Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Искусственный интеллект, несомненно, остается одной из самых захватывающих и динамично развивающихся областей в современном мире. Руководитель лаборатории искусственного интеллекта "Яндекса" Александр Крайнов рассказал, как развивается искусственный интеллект и в каких сферах используется.
Как искусственный интеллект повлияет на нашу жизнь в будущем
В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. «Эпоха искусственного интеллекта началась»: Билл Гейтс опубликовал эссе о том, как нейросети изменят нашу жизнь. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу. Apple разрабатывает собственный серверный процессор для искусственного интеллекта с использованием 3-нм техпроцесса TSMC.
Применение искусственного интеллекта в бизнес-сфере: современное состояние и перспективы
Новости и обзорные материалы о технологиях искусственного интеллекта: от умного дома до распознавания речи. «Возможности и перспективы развития искусственного интеллекта – глобальные, затрагивающие все сферы общественной жизни. искусственный интеллект — самые актуальные и последние новости сегодня.
Дмитрий Чернышенко обозначил основные тренды развития искусственного интеллекта
В результате среди проанализированного тематического массива данных были новости, посвященные 544 компаниям, 248 из которых попали в наш рейтинг, так как были отмечены разработанной системой в контексте интересующих нас номинаций. Мы хотели создать рейтинг с душой, но остаться беспристрастными. Считаю, мы справились». Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics.
Мы хорошо понимаем, что участникам рынка важно не только отслеживать новости в области ИИ, но и иметь перед глазами навигатор компаний и решений в этой важнейшей для нашего с вами будущего отрасли. Представленный билайном совместно с Brand Analytics рейтинг ИИ претендует как раз на место такого навигатора. Проект получился интересным.
Виртуальные помощники медсестер наблюдают за пациентами, а анализ больших данных помогает создать более персонализированный подход к пациентам. Bloomberg использует технологию Cyborg, чтобы быстро разобраться в сложных финансовых отчетах. The Associated Press использует возможности Automated Insights на естественном языке для создания 3700 отчетов о доходах в год — почти в четыре раза больше, чем в недавнем прошлом. Обслуживание клиентов Google, Яндекс, «Сбер» и ряд других компаний работают и развивают ИИ, который поможет человеку значительно сэкономить время в некоторых бытовых вещах. Уже сейчас ИИ может звонить, как человек, чтобы назначать прием, скажем, в ближайшей парикмахерской. Спорт Искусственный интеллект прямо во время матча анализирует действия, например, футболистов. Где они чаще всего были на поле, как долго владели мячом, какую ногу чаще использовали, какова скорость бега и ускорения.
Сейчас тренеры получают десятки различных статистических данных об игре сразу после матча. Это позволяет выявить сильные стороны своей команды и слабые стороны противника. Это могут быть как большие игроки, например Google или Amazon, так и фирмы, о которых мало кто слышал. Например, одними из самых популярных и успешных компаний, что занимают лидирующие позиции в области изучения ИИ, являются неизвестные большинству организации: BotsCrew, InData Labs, nexocode. Две другие ориентированы на бизнес. Они создают ИИ, который анализирует данные фирмы, проводит статистический анализ и выдает подробные отчеты в зависимости от требований заказчика. Но мы перечислим крупных игроков, от исследований которых в нашей жизни может что-то сильно измениться.
Microsoft В 2020 году Microsoft объявила о строительстве нового суперкомпьютера, размещенного в Azure, сети облачных вычислений Microsoft. А его конечной целью является создание больших моделей ИИ и соответствующей инфраструктуры для других организаций и разработчиков. Не так давно Microsoft запустила Microsoft Designer, приложение для графического дизайна, использующее технологию искусственного интеллекта для создания уникальных постов в социальных сетях, приглашений и другой графики. Alphabet Материнская компания Google и YouTube, использует искусственный интеллект и автоматизацию практически во всех аспектах своего бизнеса — от ценообразования на рекламу до продвижения контента и спам-фильтров Gmail. У Alphabet также есть дочерние компании. Например, DeepMind, которая занимается разработкой программного обеспечения для искусственного интеллекта, а также Waymo — компания по производству автономных транспортных средств. Последняя вошла в историю, запустив в 2020 году первую полностью беспилотную коммерческую службу такси на дорогах общего пользования.
Amazon Компания интегрировала искусственный интеллект во все аспекты своего бизнеса, включая таргетированную рекламу, алгоритмы поиска электронной коммерции и Amazon Web Services. Amazon Alexa — один из самых популярных виртуальных ассистентов, который уже обслуживает многие американские семьи. Amazon также предлагает своим облачным клиентам AWS широкий спектр услуг искусственного интеллекта, включая расширенную текстовую аналитику, автоматические проверки кода и чат-боты. Nvidia Производитель высокопроизводительных чипов обеспечивает огромную вычислительную мощность, необходимую для запуска сложных приложений ИИ. На самом деле, один из самых быстрых суперкомпьютеров в мире, Leonardo, оснащен графическими процессорами Nvidia. Многие крупные организации, не имеющие своего суперкомпьютера, используют суперкомпьютеры, построенные с помощью чипов Nvidia и оснащенные сетевой системой Nvidia Quantum InfiniBand. Intuitive Surgical Продает хирургическую систему da Vinci Surgical System, которая использует передовую робототехнику и компьютеризированную технологию визуализации для выполнения минимально инвазивных операций.
Intuitive работает над интеграцией больших данных и искусственного интеллекта для создания таких инструментов, как руководство в реальном времени для хирургов и расширенное обучение. IBM Компания уже давно не занимает лидирующие позиции на компьютерном рынке, но все еще способна производить научные исследования и двигать развитие ИИ вперед.
Причем не только днем, но и ночью Наибольшую популярность в России завоевали технологии «точного земледелия», основанные на применении беспилотников, космических спутников и анализе больших массивов данных. Искусственный интеллект помогает мониторить состояние почв, поддерживать в них необходимое содержание микроэлементов, оперативно и точечно решать проблемы с болезнями растений и распространением вредителей. Анализируя свежие снимки и многолетние данные, такие системы помогают выявить риски и спланировать оптимальный севооборот. К ним относятся облачный сервис «История поля» от компании «Геомир» его использует уже более двух тысяч агрохозяйств , приложение «СкайСкаут» от компании «ИнтТерра» разработчики обещают сократить расходы на 30 процентов за счет правильной расстановки приоритетов и оптимизации процессов , система «Агротроник» от ГК «Ростсельмаш» и многие другие. Например, на птицефабрике в Татарстане всеми процессами сбора и движения яиц с 2020 года управляет искусственный интеллект на базе программного решение Amaks.
Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов. Искусственный интеллект позволяет автоматизировать огромную часть рутинной, но необходимой работы. Например, прежде чем запустить любую деталь в производство, нужно провести множество испытаний. Тесты на реальных прототипах требуют больших затрат времени и ресурсов.
Искусственный интеллект помогает ускорить этот этап: умная система может сама провести сотни тысяч виртуальных симуляций, для испытаний офлайн останутся только самые важные этапы проверки Такие системы особенно активно развиваются в оборонной промышленности, авиа- и судостроении, автопроме и других отраслях, где в финале опытные образцы приходится тестировать людям. Нейросети отлично справляются и с управлением складскими процессами, планируя спрос и загрузку, прогнозируя потребность в сырье и его количество на складах Искусственный интеллект способен выстраивать логистические цепочки, учитывать сезонность, особенности хранения и множество других факторов. Все это не только сокращает расходы на хранение, но и снижает загрузку складских помещений. Например, одно из крупнейших металлургических предприятий — Новолипецкий металлургический комбинат — развивает у себя целый технологический кластер, задача которого обнаруживать подобные «узкие места» и находить способы их устранения. Машины работают быстро и точно, а централизованная интеллектуальная система позволяет дообучать их на полученном опыте, оптимизируя операции и энергозатраты. ИИ создает виртуальное ЖКХ Системы, построенные на алгоритмах искусственного интеллекта, находят применение и в сфере жилищно-коммунального хозяйства. Одна из наиболее сильных сторон ИИ — это прогнозирование энергопотребления.
Нейросети, обученные на исторических данных об использовании электроэнергии в разное время суток, способны точно предсказывать объем, который потребуется в будущем. Например, ученые Ярославского государственного технического университета разработали приложение, с помощью которого возможно с высокой точностью спрогнозировать расходы на электричество в каждый час грядущей недели.
Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий. В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных. В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени. Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи.
Кроме того, искусственный интеллект — это возможность делегировать роботам утомительные и трудоемкие для человека задачи. Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах. Это позволяет ускорить поиск и выдачу нужных товаров [21] Alizada, Muradli, 2020. Внедрение искусственного интеллекта в различные бизнес-сферы начинается, как было показано выше, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению. Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее. После получения необходимой информации от системы искусственного интеллекта осуществляется перестройка всех технологических и бизнес-процессов, на которые оказывают влияние алгоритмы ИИ. На этом этапе, бесспорно, требуется участие не только машин, но и человека. Однако в дальнейшем ИИ с помощью нейронных сетей способен оптимизировать свою работу самостоятельно.
Применение цифровых продуктов и моделей искусственного интеллекта в компаниях по нефтепереработке В качестве примера применения возможностей искусственного интеллекта в различных сферах бизнеса в данном исследовании представлены результаты работы IT-компании DD, функционирующей в г. Екатеринбурге Свердловская область. Указанная компания занимается созданием моделей оптимизации процессов принятия ИИ-решений с 2018 г. В основе цифровых систем, разрабатываемых и внедряемых в проектах нефтепереработки, лежит цифровая платформа dataCORE. Этот объект интеллектуальной собственности создан непосредственно IT-специалистами компании [10]. Рассматриваемый цифровой продукт dataCORE представляет собой систему базовых IT-моделей, посредством которых возможно описание кинетических, физико-химических и термодинамических процессов, происходящих в производственных установках нефтеперерабатывающего цикла. Следует отметить, что сегодня dataCORE содержит в себе как отдельно функционирующие IT-элементы, так и готовые модули установки. При этом заказчик в качестве итогового цифрового продукта получает IT-решение, представляющее собой цифровую систему, которая решает конкретную проблему, но не набор кодов. К основным свойствам и характеристикам указанной цифровой системы следует отнести следующие: 1 запрограммированный и ограниченный функционал; 2 решение конкретной актуальной проблемы; 3 возможность модификации системы в зависимости от изменения входных параметров и факторов. Базовый вариант системы dataCORE позволяет решать наиболее распространенные на сегодняшний день проблемы.
Основные направления подготовленных решений для функционирующих технологических установок нефтеперерабатывающих предприятий приведены в таблице 1.
Статьи и новости
Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Технологии искусственного интеллекта (ИИ) стремительно развиваются. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу.
Искусственный интеллект: ближайшее будущее
Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Технологии искусственного интеллекта (далее — ИИ), которые еще вчера казались фантастикой, все более уверенно внедряются в различные сферы общественной жизни. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России.
Дмитрий Чернышенко обозначил основные тренды развития искусственного интеллекта
Искусственный интеллект обещает решать сложные задачи, с которыми сталкивается человечество. Моделирование и симуляция сложных систем, анализ больших объемов данных и поиск закономерностей в них помогают в прогнозировании пандемий, климатических изменений и других масштабных явлений. ИИ способен ускорить научные исследования, обнаруживать новые лекарства и материалы, снижая затраты времени и ресурсов. ИИ имеет потенциал преобразовать медицину и здравоохранение, делая диагностику более точной и персонализированной. Системы ИИ могут анализировать медицинские изображения, выявлять патологии и помогать врачам в принятии решений. В области геномики ИИ помогает идентифицировать гены, связанные с заболеваниями, и разрабатывать индивидуализированные лечения. Автономные автомобили, дроны и роботы становятся реальностью благодаря ИИ. Системы распознавания и обработки данных позволяют автономным транспортным средствам функционировать в сложных ситуациях на дорогах и в воздухе. Это обещает повысить безопасность, снизить количество аварий и оптимизировать использование ресурсов. Однако с возросшим влиянием ИИ на общество появляются и вопросы этики и социальных последствий [5].
Необходимо обеспечить прозрачность и объяснимость решений, принимаемых системами ИИ. Также стоит разработать стандарты для обработки и защиты данных, чтобы избежать нарушения приватности.
Давайте вместе погрузимся в этот захватывающий мир искусственного интеллекта, чтобы лучше понять его значение, применения и последствия для нашего будущего. История возникновения ИИ Ещё в далёкие античные времена возникли предпосылки к созданию искусственного интеллекта. Ни капельки неудивительно, что уже в те времена древнегреческие философы задавались вопросами о возможности появления устройств, способных мыслить как человек. Например, в мифах Древней Греции мы встречаем упоминание автоматонов — это куклы, способные выполнять действия в соответствии с заданным алгоритмом. Один из примеров такого автоматона — Пандора, созданная самим Зевсом. Фото: habr. Что же можно считать точкой отсчёта в истории развития ИИ?
В истории появления искусственного интеллекта важную роль сыграли некоторые ключевые моменты. Одним из таких моментов было создание первого в мире счётного устройства, способного автоматически выполнять сложение, вычитание, умножение и деление. Это достижение принадлежит немецкому учёному Вильгельму Шиккарду. Это открытие заложило основу для понимания возможности создания интеллектуальных машин. Таким образом, у нашей цивилизации появилась важная задача — разработать умную машину, способную обладать искусственным интеллектом. Но только в XX веке учёные и инженеры вплотную подошли к чёткому определению концепции ИИ. Так, в 1943 году в Америке впервые заговорили о нейронных сетях, а именно основоположник кибернетики и бионики Уоррен Мак-Коллок и математик Уолтер Гарри Питтс. Позже учёный Джон фон Нейман предложит архитектуру, которая станет основой всех современных компьютеров так называемая архитектура фон Неймана. В 1950 английский учёный Алан Тьюринг разработал эмпирический тест, названный в его честь.
Суть теста заключалась в том, что экспериментатор общается с одним человеком и одним компьютером, но не знает, кто из них кто. Задача — определить, кто из собеседников — компьютер. В то же время компьютеру предстоит прикинуться человеком. Поэтому многие считают, что если компьютер пройдёт тест, то начнётся восстание машин, как в одном из известных фильмов.
В какой точке этого пути находятся сегодня российские промышленные предприятия? Действительно, с помощью соответствующего ПО компании получают возможность сразу «убить нескольких зайцев»: предложить своим клиентам привлекательный «очеловеченный» интерфейс для коммуникаций с компанией и добиться повышения скорости и качества обработки обращений клиентов за счет автоматизации.
Каков нынешний IQ таких ИТ -решений, и в каком направлении им еще предстоит совершенствоваться? Поэтому ограничиться созданием одной цифровой модели для того или иного функционала умного города невозможно. В умном городе набор умных цифровых решений и состав моделей постоянно изменяется.
Место нахождения: 121614, г. Москва, ул. Крылатская, д. Телефон: 495 234-06-86.
ОГРН 1197746650595. ИНН 9731055266. ООO «Техкомпания Онор», honor.