Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. Американская установка термоядерного синтеза позволила получить больше энергии, чем было потрачено для её запуска.
В Ливерморе совершили прорыв в получении термоядерной энергии
Термоядерный синтез: ещё один шаг | Hi-Tech - Новости Казахстана и мира на сегодня | Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. |
Холодный синтез. Миф или лженаука? | Живой Космос | Дзен | Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. |
Холодный ядерный синтез
Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание. Новый атомный проект России – холодный ядерный синтез? В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. AngryDude666, Термоядерный синтез, это реакция синтеза, а не расщепления. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
Холодный ядерный синтез: почему у Google ничего не получилось? | Холодный термоядерный синтез новости. Автор admin На чтение 6 мин Просмотров 4645 Опубликовано 27.04.2024. На проходящем в эти дни в Солт-Лейк-Сити съезде Американского химического общества будет представлено около тридцати работ, так или иначе связанных с. |
Термоядерный синтез вышел на новый уровень: подробности | Успешное осуществление реакций холодного термоядерного синтеза повлечет за собой переворот в энергетике и геополитические изменения в мире, но все притязания на успешную реализацию этих реакций пока представляли собой или ошибки экспериментов, или аферы. |
Прорыв в термоядерном синтезе | Недавно Россия отправила в Европу катушку, которая будет вставлена в экспериментальную установку холодного синтеза. |
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых | Новый атомный проект России – холодный ядерный синтез? |
В Ливерморе совершили прорыв в получении термоядерной энергии | Главная» Новости» Холодный термоядерный синтез новости. |
Академик Александров о холодном термоядерном синтезе
Однако в ходе недавнего эксперимента ученым из General Atomics компании, специализирующейся на ядерной физике удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания. Подробности были опубликованы в журнале. Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке.
На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня.
Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук. План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе. Сами же подобные установки призваны сделать научные прорывы во всевозможных сферах: от медицины и сельского хозяйства до генетики и космоса. Не только придумано, но и сделано или растиражировано в нашу обычную жизнь», — подчеркнул Михаил Мишустин. На встрече обсудили и внедрение в жизнь так называемых природоподобных технологий — Михаил Мишустин заявил, что поручит до 1 сентября разработать стратегию их развития в России.
Как правило, это совпадает с какими-то кризисными явлениями. Сейчас понятно, что с ростом цен на энергоносители. Здесь нужно внимательно подходить, вокруг очень много пиара. Частники, в общем-то, понимают, что есть деньги, то можно попробовать их заложить туда. А вдруг это сработает? Большая часть из них понимает, что, скорее всего, это вложение на далекое будущее. Кто-то ориентируется на внуков, а кто-то верит рекламе». Тем временем корпорация Microsoft подписала в начале мая коммерческий контракт на поставку электроэнергии, произведенной с помощью термоядерного синтеза, с компанией Helion Energy, занимающейся разработкой систем уникальной конфигурации, именуемых Fusion Engine, которые сочетают в себе элементы магнитного удержания и инерционного сжатия. Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза. Причем речь идет не о соглашении о намерениях, а о настоящем инвестиционном контракте, сумма которого, впрочем, не разглашается, и который предусматривает штрафные санкции в случае его неисполнения к сроку.
Сердце реактора NIF — 192 мощных лазера, которые одновременно направляются на миллиметровую сферическую мишень около 150 микрограммов термоядерного топлива — смесь дейтерия и трития; возможно, в дальнейшем радиоактивный тритий можно будет заменить легким изотопом гелия-3, которого так много на Луне. Температура мишени достигает в результате 100 млн градусов, при этом давление внутри шарика в 100 млрд раз превышает давление земной атмосферы. То есть условия в центре мишени сравнимы с условиями внутри Солнца. Энергия самого лазерного луча при этом составляет около 1 МДж. Представьте теперь цепочку падающих в лазерное перекрестье шариков с компонентами термоядерного топлива фактически миниатюрных водородных микробомбочек. И, соответственно, непрерывную цепочку микровзрывов… Даже сложно вообразить, как физикам удалось достичь синхронности работы этих лазеров и идеально равномерного обжатия мишени! Совершенно справедливо администратор Нaциoнaльнoй администрации по ядерной безопасности NNSA Джилл Хруби назвала проведенный эксперимент «чудом инженерной мысли». Но вот придумали такую схему… в СССР. Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза. Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего. Эти результаты достигнутые на NIF. Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле. Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много.
Холодный ядерный синтез перестал быть лженаукой в ЕС
Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Холодный термоядерный синтез новости.
Мегаджоули управляемого термоядерного синтеза
Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Главная» Новости» Симпозиум по термоядерному синтезу 2024. Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено. В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров. О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории.
Более того, в Дубне обнаружили возможность образования мезомолекул мю-мезонных молекул , в которых тритий и дейтерий в присутствии мюона почти сливаются. И в Дубне, и в Гатчине, - да и везде где на ускорителях рождали медленные мюоны, явление было блестяще подтверждено. Итак, ХЯС на основе мюонного катализа подтвержден корифеями ядерной физики экспериментально 60 лет назад. Единственный маааленький недостаток этого реально наблюдаемого синтеза — использование ускорителя резко снижает общий КПД: полученная энергия намного меньше затраченной. Одновременно у разных исследователей появилась идея заменить ускоритель совершенно бесплатными природными мезонами. Помимо вполне реального механизма мюонного катализа за последние три десятилетия неоднократно появлялись сообщения об успешной демонстрации холодного синтеза в условиях взаимодействия ядер изотопов водорода внутри металлической матрицы или на поверхности твёрдого тела. Например, были надежды, что в твердых телах из-за электронного окружения отталкивание будет слабее.
Или в сонолюминесценции --- ультразвуком можно в жидкости родить микропузырьки, которые настолько малы, что будут схлопываться. В процессе схлопывания скорости могут быть сильно сверхзвуковыми. Жидкость начинает светиться. Или если крошить кристаллы, то возникают высокие напряжения, ускоряющие поглощенные в кристаллах дейтерий и тритий. Первые сообщения такого рода были связаны с именами маститых электрохимиков не физиков Флейшмана и Понса, которые много лет изучали особенности электролиза тяжёлой воды в установке с палладиевым катодом. На протяжении последних десятка лет поиски условий протекания «холодного синтеза» сдвинулись от электрохимических опытов и электрического разогрева образцов к «сухим» экспериментам, в которых осуществляется проникновение ядер дейтерия в кристаллическую структуру металлов переходных элементов — палладия, никеля, платины. Эти опыты относительно просты и представляются более воспроизводимыми, чем ранее упомянутые. В отличие от столкновения «голых» ядер в горячей плазме, где энергия столкновения должна преодолеть кулоновский барьер, при проникновении ядра дейтерия в кристаллическую решётку металла кулоновский барьер между ядрами модифицируется экранирующим действием электронов атомных оболочек и электронами проводимости. Обращает внимание также «рыхлость» ядра дейтрона, объём которого в 125 раз превышает объём протона. Электрон атома в нижнем, невозбужденном S-состоянии имеет высокую вероятность оказаться внутри ядра, что приводит к эффективному исчезновению заряда ядра, которое в этом случае иногда называют «динейтроном».
Можно говорить о том, что атом дейтерия вообще какую-то часть времени находится в таком «свёрнутом» нейтральном состоянии, в котором он способен проникать в другие ядра — в том числе в ядро другого дейтрона. Дополнительным фактором, влияющим на вероятность сближения ядер в кристаллической решетке, служат колебания и ударные, а также термические волны Введение. Исходная посылка: предполагаем, что из уже имеющихся законов природы и свойств материалов можно сложить новый пазл и получить ХЯС. Потому, что ничто другое проверить невозможно. Мы НЕ претендовали на открытие новых законов природы это дело фундаментальной физики , а также Святого Духа, Всемирного Разума и т. Азы которой все присутствующие проходили в школе, а некоторые изучали более глубоко в вузе. Это т. Но при этом, если явление имеет место быть, мы должны обязательно его следы обнаружить, даже если ХЯС связан с какими-либо потусторонними силами. Мы были практически уверены в успехе, так как пришли к обоюдному согласию, что давно открытый ядерной физикой мюонный катализ уже и есть в чистом виде ХЯС. От этой «печки» и решили танцевать, так как при этой гипотезе аппаратура для эксперимента от исходной модели не зависит, просто мы несколько усложняем себе жизнь, делая аппаратуру портативной и спускаясь с ней под землю.
Общие положения. Эксперименты на ускорителях по синтезу различных элементов показали, что эффективные поперечные сечения реакций ХЯС зависят от того, в каком материале размещены ядра частицы-мишени. В этих экспериментах наблюдалось существенное увеличение вероятности взаимодействия в тех случаях, когда ядра мишени внедрены или являются частью проводящего кристалла. Эти опыты позволяют совершенно по-новому взглянуть на проблему ХЯС. Это может означать, что в кристалле платины атомы дейтерия не испытывают кулоновского отталкивания до расстояний, в 25 раз меньших, чем размер самих атомов дейтерия. В последнем случае мюон как удавка сразу для двух висельников стягивает дейтоны до критически малого расстояния. Процесс DD-синтеза в кристалле можно рассматривать на основе представления о квазимолекуле дейтерия, захваченной в одну кристаллическую ячейку.
Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами.
Как было выяснено позже, положительное влияние на выход тепла оказывает присутствие некоторых примесей, например бора, и ряд других факторов. Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия. Все эти результаты однозначно свидетельствуют о том, что происходили ядерные реакции слияния атомов дейтерия с образованием гелия. Как было показано Флейшманом и Понсом, а затем в Индийском атомном центре P. Iyengar et al.
Непонятно, почему авторы статьи в Nature, получив большие средства, не использовали эти чувствительные и надежные методы идентификации продуктов ядерного синтеза. В экспериментах по облучению палладиевой проволоки дейтериевой плазмой сохранить тритий в тонкой проволоке крайне трудно, так как он практически полностью улетучивается в газовую фазу. Это объясняет, почему авторы статьи в Nature не обнаружили тритий в cвоих экспериментах. Тритий может частично сохраняться в более толстых мишенях, что, по-видимому, имело место в опытах T. Claytor at al.
При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы. Все это время мощности не использовались.
Что не так с «японским ученым» и его холодным термоядом
Этот сценарий, как бы, зеркально противоположен лазерному термояду. Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х. По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США. Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону.
Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном. Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн. Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона.
Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина. Процесс длится доли пикосекунды 10—12 с. В общем, получается 500 тысяч нейтронов в секунду.
Это много с точки зрения физики явления, но этого мало, чтобы это было термоядерным реактором». Как бы там ни было, по словам Роберта Нигматулина, он продолжает теоретические исследования в этой области и есть идеи, как повысить выход нейтронов в пузырьковом термояде. Нет денег на проведение экспериментов.
Как рассказал «Звезде» научный сотрудник частного учреждения Государственной корпорации по атомной энергии «Росатом» «Проектный центр ИТЭР» Кирилл Артемьев, речь идет об алмазном детекторе. Плазма просто так долго держаться не может, ее различными методами дополнительно нагревают», - пояснил суть работы устройства ученый. Установка EAST - это полноценный сверхпроводящий экспериментальный термоядерный токамак, который, по словам Артемьева, как и строящийся во Франции токамак Международного термоядерного экспериментального реактора ИТЭР являются важными шагами к построению установки DEMO. По проекту, электростанция будет запущена в конце 2040-х годов и станет переходным звеном между ITER и первыми коммерческими термоядерными реакторами.
Атомы трития и дейтерия ионизируются и образуют плазму, которую до определенного времени нужно поддерживать в активном состоянии при очень высоких температурах, измеряемых в сотнях миллионов градусов, а в идеале прийти к тому, что реакция будет энергетически поддерживать саму себя. Цель — получить «положительный выход», чтобы выделившейся энергии в итоге оказалось больше, чем вы получили от розетки на разогрев той самой плазмы. Реактор должен дать больше, чем взял. И этого до сих пор, за десятки лет работы ядерщиков, не достиг еще никто ни в одной стране мира. Токамак или дырка от бублика? Ученые постоянно находятся в поиске. Возьмем, к примеру, изобретенный в России самый традиционный способ получения плазмы — в устройстве под названием токамак тороидальная, или бубликообразная, камера с магнитными катушками. Кстати, слово «токамак» — это один из немногих русизмов, уже вошедший в обиход ученых всего мира. Плазма в этом реакторе удерживается в торе магнитным полем, не контактируя с материальной стенкой. По принципу токамака с начала 90-х годов прошлого века создается самый большой термоядерный реактор в мире — IТER. Огромное площадью около 1 квадратного километра сооружение на окраине французского города Кадараш стоит почти 20 миллиардов долларов. Россия вносит 10 процентов от этой суммы, но не деньгами. Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора. Несмотря на большие вложенные средства, самый большой проект, за который многие уже успели получить премии, до сих пор не реализован. Все чаще всплывают какие-то дополнительные проблемы и переносятся сроки запуска. Невольно возникает крамольная мысль: «А может, ученые сговорились и просто обманывают всех? Термоядерная гонка Для того чтобы понять степень сложности проблемы, мы обратились к специалисту — ведущему научному сотруднику Физико-технического института им. В дальнейшем ученые постоянно совершенствовали конструкцию токамаков, улучшая параметры удерживаемой в них плазмы примерно на порядок каждое последующее десятилетие. При этом токамаки неизменно увеличивались в размерах. Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых. Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития. Американцы спустя несколько лет утилизировали свою установку, чтобы построить на ее месте новый токамак, — такая у них политика. Но самым большим токамаком в мире на сегодняшний день пока по-прежнему остается JET. Почему так долго не удается запустить полноценную реакцию?
При подключении к сетке тока должно было выделяться тепло. Это и произошло, вот только калориметр показал, что этого тепла якобы было выделено порядка 500 ватт при вдвое меньшей подаче энергии. Более того, при подаче на «реактор» 50 ватт выделяемая в виде тепла энергия, по утверждению Мизуно, была эквивалентна 300 ватт. Основной предполагаемый механизм якобы наблюдавшегося процесса — превращение более легких изотопов водорода в тяжелые, с выделением тепловой энергии. В общепринятой физике слияние ядер атомов в нормальных условиях невозможно: кулоновское отталкивание не даст им сблизиться на достаточно малое расстояние. Чтобы преодолеть его, нужны температуры и давления, которые делают термоядерную энергетику непрактичной. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание. Вообще-то сходные процесс известны и в «нормальной» физике. Если заменить в изотопах водорода электрон на мюон отрицательно заряженная частица, примерно в двести раз тяжелее электрона , то из-за большей массы мюона возможно сближение ядер атомов такого «модифицированного» водорода на расстояния, при которых они сливаются. Так из пары атомов дейтерия можно получить, например, тритий или гелий. Что характерно, это происходит при низких температурах, а вовсе не при многих миллионах градусах, как в токамаках и иных термоядерных реакторах. Проблема в том, что энергия, которую в такой реакции можно получить за счет мюона, — не более 1,4 гигаэлектронвольта. А чтобы получить мюон на современных ускорителях, необходимо придать частице энергию от нескольких гигаэлектронвольт. Ситуация как с золотом, которое можно получить из других элементов с помощью ядерной физики: сам процесс возможен, но золото, полученное им, будет много дороже обычного. Никаких путей снизить нужную для наработки мюонов энергию пока даже не просматривается. Сторонники «холодного синтеза» ищут какие-то катализаторы типа мюонов, но при этом намного более стабильные, способные сделать реальностью слияние атомов при умеренных температурах «за недорого». Проблема этих поисков в том, что они идут без каких-либо здравых теоретических идей, «на ощупь», и даже сама возможность решения этой проблемы никак не доказана. Возьмем обычные токамаки: считается, что если вложить 25 миллиардов долларов ITER, то удастся добиться «горячей» термоядерной реакции, при которой энергии получалось бы больше, чем нужно на нагрев и удержание плазмы в токамаке.