выполнять рабочие задачи, но и полностью дублировать их функции, что в конечном итоге способно привести к массовым сокращениям. Итак, список возглавили маркетологи, за ними следуют преподаватели иностранного языка и литературы, географии, истории, права, философии , культурологии и религии, социологии, политологии, уголовного правосудия, психологии, деловой и межличностной коммуникации. Под удар могут попасть также социологи , политологи, специалисты по библиотечному делу, юристы по гражданским делам, судьи, клинические и школьные психологи и коучи. Ученые уверены, что на область юриспруденции ИИ повлияет сильнее всего. Также под раздачу могут попасть турагентства, грантовые фонды, спортивные агенты и музыкальные продюсеры. Программистов в списке не оказалось, хотя чат-бот умеет писать код. Для этого исследователи рассмотрели профессии как набор навыков и способностей, которые требуются сотрудникам, чтобы исполнять свои обязанности. Ученые взяли 10 самых распространенных приложений ИИ, которые умеют генерировать изображения или текст, и проанализировали, как они связаны с различными профессиональными навыками.
Восстание машин: как нейросети «вытесняют» людей из профессий
В этом случае нейросети для маркетологов становятся одним из основных инструментов работы: они помогают структурировать и анализировать большие объемы данных. Что нужно знать и уметь От соискателей требуется высшее образование в области маркетинга, математики, экономики или статистики. Специалист должен уметь обрабатывать большой объем данных, собирать маркетинговую информацию, составлять отчеты. Сколько зарабатывает маркетолог-аналитик Зарплата в среднем составляет около 100 тыс. Как устроиться на работу Чтобы устроиться AI-маркетологом, нужно откликнуться на вакансию и пройти собеседование. Часто требуется выполнить тестовое задание. ИИ помогает лучше и быстрее анализировать аудиторию и определять ее потребности, при этом он способен обрабатывать гораздо больший объем данных, чем человек. Благодаря этому AI с дизайнером в паре способны создавать персонализированные интерфейсы. Также может потребоваться опыт работы с большими данными для анализа ЦА.
Сколько зарабатывает дизайнер интерфейсов В зависимости от опыта работы от 30 до 200 тыс. Как устроиться на работу Обычно работодатель требует предоставить портфолио и пройти собеседование. Промт-дизайнер Промт-дизайнер prompt designer — специалист, который формулирует текстовые запросы к генеративным нейросетям, чтобы получить изображение в соответствии с техническим заданием. Что нужно знать и уметь Это творческая профессия, которая предполагает глубокие знания языка, на котором формулируются запросы. Специалист должен уметь анализировать семантические и синтаксические конструкции и хорошо разбираться в принципах работы ИИ. Сколько зарабатывает промт-дизайнер Такой специалист может работать по трудовому договору или на фрилансе с оплатой за трудочасы или фактические результаты. Зарплата оценивается в зависимости от опыта. Как устроиться на работу Работодатели требуют предоставить портфолио и документы о высшем образовании, а также рассказать на собеседовании о владении профессиональными инструментами генеративные нейросети, графические редакторы.
ИИ-креатор ИИ-креатор создает изображения, тексты, видео с помощью нейросетей. Благодаря тому, что человек непосредственно не занят в генерации контента, он может тратить больше времени на творческую сторону проекта и объединять в себе сразу несколько функций. Что нужно знать и уметь Потребуется опыт в создании контента для блогов, умение строить контент-план. Плюсом будет образование в области маркетинга. Умение составлять запросы для различных генеративных нейросетей. Сколько зарабатывает ИИ-креатор Заработная плата варьируется от 40 до 90 тыс. Как устроиться на работу ИИ-креатор может работать на фрилансе или в офисе. В первом случае для заключения договора на оказание услуг может понадобиться выполнить тестовое задание и предоставить портфолио.
Во втором случае к перечисленным ранее пунктам добавится прохождение собеседования. Компьютерный лингвист Компьютерный лингвист — специалист, который занимается обработкой данных и переводом их в естественные для нейросетей языки. В дальнейшем профессионалы этого профиля передают результаты своей работы дата-сайентистам, которые обучают алгоритмы работать с текстами переводы, распознавание речи, трансформация устного языка в письменный и т. Если вы задаетесь вопросом, может ли филолог стать компьютерным лингвистом, то ответ будет утвердительным. Но ему понадобятся хорошая база программирования и понимание работы моделей машинного обучения. Что нужно знать и уметь От специалиста требуется знание естественных и компьютерных языков. При этом приветствуется не только владение русским и английским, но и другими языками. Важно уметь программировать на Python хотя бы на базовом уровне , знать основы обработки естественного языка NLP и обладать опытом в разметке данных.
Где учиться компьютерному лингвисту? Для этой профессии подходит образование по профилю «Фундаментальная и прикладная лингвистика», магистратура «Компьютерная цифровая лингвистика», курсы переподготовки в вузах. Сколько зарабатывает компьютерный лингвист Средняя зарплата составляет 100—120 тыс. Как устроиться на работу Работодатели требуют релевантного опыта в других компаниях и профильного образования с глубоким знанием естественных языков. Обычно для устройства на работу нужно выполнить тестовое задание и пройти собеседование. Промт-инженер Промт-инженер — специалист, который составляет правильные запросы к генеративным нейросетям, чтобы получить результаты, соответствующие техническому заданию. В сферу его задач входит выяснение потребностей заказчика, формирование промта подсказки для нейросети на основе полученной информации и его изменение, если изображение или текст сразу не подходят. По сути, работа промт-инженера — искусство коммуникации с нейросетью.
Что нужно знать и уметь От соискателя требуется глубокое знание естественного языка, аналитическое мышление, техническая грамотность, понимание принципов работы нейросетей. IT-образование не обязательно, но приветствуется. Кандидат должен владеть не только русским, но и английским, потому что промты на нем лучше всего «понимает» нейросеть. Сколько зарабатывает промт-инженер Ниша промт-инжиниринга очень узкая, специалисты в основном работают на фрилансе. Размер зарплаты варьируется в зависимости от уровня инженера и бюджетов заказчика. Как устроиться на работу Как правило, для того, чтобы получить заказ, специалисту нужно предоставить портфолио. Если оформление происходит по трудовому договору, соискателю нужно предоставить документы об образовании и пройти собеседование.
Они определяют хорошие и плохие ответы, ранжируют их и сами пишут тексты, на которых учится нейросеть. Кандидатов, которые пройдут первичный отбор по резюме, ждёт задание из двух частей. В первой — тесты на грамотность, этику и фактчекинг. Во второй предстоит написать за нейросеть тексты на заданную тему. Пока AI-тренеров ищет только «Яндекс». Найти вакансию можно на сайте компании и на карьерных платформах вроде hh. Кроме того, весной компания запустила бесплатную школу AI-тренеров , в которой желающие смогут освоить профессию будущего, из чего можно сделать вывод, что для «Яндекса» это очень важный проект «в долгую». Видимо, компания всерьёз планирует потеснить OpenAI на рынке больших языковых моделей. Читайте также: Пример вакансии Промпт-инженер Что делает: решает широкий круг задач с помощью нейросетей, тестирует запросы и ведёт базу промптов, вместе с другими специалистами улучшает модели ИИ. Сколько зарабатывает: 90—375 тысяч долларов в год по данным вакансий в США.
Также по теме «Настанет день, когда машина обретёт сознание»: фантаст Франк Шетцинг о будущем человечества и инопланетном разуме Книги немецкого писателя-фантаста Франка Шетцинга расходятся большими тиражами, а экранизацией одного из его главных бестселлеров —... Однако нужно понимать, что возможности нейросетей очень ограниченны. По сути, появление нейросетей должно подстегнуть людей к развитию. Кроме того, создание, обслуживание и внедрение таких технологий приводит к появлению новых рабочих мест и специальностей. Хотя, конечно, не массовых. Допустим, сейчас пишут о спросе на специалистов по составлению запросов для нейросетей — есть ли такая профессия? К слову, такое направление, как анализ данных data scientist , появилось уже очень давно, в 2000-е годы. Это, по сути, универсальный специалист, способный проанализировать данные, написать и внедрить нейросеть, а далее её сопровождать. Сейчас эта специальность уже уходит на второй план, появляются всё более специализированные направления, такие как ML-инженер: он не создаёт новый математический аппарат нейронных сетей, а занимается обучением существующих архитектур и вводом их в эксплуатацию. Ранее против владельцев популярных нейросетей подали иск художники — они обвинили IT-компании в нарушении авторских прав. Нарушают ли нейросети авторские права? И если да, то как этот вопрос может быть урегулирован? Не зря большинство крупных IT-компаний приняли так называемый кодекс этики искусственного интеллекта, который определяет этичное поведение разработчика ИИ. Как отличить использование контента в учебных и коммерческих целях? Вероятно, основания для юридических претензий к создателям нейросети могут возникнуть, если она не просто учится на изображениях, а воспроизводит чей-то фирменный стиль или фрагменты работ. В принципе, есть возможность избежать такого копирования, но для этого нейросеть нужно учить довольно долго. А компании часто хотят сэкономить время. Кстати, по этой же причине сохраняются и уязвимости нейросетей в плане безопасности, о которых я говорил ранее. Также по теме Если объяснять термин «нейросеть» простыми словами, то это программа, которая способна самообучаться, извлекать опыт и накапливать... При этом продукт, который выдаёт нейросеть, обычно довольно банальный, невысокого качества. По сути, это всё равно имитация создания текстов, преобразователь текстовой информации. К слову, ChatGPT обучался на данных, собранных до 2021 года, так что задавать ему вопросы по актуальной повестке точно не стоит. При этом нужно понимать, что за появлением такой нейросети стоит серьёзный технологический прорыв. Во-первых, для обучения ChatGPT был собран колоссальный объём данных, во-вторых — очень большие вычислительные мощности, создание и обслуживание которых весьма затратно.
Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель. На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению. Посмотрите большой вебинар о нейросетях и их использовании в жизни и бизнесе от GeekBrains: Введение в нейронные сети Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами. Нейросети в какой-то степени пытаются приблизиться к человеческому мозгу: мы распознаем окружающие предметы мгновенно, знаем, когда перед нами такса, а когда — персидская кошка, а компьютеру для выполнения таких задач нужно обучиться и обработать миллионы изображений кошек и собак разных пород. Специалист по нейросетям знает, как именно нужно ее обучать, какие данные загружать и какие алгоритмы использовать. Для этого нужно изучить структуру глубоких, свёрточных и рекуррентных нейронных сетей, понимать алгоритмы обратного распространения ошибки, принципы обучения и подбор гиперпараметров для нейронных сетей. Нейросети разрабатывают во фреймворках: Tensorflow, Keras, PyTorch, работать с ними тоже нужно учиться, причем не в теории, а на практике. Изображения и видео обрабатывают с помощью методов компьютерного зрения, а текст — с помощью методов NLP, обработки естественного языка.
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться
Нашел больше 15 заказчиков и заработал 41 700 р. Read More До обучения: работа в найме, желание найти дополнительный заработок Во время обучения: активный искал клиентов по нашей технологии и как результат заработал 27 000 р. Сейчас: совмещает работу в найме и онлайн-работу. Read More До обучения: пенсионер, работает психологом в доме-интернате для престарелых. Во фрилансе 5 лет - создание сайтов на Тильда Во время обучения: начала работать с текстами. Первый заказ был на 12 000 р. Сейчас: на данный момент заработала 24 960 р.
Решила уйти на удаленку, так как сгорела на работе по наймуg Во время обучения: уделяла учебе 1-3 часа в день, заработала свои первые 14 600 руб. Заработала первые 16 500 р.
Контролируем искусственный интеллект — 6 часов Тема 2. Работа с изображениями в Kandinsky. Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4. Stable Diffusion для новичков. Эффектная работа с графикой без требовательного ПО — 9 часов Live-консультация по итогам модуля Нейросети как инструмент для генерации успешной карьеры — 10 часов Тема 1.
Создание портфолио и подготовка к собеседованию при помощи нейросетей — 3 часа Тема 2. Использование нейросетей для повышения эффективности HR-экспертов — 3 часа Live-консультация по итогам модуля Нейросети для работы с видео и аудио — 44 часа Тема 1. Возможности генерации видео в Stable Diffusion — 8 часов Тема 3.
Для этого нужно знать несколько языков программирования, навыки работы с соответствующими инструментами, хорошие математические способности. Инженер по данным, аналитик или архитектор данных. Программисты и технические специалисты, в задачу которых входит подготовка данных, необходимых для работы нейросетей. Инженер Deep Learning. Занимается алгоритмами глубокого обучения, архитектурой системы, преобразованием кода, настройку облачной инфраструктуры — все это необходимо для создания полноценных производственных моделей. Эта профессия считается наиболее сложной. Инженер Deployment.
Тот, кто и занимается развертыванием моделей, то есть, размещением готового продукта на серверах, тестирует работу системы, устраняет ошибки и так далее. Помимо знания языков программирования, необходимо умение работать с облачными платформами, технологиями контейнеризации, языками сценариев и так далее. Разработчик компьютерного зрения. Как понятно из названия, в обязанности такого сотрудника входит работа с визуальным контентом. Инженер NLP. В его специализацию входит обработка письменной или устной речи, используемой для обучения ИИ. Именно от него зависит, насколько успешным и вообще возможным будет общение пользователя с тем же ChatGPT, онлайн-переводчиком или примитивным чат-ботом. Специалист по этике. Морально-нравственные принципы важны даже для искусственного интеллекта. Особенно, если нейросеть учится сама, используя данные из интернета.
Выпускники будут уверенно работать с генеративными инструментами, которые уже сегодня активно применяются в медиа. Набор начнётся этим летом. Студенты освоят инструменты для работы с текстом, генерации изображений и идей для проектов и статей, разработки контент-планов, анализа аудитории и решения других задач. Специалисты с такими навыками будут востребованы на рынке. Они смогут создавать с помощью нейросетей медиапроекты, разрабатывать для них маркетинговые стратегии, оптимизировать редакционные процессы, анализировать и визуализировать большие данные. Программу создали преподаватели университета и ведущие эксперты Яндекса. Она включает как гуманитарные дисциплины, так и курсы по анализу данных и работе с нейросетями.
В России вырос спрос на специалистов в области ИИ в три раза
Насколько реальны и востребованы в будущем предложенные нейросетью профессии, оценил руководитель направлений "Инноваций" компании Никита Бугров. Его задачи - предотвращать киберпреступления и кибертеррористические атаки, создавать защищенную архитектуру пользования данными. По мнению эксперта, ценность таких профессионалов будет только расти. За нейропилотированием будущее, направление развивается параллельно с БЛА. Искусственный интеллект полагает, что нейропилоты-профессионалы умеют управлять БЛА с помощью мозговых импульсов, а потому должны отличаться стрессоустойчивостью и самоконтролем.
В будущем дизайнерам, скорее всего, обязательно будет необходим навык работы с системами с ИИ. Ретушеры фотографий.
ИИ может заменить часть работы ретушеров: например, с помощью ИИ можно автоматически удалять шумы и дефекты на фотографиях, а также улучшать качество изображений. Это может существенно упростить и ускорить труд профессиональных фотографов и фоторедакторов, в том числе самозанятых. Специалисты по контекстной рекламе и SEO-оптимизации. ИИ уже сейчас можно использовать для автоматического подбора ключевых слов и оптимизации контента для поисковых систем. Это позволяет сократить время, затрачиваемое на оптимизацию контента, и улучшить его качество. Финальное решение и формулировка задач по-прежнему остаются за человеком, так что самозанятые специалисты в этих сферах смогут сосредоточиться на более интересных задачах.
Аналитики данных. Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. ИИ может анализировать данные и выявлять закономерности лучше людей, что позволяет сократить время, затрачиваемое на анализ, и уменьшить вероятность ошибок. Самозанятые в этой сфере смогут ускорить работу за счет сотрудничества с ИИ. Тестировщики программного обеспечения.
Все ищут сеньоров, и это очень плохо — отсутствует преемственность поколений. Будущий хороший специалист должен приходить в компанию джуном и учиться там у сеньоров и мидлов. Через некоторое время он матереет, легко справляется с типовыми задачами, становится способен исследовать что-то новое и продвигать индустрию. Если компания нанимает только сеньоров, она не растит джунов и не поставляет на рынок новых специалистов. На мировой рынок, безусловно, сейчас влияет кризис в бигтехе Big Tech. Стартапы стали получать значительно меньше инвестиций и перестали нанимать стажеров. Мы вынуждены указывать это по требованию российских властей , Google, Microsoft привели к уменьшению вакансий, и это беда. Кризис в основном бьет по джунам и мидлам, которые хотели вкатиться в эту область. Кажется, Яндекс все еще приглашает на стажировки. Это хорошо, потому что прийти стажером в крупную технологическую компанию — большая удача. На стажировку берут вчерашних выпускников и собеседуют их не так, как опытных разработчиков: смотрят, хороши ли они в математике — в области, релевантной задачам компании. Мидлов на собеседованиях спрашивают про опыт работы, а по математике не гоняют. Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему. Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя. У IT в целом репутация непыльной работы. Во многих компаниях сотрудники перерабатывают и выгорают. Работа может быть и не пыльная, но стресс и нервы тут точно есть. Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии. GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования. С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше. Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных.
Быть одним из первых, кто начнет работать в этой сфере, может быть очень выгодно. Все эти модели позволяют написать текстовый запрос, например "кот смотрит на луну в стиле Ван Гога", а затем получить изображения кота в нужном стиле. Ограничений практически нет, только ваш полет фантазий. Зарплата: мне кажется сильно зависит от вашего таланта. Чтобы получить хороший результат, иногда часами подбирать удачное описание или дополнительно редактировать изображение в Photoshop. Например, когда появились сети генераций картинок, многие заметили, что если добавить слова 4K, ultrarealism, detailed, то качество изображений на выходе выше. Теперь есть даже книги как подбирать такие "промпты". Если вы хорошо разбираетесь в какой-то области, например, в фотографии вы можете добавлять профессиональные термины или имена известных художников. Некоторые уже продают "промпты", которые помогают получать на выходе более интересные и красивые изображения.
Нейросети на работе: какие задачи они могут взять на себя уже сейчас
Новые профессии с нейросетями в 2023 и 2024Не можешь остановить – возглавь. — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%? – Безусловно, нейросеть будет помогать и упрощать рабочие процессы, – рассказывает руководитель направления информационной безопасности Центра цифровой экспертизы Роскачества Сергей Кузьменко.
ИИ ищет работу: топ-10 профессий, которые исчезнут или изменятся из-за нейросетей
Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. Вакансии связанные с нейросетями могут быть найдены на специализированных ресурсах, таких как Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. Разработчик нейронных сетей — специалист, который занимается созданием, оптимизацией и улучшением нейронных сетей — алгоритмов, имитирующих работу человеческого мозга.
Доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
- Огонь нейросетей: как попасть в индустрию
- Популярные посты
- ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
- «Отсев большой. Важно найти лучших из лучших»
- Разработчик нейросетей: кто это, вакансии, где учиться
«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
Но Universal потребовал от музыкальных агрегаторов запретить нейросетям учиться на их плейлистах. Профессионально овладеете нейросетями, сформируете клиентскую базу, что позволит вам выйти на 5-10 т.р. в ДЕНЬ. В профессиях, связанных с правом и безопасностью, нейросети могут быть использованы для анализа больших объемов данных, чтобы выявлять законопреступления и определять наиболее эффективные стратегии противодействия.