В представленной работе описываются открытие пульсаров, основные характеристики и общепринятые модели возникновения пульсаров.
Нестандартный пульсар
Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. Двойные пульсары. Расстояние до пульсаров. ПУЛЬСАР, астрономический объект, испускающий мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне. Пульсары — это небесные тела, которые были обнаружены только в прошлом веке, что вызвало любопытство в научном сообществе у поклонников предмета. Однако вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду.
Значение слова «пульсар»
Но с помощью радиотелескопов можно послушать «космические мелодии». На канале «Телестудии Роскосмоса» на Youtube опубликовано видео с записями звуков космических явлений, сделанных в радиодиапазоне. В видео можно услышать, как звучит пульсар, магнитосфера Ганимеда луна Юпитера , полярное сияние на Земле, Солнце, магнитосфера Юпитера, межзвездное пространство и даже черная дыра. Хотя человек не способен уловить эти волны, их можно воспроизвести на аудиочастотах, а значит прослушать.
По современным представлениям нейтронные звёзды возникают в результате вспышек сверхновых звёзд. Учитывая, что двойная система имеет низкий, но значительный орбитальный эксцентриситет 0,064 , рециклированную природу и большую общую массу около 2,57 массы Солнца , астрономы предполагают, что объект-компаньон, вероятно, является другой нейтронной звездой с массой около 1,2 массы Солнца. Согласно исследованию, возраст этого пульсара оказался равным 0,94 миллиарда лет, а расстояние до этого объекта оказалось не менее чем 14 300 световых лет. Исследование было опубликовано на сайте препринтов arXiv.
Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами.
В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и — за счёт передачи орбитального момента системы во вращение пульсара падающим на него веществом — частота вращения, в то время, как радиопульсары, со временем, наоборот, замедляются.
Астрономы разработали план по выяснению причин происходящего. Эти телескопы охватывали гамму электромагнитных длин волн, и с их помощью астрономы смогли собрать воедино всё происходящее».
Вот что они обнаружили. Аккреционный диск состоит из вещества, стянутого со звезды—соседа пульсара. Эта материя, приближаясь к пульсару и накапливаясь, нагревается солнечным ветром. Материя начинает светиться в рентгеновском, ультрафиолетовом и видимом свете, и это горячее светящееся вещество соответствует режиму высокой энергии пульсара.
FAQ: Радиопульсары
Пульсар — что это? | Что такое планетарий? |
Что такое планеты-пульсары? | Но не будем зацикливаться на очередном конце света, разберем, что такое гравитационный волновой фон, и почему это действительно крутое открытие. |
Значение слова ПУЛЬСАР. Что такое ПУЛЬСАР? | это то, во что превращаются звёзды после своей гибели. |
Нестандартный пульсар | это что-то вроде чёрных дыр, которые также образуются в результате гибели звёзд, которые также шокируют своей плотностью и подобно пульсарам способны влиять на объекты, которые во много раз превосходят их. |
ПУЛЬСАР | Энциклопедия Кругосвет | В представленной работе описываются открытие пульсаров, основные характеристики и общепринятые модели возникновения пульсаров. |
Пульсары Волновые модули
Пульсары и нейтронные звезды | Хотя сигналы пульсаров и не были посланы инопланетянами, пульсары фигурируют на двух пластинках, закрепленных на космическом аппарате «Пионер», а также на Золотой пластинке «Вояджера». |
Что такое пульсар? | Пульсар во много раз превосходит предел Эддингтона, базовое правило в физике, которое устанавливает предел светимости, которую может достичь объект с определенной массой. |
Раскрыта загадка странного поведения пульсара | это сильно намагниченные вращающиеся нейтронные звезды, испускающие пучок электромагнитного излучения. |
Пульсары и нейтронные звёзды / Звуки пульсаров / Как открыли и что это такое | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Пульсары и нейтронные звезды | Миллисекундные пульсары обладают периодом обращения менее чем 30 миллисекунд. В ходе нового исследования ученые обнаружили пульсар с периодом обращения в 8,39 миллисекунд. |
Что такое пульсар? Ученый объясняет на пальцах.
Что такое пульсар? Ученый объясняет на пальцах. | Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. |
«Чандра» показала 22 года жизни пульсара в Крабовидной туманности | Если мы разместим два пульсара в галактике, и через него пройдёт гравитационная волна, то эти пульсары начнут немного колебаться, и их наблюдаемый период, который нам известен с очень высокой точностью (у некоторых пульсаров с точностью до 10 -13 сек). |
FAQ: Радиопульсары — все самое интересное на ПостНауке | Что такое планетарий? |
Белый и горячий: пульсар Вела удивил учёных и раскрыл природу высокоэнергетических гамма-излучений | Пульсары — плотные объекты с массой примерно, как у нашего Солнца, но радиусом примерно в 100 000 раз меньше, то есть всего около 10 км. Будучи такими маленькими, пульсары вращаются с огромной частотой, испуская яркие узкие лучи радиоизлучения вдоль оси. |
Астрономы изучают космические объекты – пульсары
Позже стало ясно, что внеземные цивилизации к этому космическому объекту отношения не имеют. Помогло открытие рентгеновских пульсаров, частота сигналов которых в сотни раз выше, чем у радиопульсаров. Причем частота со временем изменяется — у первых увеличивается, у вторых уменьшается. Самым редким на сегодня источником космических лучей являются пульсары, чье излучение обнаруживается в оптическом спектре электромагнитного излучения — их всего 6 из почти 7 десятков открытых.
Такие объекты могут образовываться при взрывах сверхновых звёзд на поздних стадиях звёздной эволюции. При таких плотностях все атомные ядра распадаются и внутренние слои звезды состоят из сверхтекучих нейтронов , сверхпроводящих протонов и электронов. Ещё две особенности пульсаров — очень сильные магнитные поля на поверхности нейтронной звезды порядка 105—1010 Тл и быстрое вращение периоды вращения известных пульсаров заключены в пределах от 1,4 мс до нескольких секунд.
Схема, иллюстрирующая образование импульсного излучения пульсара. Излучение заключено в узком конусе, и если ось конуса наклонена к оси вращения нейтронной звезды, то для наблюдателя, луч зрения которого попадает в пределы этого конуса, возникает эффект маяка: он видит один импульс за период вращения. В сильных магнитных полях вблизи поверхности звезды электроны быстро теряют свой поперечный импульс за счёт излучения фотонов и движутся дальше вдоль искривлённых магнитных силовых линий. Возникает излучение кривизны , с которым в основном и связывают радиоизлучение пульсаров. На больших расстояниях от поверхности магнитное поле ослабевает, у электронов формируются заметные питч-углы , и становится возможным включение синхротронного механизма излучения в оптическом, рентгеновском и гамма-диапазонах. Возникающее излучение заключено в узком конусе, и если ось конуса наклонена к оси вращения нейтронной звезды, то для наблюдателя, луч зрения которого попадает в пределы этого конуса, возникает эффект маяка: он видит один импульс за период вращения рис.
В случае изолированной нейтронной звезды её вращение — основной источник энергии для всех процессов, протекающих в её магнитосфере. Потеря энергии вращения вызывает его замедление и наблюдаемое увеличение периода между импульсами. Постепенное истощение основного источника энергии приводит к уменьшению светимости пульсара, и он в конце концов становится недоступным для наблюдателей. На диаграмме рис. В англоязычной литературе область «выключившихся» пульсаров называют «кладбищем» англ. Разные модели затухания излучения дают различные уравнения «линии смерти», и на упомянутой диаграмме чёткой границы между активными и потухшими пульсарами нет.
Диаграмма, изображающая зависимость скорости замедления вращения пульсара от его периода. Голубым цветом показаны линии одинаковой светимости пульсаров сплошные , одинакового возраста пунктирные и одинаковой индукции поверхностного магнитного поля штрих-пунктирные. Аббревиатуры: SGR — источники мягких повторяющихся гамма-всплесков англ. График из статьи: Kramer M. Перевод и обозначения: БРЭ. Наблюдаемое распределение пульсаров по периодам излучения выявляет существование двух групп.
В новом исследовании Эмма де Онья Вильгельми, работающая на Немецком электронном синхротроне DESY в Гамбурге, и ее коллеги из других европейских стран с помощью расчетов показали, что источником экстремальных частиц, зарегистрированных LHAASO, являются турбулентные облака и заряженные частицы, окружающие пульсары. Молодые пульсары в центрах планетарных туманностей, возраст которых не превышает 200 тыс.
Стало крупнейшим событием в развитии радиоастрономии наряду с открытыми за несколько лет до этого квазарами и реликтовым излучением. Библиографический список Ильин, В. Ильин, В. Кудрявцев ; Министерство образования и науки Российской Федерации, Московский педагогический государственный университет. Мюррей, К. Мюррей, С.
Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться:.
Астрономы изучают космические объекты – пульсары
Российские астрономы обнаружили в Млечном Пути пять новых пульсаров. Пульсары также называют нейтронными или вырожденными звёздами. Наблюдаются пульсары двумя различными способами: по радиоизлучению пульсаров и по рентгеновскому излучению двойных рентгеновских источников[3]. Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. Что такое пульсары и квазары. Пульсар, как выяснилось – это нейтронная звезда. Двойные пульсары. Расстояние до пульсаров. ПУЛЬСАР, астрономический объект, испускающий мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне.
Пульсары и магнетары - тоже звезды?
Что такое ПУЛЬСАРЫ? (от англ. pulsars, сокр. от pulsating sources of radioenussion — пульсирующие источники радиоизлучения) — космические источники импульсивного электромагнитного излучения, открытые в 1967 г. крошечная быстро вращающаяся звезда с участком, излучающим сконцентрированный поток радиоволн. Обычно рентгеновские пульсары представляют собой системы, состоящие из двух звёзд (обычной и нейтронной), вращающихся вокруг общего центра.
FAQ: Радиопульсары
Также IXPE сможет формировать изображения любых космических объектов, испускающих рентгеновские лучи. Например, Крабовидной туманности в созвездии Тельца — остатка сверхновой с нейтронной звездой, которая быстро вращается в центре туманности.
Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени.
Из-за этой равномерности некоторое время первый открытый пульсар считали искусственным космическим источником, чем-то вроде маяка для инопланетных кораблей, и даже держали его открытие в секрете. Позже стало ясно, что внеземные цивилизации к этому космическому объекту отношения не имеют. Помогло открытие рентгеновских пульсаров, частота сигналов которых в сотни раз выше, чем у радиопульсаров.
Физические свойства такого сверхплотного вещества, давление которого уравновешивает силу гравитационного притяжения сколлапсировавшей звезды, во многом сходны со свойствами вещества атомного ядра , представляющего собой смесь сильно взаимодействующих протонов и нейтронов. Но в отличие от ядерного вещества, для сколлапсировавшей звезды, по причине её большой массы, фундаментальное значение имеет гравитационное взаимодействие её элементов, между тем как для ядер гравитация несущественна. Из-за этого свойства звезду, образовавшуюся в результате гравитационного коллапса, теоретики ещё в 1930-х годах назвали «нейтронной» [5]. Сравнительно недавно выделен новый компонент излучения: инфракрасное свечение пыли, нагревшейся от контакта с горячим газом остатка сверхновой до температуры 30-50 К [13].
В нашей Галактике пока открыто шесть сравнительно молодых остатков сверхновых, вспыхнувших в последнем тысячелетии. Наиболее известны Крабовидная туманность и Кассиопея А [13]. Известно 4 типа пульсаров, классифицируемых по типу излучений: рентгеновские; гамма-пульсары; магнетары. Рентгеновские пульсары.
Это тип нейтронных звёзд , испускающих рентгеновское излучение ; как правило, они представляют собой аккрецирующие нейтронные звезды с сильным магнитным полем в тесных двойных системах. Такой источник космического излучения характеризуется переменными импульсами [14]. Можно выделить три основные гипотезы , объясняющие появление компактных рентгеновских источников в остатках сверхновых: тепловое излучение поверхности молодой горячей нейронной звезды, нетепловое излучение молодого пульсара, возвратная аккреция на молодую нейронную звезду или чёрную дыру вещества остатка сверхновой fall-back. Важными наблюдательными фактами для интерпретации природы источников являются периодичность и переменность рентгеновского потока [15].
Радиопульсары составляют большую группу. Это космические объекты , с периодически повторяющимися импульсами, фиксируемые посредством радиотелескопа. Радиопульсары в остатках сверхновых являются подклассом наиболее распространённых молодых пульсаров, однако, до сих пор не ясно, какая доля сверхновых порождает радиопульсары [2]. J1749 — первый аккрецирующий миллисекундный пульсар рентгеновского диапазона, затмение которого звездой-компаньоном удалось наблюдать.
Оптические пульсары, излучение которых можно обнаружить в оптическом диапазоне электромагнитного спектра [13]. Гамма-пульсары - самые мощные источники гамма-излучения во Вселенной. Как известно, гамма-излучение — это электромагнитное излучение с очень малой длиной волн, или поток фотонов очень высокой энергии. По данным учёных, в космосе существуют нейтронные звёзды с невероятно сильным магнитным полем.
Такие объекты возникают при условии достаточной массы звезды перед взрывом. Вначале астрономы лишь предполагали наличие подобных объектов, но в 1998 году были получены доказательства теоретического предположения - удалось зафиксировать мощную вспышку рентгеновского и гамма-излучения от одного из объектов в созвездии Орла. На данный момент магнетары - малоизученные космические тела [2]. Характеристики пульсаров Распределение пульсаров на небесной сфере галактические координаты, синусоидальная проекция.
Основными параметрами пульсаров можно считать: Период — время между двумя последовательными импульсами излучения. Значения известных периодов заключены в интервале от 1,56 мс до 8,5 с. У подавляющего большинства пульсаров период монотонно увеличивается со временем [2]. Форма импульса.
Индивидуальные импульсы радиоизлучения пульсара могут быть совершенно не похожими один на другой. Однако после усреднения приблизительно 1000 таких импульсов формируется средний профиль, остающийся неизменным при последующих усреднениях и являющийся своеобразным портретом каждого пульсара. Средний импульс может быть простым однокомпонентным , двухкомпонентным, либо состоять из нескольких компонентов. Интересной особенностью нескольких пульсаров является наличие у них между двумя последовательными импульсами дополнительной детали — интеримпульса, располагающегося примерно посередине между главными импульсами [2].
У половины пульсаров, о которых известно, что они имеют интеримпульсы, энергия интеримпульса составляет всего лишь несколько процентов от энергии главного импульса [3] Микроструктура. Вопрос о том, каков наименьший временной масштаб, в настоящее время остаётся открытым. Его решение представляется очень важным, поскольку минимальные частотно-временные структуры характеризуют механизм излучения и свойства элементарного излучателя в пульсарах. Для выяснения природы излучения пульсаров также очень существенную информацию дают поляризационные измерения.
Средние профили ряда пульсаров характеризуются практически полной линейной поляризацией, что означает как полную поляризацию всех отдельных импульсов, так и стабильную поляризацию всего излучения на данной долготе. Позиционный угол в пределах импульса у многих объектов изменяется монотонно, но в некоторых пульсарах наблюдаются резкие скачки этого угла.
Сначала они даже не поняли, что это. Магнитное поле нейтронной звезды По одной из версий, послания из космоса были отголосками другой цивилизации, то есть инопланетной.
Так, загадочные сигналы получили интересное название — маленькие зелёные человечки. Впоследствии, конечно, было установлено, что никакие пришельцы не посылают эти сигналы. Зеленые человечки Кроме того, были обнаружены несколько источников излучения. Разумеется, их изучали и так появились новые известные нам космические объекты под названием пульсары.
Астрономы приняли специальное обозначение таких тел. Четыре числа, которые обозначают часы, минуты и прямое восхождение импульса.
Нестандартный пульсар
К концу струи линии магнитного поля выпрямляются, становятся всё более однородными, а поляризация сильно возрастает. Это значит, что в турбулентных областях вблизи пульсара частицы получают прирост энергии и свободно движутся там, где магнитное поле однородно: вдоль «запястья», отстоящего «большого» и прочих пальцев. Схожие схемы IXPE обнаружил и в других туманностях пульсаров, а значит, они могут оказаться распространёнными в подобных объектах. Астрономам удалось «услышать» низкочастотные гравитационные волны — слабую рябь ткани Вселенной, вызванную движением сверхмассивных объектов, которые растягивают и сжимают пространство. Визуализация гравитационных волн, производимых сверхмассивными чёрными дырами. Источник изображения: nanograv. В 2015 году эксперимент LIGO помог обнаружить гравитационные волны и доказать правоту Эйнштейна, но до сих пор они фиксировались лишь на высоких частотах. То были отдельные быстрые «щебетания», которые происходят только в определённые моменты, например, когда друг с другом сталкиваются относительно небольшие чёрные дыры и мёртвые звезды. В последнем исследовательском проекте учёные пытались обнаружить гравитационные волны на гораздо более низких наногерцовых частотах — периоды этой медленной ряби могут составлять годы и даже десятилетия. Исходит она, вероятно, из самых больших объектов Вселенной — сверхмассивных чёрных дыр массой в миллиарды солнечных. Но есть и другие «подозреваемые»: космические струны, фазовые изменения Вселенной, быстрое расширение пространства после Большого Взрыва.
Возможно, и сам Большой Взрыв, но длина гравитационной волны от него была бы размером во Вселенную, и для неё потребовался бы детектор сравнимых масштабов. Галактики во Вселенной постоянно сталкиваются и сливаются. Схожие процессы наблюдаются и у сверхмассивных чёрных дыр в ядрах галактик. Они сближаются, вращаются вокруг друг друга и в итоге тоже сливаются, испуская во время взаимодействия гравитационные волны. Если сравнить столкновение сверхмассивных чёрных дыр с брошенным в пруд камнем, то создаваемая им рябь на поверхности пруда — это низкочастотные гравитационные волны. Они расходятся одновременно во все стороны со скоростью света, сжимая и растягивая пространство и время. Зафиксировать эту рябь напрямую доступными человеку инструментами невозможно — длина такой наногерцовой волны может измеряться световыми годами. Проще говоря, Земля слишком мала, и понадобился бы детектор галактических масштабов. На их обнаружение непрямыми методами у учёных NANOGrav ушло 15 лет, и в своей работе они использовали оборудование, установленное по всей Северной Америке. Астрономы других стран опирались на результаты исследований, продолжавшихся до 18 лет.
Большинство из них выглядят невероятно плотными нейтронными звездами, хотя в 2017 году после многих лет поисков был обнаружен медленный пульсар, возникший из белого карлика. Пульсары направляют электромагнитное излучение со своего северного и с южного полюса благодаря магнитным полям, которые в квадриллион раз сильнее земных. Непонятно, откуда исходит этот свет, возможно, несколько источников отвечают за спектр света. Когда они вращаются вокруг географической оси, эти лучи поворачиваются по дуге. Любому наблюдателю на пути этого кружащегося по кругу потока света будет казаться, что звезда «пульсирует» излучением.
Астрономы обнаруживают их по радиоимпульсам, которые они излучают с регулярными интервалами. Образование Пульсара Образование пульсара очень похоже на создание нейтронной звезды. Когда массивная звезда с массой в 4-8 раз больше массы нашего Солнца умирает, она взрывается как сверхновая.
Внешние слои уносятся в космос, а внутреннее ядро сжимается под воздействием собственной гравитации. Гравитационное давление настолько сильно, что оно преодолевает связи, которые разделяют атомы. Электроны и протоны под действием силы тяжести, образуют нейтроны. Гравитация на поверхности нейтронной звезды составляет примерно 2х1011 силы тяжести на Земле. Так, самые массивные звезды взрываются как сверхновые и могут сжаться в черные дыры. Если они менее массивны, как наше Солнце, они выбрасывают свои внешние слои и затем медленно остывают, превращаясь в белые карлики. Но для звезд, масса которых в 1,4-3,2 раза превышает массу Солнца, все еще могут стать сверхновыми, но им просто не хватит массы, чтобы создать черную дыру. Эти объекты средней массы заканчивают свою жизнь как нейтронные звезды, а некоторые из них могут стать пульсарами или магнетарами.
Они могут служить своеобразными маяками для полётов в далёкий космос. Каталогизация таких объектов создаёт базу для прокладывания маршрутов по Солнечной системе с высочайшей точностью. Таких в новом каталоге 144. Наконец, наблюдение за пульсарами может использоваться для обнаружения гравитационных волн. Такие волны от множества событий искажают ткань пространства-времени, что находит отражение во временных задержках импульсов от пульсаров. Это позволяет как лучше изучать процессы во Вселенной, так и проверять наши теории о ней. Форма туманности напоминает очертания рентгеновского снимка человеческой руки. Источник изображений: chandra.
С тех пор данные лучи получили широкий спектр применения, и в частности, теперь их использовали, чтобы запечатлеть «кости» магнитного поля расположенной в космосе уникальной структуры в форме человеческой руки. Американские телескопы «Чандра» и IXPE Imaging X-ray Polarimetry Explorer помогли изучить, что происходит в окрестностях мёртвой звезды, которая продолжает существовать за счёт шлейфов частиц заряженного вещества и антивещества. Около 1500 лет назад у гигантской звезды в нашей галактике закончилось топливо — звезда сжалась и образовала чрезвычайно плотный объект — нейтронную звезду. Вращающиеся нейтронные звезды с сильными магнитными полями — пульсары — представляют собой лаборатории для изучения физических процессов в экстремальных условиях, которые невозможно воспроизвести на Земле. Молодые пульсары производят струи вещества и антивещества, выбрасываемого с полюсов как сильный ветер — он подпитывает туманность. Снимки туманности MSH 15-52, полученные телескопами «Чандра» слева , IXPE в центре и в инфракрасном диапазоне справа В 2001 году американская рентгеновская обсерватория «Чандра» использовалась для наблюдения пульсара PSR B1509-58, в результате чего было обнаружено, что расположенная в его окрестностях туманность MSH 15-52 напоминает человеческую руку. Пульсар находится в основании «ладони» на расстоянии примерно 16 тыс. Дополнительно этот объект изучили при помощи телескопа IXPE — наблюдение производилось около 17 дней, и это был самый продолжительный период наблюдения для обсерватории, запущенной в декабре 2021 года.
Производящие космические лучи заряженные частицы движутся вдоль магнитного поля, определяя основную форму туманности подобно костям в руке человека», — рассказал глава группы исследователей Роджер Романи Roger Romani из Стэнфордского университета в Калифорнии. IXPE помог собрать информацию об ориентации электрического поля рентгеновских лучей, которая определяется магнитным полем источника рентгеновского излучения — о рентгеновской поляризации. В обширных областях MSH 15-52 степень поляризации чрезвычайно высока — здесь она достигает теоретического максимума. Чтобы выйти на эти показатели показателей, магнитное поле должно быть прямым и однородным, а значит, турбулентность здесь невысока. Наиболее интересным фрагментом MSH 15-52 является струя, направленная к «запястью» в нижней области снимка.
Пульсар — что это?
последние новости об открытиях российских и зарубежных ученых, острые дискуссии об организации науки в России и взаимодействии науки и бизнеса, собственные рейтинги российских ученых, научных организаций и инновационных компаний. В видео можно услышать, как звучит пульсар, магнитосфера Ганимеда (луна Юпитера), полярное сияние на Земле, Солнце, магнитосфера Юпитера, межзвездное пространство и даже черная дыра. 13 июля 2022 Александр Садов ответил: Радиопульсары — одно из наблюдательных проявлений нейтронных звезд — источники пульсирующего радиоизлучения с периодами от нескольких миллисекунд до секунд. Пульсар во много раз превосходит предел Эддингтона, базовое правило в физике, которое устанавливает предел светимости, которую может достичь объект с определенной массой. Но не будем зацикливаться на очередном конце света, разберем, что такое гравитационный волновой фон, и почему это действительно крутое открытие. Ниже мы подробно расскажем, что такое пульсары и с чем их едят. Это одни из самых экзотических объектов во Вселенной, и о них определенно стоит поговорить!