СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году.
Как действует водородная бомба и каковы последствия взрыва.
Формула водородной бомбы. Почему предпочтительнее слияние ядер? Опасность ядерной войны | В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце. |
10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский - Лайфхакер | Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. |
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики | КНДР пригрозила США «мощнейшим» испытанием водородной бомбы Пхеньян может провести «самое мощное испытание» водородной бомбы в ответ на угрозу Трампа «полностью уничтожить» КНДР, заявил глава МИД страны. |
«Сахаровская слойка»: секреты появления в СССР водородной бомбы | Водородная бомба химическая формула. Термоядерная реакция в водородной бомбе. |
Самые тяжелые семьдесят пять лет. Предновогодний пост о бомбах доктора Силарда / Хабр | Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». |
Истинное происхождение советской водородной бомбы
Атомный заряд служит запалом для водородной бомбы, а дальше происходит термоядерная реакция. Самой мощной водородной бомбой стала царь-бомба, которая была испытана нашей страной во времена Советского Союза в 1961 году. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу.
День рождения водородной бомбы
- «Отец» водородной бомбы
- Спецработа
- Водородная (термоядерная) бомба: испытания оружия массового поражения
- Что такое реакция слияния ядер?
- Принцип водородной бомбы
Как действует водородная бомба и каковы последствия взрыва? Инфографика
ВОДОРОДНАЯ БОМБА. Российский патент 2013 года RU 2477449 C1. Изобретение по МКП F42B25/00 . | Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%. |
Как сделать атомную бомбу | СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. |
Водородная (термоядерная) бомба: испытания оружия массового поражения | Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве. |
Как устроена водородная бомба | Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. |
Формула водородной бомбы. Почему предпочтительнее слияние ядер? Опасность ядерной войны | Уже при подготовке к взрыву термоядерной авиационной "Царь-бомбы" АН602 в 1961 году между Сахаровым и Никитой Хрущевым были сильно испорчены отношения. |
Водородная (термоядерная) бомба: испытания оружия массового поражения
На выходе турбины 15 установлены газовод 18 и реактивное сопло 19. На валу 20 установлены все узлы ротора, а именно ротор компрессора 9 и рабочее колесо турбины 17. Все остальные узлы газотурбинного двигателя 5 образуют статор 21, в который входят воздухозаборник 6, статор компрессора 8, камера сгорания 10 и реактивное сопло 19. Термоядерный заряд 3 содержит конвенторный взрыватель 22, плутоний или уран 23 и резервуар бериллиевой смеси 24, который предпочтительно установить по центру вдоль оси бомбы, внутри газовода 18. Контейнер с дейтерием 25 установлен внутри резервуара бериллиевой смеси 24. Система управления содержит бортовой компьютер 26, соединенный с контроллером двигателя 27, который соединен с приводом насоса 14. В систему управления входят поворотные лопасти 28, установленные внутри цилиндрического обтекателя 29 хвостового стабилизатора 2 с приводами 30. Система управления также содержит датчик датчики инициирования взрыва 31. Система управления содержит акселерометр 32 и магнетометр 33 для измерения углов ориентации снаряда в полете, которые соединены с бортовым компьютером 26.
К бортовому компьютеру 26 может быть подсоединено приемно-передающее устройство 34 фиг. Антенна 35 имеет кольцевую форму, а участок корпуса 1 в районе расположения антенны 35 выполнен радиопрозрачным. Внутри корпуса 1 фиг. Все соединения выполнены проводными связями 37. В глобальную систему позиционирования Глонас или GPS входят спутники 38, связанные с антенной 35 по радиоканалам 39. Возможна установка в передней части корпуса видеокамеры 40, которая соединена с бортовым компьютером 26 фиг.
Стивенсона, в котором мягкий и воспитанный доктор Джекилл, выпив определенное снадобье, может превращаться в злого и распутного мистера Хайда. Единственная возможность получения «чистой» водородной бомбы, совершенно не образующей радиоактивных осадков, за исключением лишь небольшого их количества от атомной бомбы-детонатора,— это создание оружия, взрывная сила которого имеет своим источником исключительно процесс ядерного синтеза водорода.
Но здесь природа выдвинула, казалось бы, непреодолимое препятствие. Для создания «чистой» водородной бомбы необходимо наличие двух тяжелых изотопов водорода — водорода-2 и водорода-3. Но водород-3, или тритий, вес которого в три раза больше обычного водорода, исчез на Земле миллионы лет назад. Нейтрон, выделяемый при делении урана-235 в реакторе, попадает в ядро лития-6, которое состоит из трех протонов и трех нейтронов. При этом образуются два газа — тритий, ядро которого состоит из одного протона и двух нейтронов, и гелий, ядро которого состоит из двух протонов и двух нейтронов. На общую массу ядер трития и гелия приходится, таким образом, три протона и три нейтрона ядра бывшего лития-6 плюс дополнительный нейтрон, образовавшийся при делении урана. Получение трития в большом количестве, необходимом для создания запаса «чистых» водородных бомб порядка нескольких мегатонн с взрывной силой, создаваемой исключительно за счет синтеза дейтерия и трития не принимая во внимание взрывную силу атомной бомбы-детонатора ,— процесс исключительно дорогой, требующий наличия большого числа ядерных реакторов стоимостью много миллионов долларов. Однако, как уже отмечалось, есть основания предполагать, что наши ученые разработали простой и дешевый метод получения трития в самой бомбе в ходе процесса синтеза.
Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2. Когда атомная бомба-детонатор взрывается, нейтроны, выделяемые в ходе этого процесса, попадают в литий-6 и превращают его в тритий и гелий, как об этом уже ранее говорилось. Под влиянием температуры в 50 млн. При этом выделяется незначительное количество опасных радиоактивных осадков. Как отмечалось в докладе Комиссии по атомной энергии июль 1956 г. Но бомба даже в одну или две мегатонны является достаточно мощной, чтобы разрушить любой большой город, и, таким образом, она выполняет свою миссию как мощное сдерживающее средство в нашем оборонительном арсенале. Более того, устранение «грязного» элемента делает бомбу гораздо легче. Действительно, тихоокеанские испытания 1956 г.
Какая самая мощная бомба в мире? Чтобы ответить на этот вопрос, нужно разобраться в особенностях тех или иных бомб. Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество. Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее.
Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек.
Люди заболевают лучевой болезнью, у них и их потомков повышается риск онкологических заболеваний. Растения и животные мутируют. Сельхозполя становятся непригодными для использования. Действительно ли у президентов ядерных держав есть красная кнопка? Я этого не знаю. Мне кажется, это образное название. В самолёте , например, есть устройства, на которые записываются параметры полёта и разговоры пилотов. Они называются чёрными ящиками, хотя на самом деле окрашены в оранжевый цвет. То же самое и здесь — вряд ли «красная кнопка» описывает физическое воплощение. Но то, что есть стратегическое ядерное оружие, которое находится на боевом дежурстве и, условно говоря, готово к применению в любой момент — это правда. Его могут использовать, когда наблюдается прямая угроза государству — от ядерного удара до нападения инопланетян, например. В этом случае первое лицо государства, президент, отдаёт личный приказ по его запуску. Помимо этого, есть тактическое ядерное оружие, которое не подготовлено к непосредственному применению. Оно хранится в «законсервированном» состоянии в военных частях. Есть ли срок годности у ядерного оружия? В составе ядерных бомб используется нестабильное радиоактивное вещество, в котором происходит процесс естественного распада. Но счёт идёт не на года, а на десятки тысяч лет. Что это значит? Это значит, что лишь через это время активного вещества в бомбе станет в два раза меньше. То есть на горизонте сотен лет ядерная бомба остаётся опасной. Однако помимо этого в бомбе есть дополнительные элементы, у каждого из которых — свой срок годности. Эти элементы тоже устаревают. Например, самая обычная взрывчатка может отсыреть, электроника — прийти в негодность. Поэтому срок годности каждой конкретной бомбы зависит от её конструкции. Может ли атомная бомба взорваться сама? Крайне маловероятно. Будет просто маленький «пшик». Несколько бомбардировщиков с атомными бомбами на борту постоянно находились в воздухе и готовы были в любой момент нанести удар по СССР. Во время этой операции произошло несколько аварий.
Водородная и атомная бомбы: сравнительные характеристики
Как устроена водородная бомба: принцип и мощность | Рассекреченные кадры взрыва водородной бомбы мощностью 50 млн тонн. |
10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский | Водородная «Царь-бомба» Мощнейшая в истории человечества водородная бомба была взорвана. |
Как действует водородная бомба и каковы последствия взрыва. — DRIVE2 | Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году. |
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Водородная бомба, также известная как термоядерная, использует ядерную реакцию слияния, которая основана на ядерном расщеплении. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Результат взрыва водородной бомбы носит тройной характер.
Принцип работы водородной бомбы
Успешное испытание водородной бомбы РДС‑37, основанной на новом физическом принципе, состоявшееся 22 ноября 1955 года, открыло путь к созданию термоядерного заряда неограниченной мощности — сверхбомбы. Водород, состоящий из протона и электрона, обеспечивает энергетику жизни: протонные градиенты как одну из форм накопления энергии в живой клетке, перенос электрона вдоль транспортных цепей ее макромолекул, мягкие водородные связи и многое другое. Водородная, или термоядерная бомба, стала краеугольным камнем гонки вооружений между США и СССР. Испытание первой водородной бомбы было проведено советскими учеными.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
В 1945 году США, первыми негласно вступившие в гонку, сбросили ядерные бомбы на печально известные города Хиросима и Нагасаки. В Советском Союзе тоже велись работы по созданию ядерного оружия, и в 1949 году испытали первую атомную бомбу, рабочим веществом в которой был плутоний. Еще во время ее разработки советская разведка выяснила, что США переключились на разработку более мощной бомбы. Это подтолкнуло СССР заняться изготовлением термоядерного оружия. Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний.
Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва.
Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц.
Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла.
Повысить мощность боеприпаса можно и без такой траты дефицитных материалов. В активированном шаровом заряде цепной распад продолжается не до исчерпания горючего, как в обычной бомбе, а до разрушения устройства. Испарившийся урановый шар уже не обладает достаточной плотностью, чтобы поддерживать цепную реакцию. Увеличить степень выгорания можно, обеспечив дополнительное сжатие. Для этого используется большой — до четверти тонны — заряд химической взрывчатки. Хорошо помогает и увеличение толщины тампера. Конечно, дополнительная инертная масса лишь краткий миг способна противостоять рвущемуся из зоны реакции ядерному пламени. Но когда интенсивность реакции нарастает по экспоненте, даже этот миг имеет огромное значение. Водородная бомба На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. Она полностью состоит из плазмы — раскалённого ионизированного газа, но при этом плотнее свинца Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. Рядом с первым шаровым зарядом, играющим роль детонатора, размещается второй, устроенный несколько иначе. Вместо слоя химической взрывчатки он покрыт инертным пластиком. Сразу под ним располагается тампер из обеднённого урана. А между тампером и центральной полой сферой, изготовленной из плутония, размещается слой дейтерида лития-6 — соединения лёгкого изотопа лития с тяжёлым водородом. Этот белый порошок не радиоактивен и совершенно безопасен, если не поливать его водой. Подрыв первого шарового заряда превращает пластиковый слой в перегретую плазму, давление которой приводит к имплозии термоядерной капсулы. Её плутониевая сердцевина достигает критической плотности и тоже взрывается. Литий, поглощая образовавшиеся нейтроны, разлагается на гелий и сверхтяжёлый водород — тритий. Температура на фронте столкновения ударных волн в этот момент оказывается достаточной, чтобы началась реакция термоядерного синтеза с участием дейтерия и трития. А это означает третий взрыв — примерно в сто раз сильнее двух первых. Если ядерный взрыв прекращается после разрушения взрывного устройства, то механизм водородной бомбы продолжает работать и после перехода в плазменное агрегатное состояние. При синтезе ядер тяжёлого и сверхтяжёлого водорода рождаются ядра гелия и нейтроны. Энергия нейтронов настолько велика, что они не захватываются тяжёлыми ядрами, а разбивают их, как бильярдный шар пирамиду. Под градом нейтронов в реакцию вступает уран-238, в обычных условиях вполне безопасный. Это третья фаза взрыва, увеличивающая его мощность ещё впятеро. Вклад энергии от распада ядер урана не так уж велик, но этот процесс порождает новые тучи нейтронов. А чем плотнее нейтронный поток, тем больше лития перейдёт в тритий, тем выше будет КПД взрывного устройства. А это чудовищная энергия. Субкилотонные боеприпасы «Малыш», первая атомная бомба, применённая в бою, относилась к пушечному типу Ядерные боеприпасы ценятся в первую очередь за мощь, но иногда компактность оказывается важнее. Как следствие, некоторое распространение практически только в США получили так называемые пушечные заряды. Они состоят из плутониевого цилиндра с отверстием в центре, стержня из того же металла, небольшого количества пороха, который вколачивает стержень в отверстие, единственного детонатора для инициации процессов и… всё. Очевидными преимуществами пушечной схемы были предельная простота, безукоризненная надёжность срабатывания и крошечные размеры. Но заряд пушечного типа не просто надёжен, а слишком надёжен. Это его главный недостаток. Тепловое или механическое повреждение боеприпаса не выведет его из строя, а напротив — может заставить сработать. В СССР посчитали, что янки — crazy, и копировать этот ужас не стали.
Его задача — обжать внутреннюю часть бомбы, где хранится термоядерное горючее, чтобы создать давление и высокую температуру, и послужить источником нейтронов для получения трития. Эта внутренняя камера имеет в сердцевине еще один кусочек плутония, который начинает сжимать его изнутри наружу. Зажатый между двумя атомными зарядами, как кусок железа между молотом и наковальней, горючее начинает термоядерную реакцию. A - бомба до взрыва; B - подрывается плутониевый заряд; C - жесткое рентгеновское излучение проникает внутрь второй ступени дейтерида лития ; D - стрежень из плутония в самом центре второй ступени также начинает расщепляться; E - начинается термоядерная реакция. Такой пирог можно покрывать новыми слоями, которые будут обжимать внутренности всё сильнее и сильнее, обеспечивая продолжение реакции внутри бомбы. Так что теоретически можно создать термоядерную бомбу с какой-угодно мощностью — здесь нет «потолка». Доля атомного заряда в итоговой мощности невелика, ведь он служит только для активации процесса. Но сколько же термоядерного горючего закладывается в бомбу? Столько же энергии выделится, если перевести в энергию … 2,65 кг вещества. Это и есть тот самый дефект массы, который превратился в энергию взрыва. Если пересчитать это значение на водород, то получится, что при взрыве Царь-бомбы 372,2 кг водорода превратилось в 369,5 кг гелия. При этом учтите, что не весь дейтерид прореагировал, то есть горючего закладывали больше. К счастью, человек создает не только оружие, но и энергетику на основе термоядерной реакции. Для неё уже не подойдет дейтерид лития, так как в реактор будут добавлять «реагенты» постепенно, чтобы удержать реакцию под контролем — ведь нам нужно медленное горение, а не взрыв. В качестве горючего будет использоваться чистый тритий, который получают в специальных реакторах, где облучают изотоп лития. Выход его небольшой: всего лишь несколько килограммов в год, в то время как для запуска термоядерного реактора понадобятся уже сотни «кэгэ».
Атомная, водородная и нейтронная бомбы
В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц.
Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу.
Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости.
Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире.
Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками.
В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров.
Такой пирог можно покрывать новыми слоями, которые будут обжимать внутренности всё сильнее и сильнее, обеспечивая продолжение реакции внутри бомбы. Так что теоретически можно создать термоядерную бомбу с какой-угодно мощностью — здесь нет «потолка». Доля атомного заряда в итоговой мощности невелика, ведь он служит только для активации процесса.
Но сколько же термоядерного горючего закладывается в бомбу? Столько же энергии выделится, если перевести в энергию … 2,65 кг вещества. Это и есть тот самый дефект массы, который превратился в энергию взрыва. Если пересчитать это значение на водород, то получится, что при взрыве Царь-бомбы 372,2 кг водорода превратилось в 369,5 кг гелия. При этом учтите, что не весь дейтерид прореагировал, то есть горючего закладывали больше.
К счастью, человек создает не только оружие, но и энергетику на основе термоядерной реакции. Для неё уже не подойдет дейтерид лития, так как в реактор будут добавлять «реагенты» постепенно, чтобы удержать реакцию под контролем — ведь нам нужно медленное горение, а не взрыв. В качестве горючего будет использоваться чистый тритий, который получают в специальных реакторах, где облучают изотоп лития. Выход его небольшой: всего лишь несколько килограммов в год, в то время как для запуска термоядерного реактора понадобятся уже сотни «кэгэ». Международный проект термоядерного реактора.
Он всего лишь для экспериментов, промышленное получение энергии на нем не планируется: слишком маленький... Многие связывают прорыв в термоядерной энергетике с добычей на Луне гелия-3 — изотопа гелия только с одним нейтроном. Если соединить его с дейтерием, то получится обычный гелий и энергия.
За камерой сгорания 10 установлена турбина 15, содержащая сопловой аппарат 16 и рабочее колесо турбины 17.
На выходе турбины 15 установлены газовод 18 и реактивное сопло 19. На валу 20 установлены все узлы ротора, а именно ротор компрессора 9 и рабочее колесо турбины 17. Все остальные узлы газотурбинного двигателя 5 образуют статор 21, в который входят воздухозаборник 6, статор компрессора 8, камера сгорания 10 и реактивное сопло 19. Термоядерный заряд 3 содержит конвенторный взрыватель 22, плутоний или уран 23 и резервуар бериллиевой смеси 24, который предпочтительно установить по центру вдоль оси бомбы, внутри газовода 18.
Контейнер с дейтерием 25 установлен внутри резервуара бериллиевой смеси 24. Система управления содержит бортовой компьютер 26, соединенный с контроллером двигателя 27, который соединен с приводом насоса 14. В систему управления входят поворотные лопасти 28, установленные внутри цилиндрического обтекателя 29 хвостового стабилизатора 2 с приводами 30. Система управления также содержит датчик датчики инициирования взрыва 31.
Система управления содержит акселерометр 32 и магнетометр 33 для измерения углов ориентации снаряда в полете, которые соединены с бортовым компьютером 26. К бортовому компьютеру 26 может быть подсоединено приемно-передающее устройство 34 фиг. Антенна 35 имеет кольцевую форму, а участок корпуса 1 в районе расположения антенны 35 выполнен радиопрозрачным. Внутри корпуса 1 фиг.
Все соединения выполнены проводными связями 37. В глобальную систему позиционирования Глонас или GPS входят спутники 38, связанные с антенной 35 по радиоканалам 39.
Она может быть снабжена приемником системы глобального позиционирования, подключенным к антенне и к бортовому компьютеру. Она может быть снабжена видеокамерой, подключенной к бортовому компьютеру. Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Сущность изобретения поясняется на фиг. Водородная бомба фиг. Внутри корпуса 1 установлены термоядерный заряд 3, выполненный кольцевой формы в виде полого цилиндра , и топливный бак 4.
Предпочтительно топливный бак 4 выполнить тороидальной формы. Также внутри корпуса 1, вдоль его оси, в центральной части установлен газотурбинный двигатель 5, работающий на жидком топливе возможно применение сверхзвукового газотурбинного двигателя. Атомная бомба имеет систему управления, установленную внутри корпуса 1. Газотурбинный двигатель 5 состоит из воздухозаборника 6, компрессора 7, состоящего в свою очередь из статора компрессора 8 и ротора компрессора 9, камеры сгорания 10 с форсунками 11, к которым подключен топливопровод 12 с топливным насосом 13, имеющим привод насоса 14. За камерой сгорания 10 установлена турбина 15, содержащая сопловой аппарат 16 и рабочее колесо турбины 17. На выходе турбины 15 установлены газовод 18 и реактивное сопло 19. На валу 20 установлены все узлы ротора, а именно ротор компрессора 9 и рабочее колесо турбины 17. Все остальные узлы газотурбинного двигателя 5 образуют статор 21, в который входят воздухозаборник 6, статор компрессора 8, камера сгорания 10 и реактивное сопло 19.
Термоядерный заряд 3 содержит конвенторный взрыватель 22, плутоний или уран 23 и резервуар бериллиевой смеси 24, который предпочтительно установить по центру вдоль оси бомбы, внутри газовода 18.
Калифорниевая бомба
- Формула водородной бомбы. Водородная бомба
- ВОДОРОДНАЯ БОМБА
- Калужские милиционеры изъяли купальники с символикой сочинской олимпиады
- «Сахаровская слойка»: секреты появления в СССР водородной бомбы
Сообщить об ошибке
- Зачем Хрущеву бомба?
- Что такое реакция слияния ядер?
- Самая охраняемая тайна
- Принцип работы водородной бомбы » ЯУстал - Источник Хорошего Настроения
- 60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США - Российская газета
Формула водородной бомбы. Почему предпочтительнее слияние ядер? Опасность ядерной войны
Уже при подготовке к взрыву термоядерной авиационной "Царь-бомбы" АН602 в 1961 году между Сахаровым и Никитой Хрущевым были сильно испорчены отношения. Госкорпорация «Росатом» показала ранее засекреченный фильм об испытаниях термоядерной водородной бомбы АН602. это все те же РДС-6с. Идея использовать термоядерную реакцию для бомбы появилась вместе с работами Ганса Бете об источнике энергии в звездах, в начале 30-х. В основу водородной бомбы положен тот же процесс, который происходит в звездах: четыре атома водорода (точнее, их ядра – протоны) соединяются в атом гелия. В основу водородной бомбы положен тот же процесс, который происходит в звездах: четыре атома водорода (точнее, их ядра – протоны) соединяются в атом гелия.