Сколько fps видит человеческий глаз Органы зрения человека – не искусственное приспособление. Сколько FPS воспринимает человеческий глаз.
Фпс глаза человека
Человеческий глаз способен воспринимать около 30 кадров в секунду (30 FPS). В контексте человеческого глаза FPS — это то, сколько визуальных стимулов можно обработать за определённое время. Сколько FPS человек может различить глазом? Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps.
Что приятнее для глаз — высокое разрешение или большая частота?
Сколько FPS видит человеческий глаз? Именно от 1 кГц (1000 кадров в секунду) – предел восприятия, преодолеть который большинство человеческих глаз не может. 24 кадра в секунду – не предел возможностей человеческого глаза. 24 кадра в секунду – не предел возможностей человеческого глаза. Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. Сколько FPS человек может различить глазом? Человеческий глаз может видеть до 1000 FPS и, возможно, выше.
Аспекты зрения
- Сколько ФПС у нашего зрения, у глаз человека?
- В топку FPS? Исследование доказало, что далеко не каждый геймер способен увидеть 60 к/с
- Просчитанное изображение
- Telegram: Contact @TGScience
- Сколько фпс различает человеческий глаз. Еще раз о частоте кадров
Сколько кадров в секунду видит человек. Строение глаза и интересные факты
Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. Неожиданные факты Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино. Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости. То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала.
Изначальная скорость показа немого фильма составляла 16 кадров в секунду. Но при просмотре комедии, когда публика проявляла высокую активность, до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным. В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз?
Поговорим об этом. Для чего это нужно? Практическая польза от этих исследований в следующем: увеличение скорости мелькания кадров на экране как бы сглаживает изображение, создавая эффект непрерывного движения. Для просмотра стандартного видео самым оптимальным считается скорость 24 кадра в секунду, именно так мы смотрим кинофильмы в кинотеатрах. А вот новый широкоэкранный формат IMAX использует кадровую частоту равную 48 кадрам в секунду. Это создает эффект погружения в виртуальную реальность с максимальным приближением к реальности. Это ощущение может быть еще больше усилено применением 3D-технологий.
При создании компьютерных игр разработчики используют цикл из 50 кадров в секунду. Это делается для достижения максимальной реалистичности игровой реальности. Но здесь имеет свое значение и скорость интернета, поэтому частота кадров может меняться в меньшую или большую сторону. Мы рассмотрели, сколько кадров в секунду видит человек. Одна из самых злободневных тем, которая постоянно всплывает в игровой и видео-индустрии — какую скорость передачи кадров можно считать оптимальной. По одну сторону баррикад стоят поборники традиций, которые считают, что 24 кадра в секунду для фильмов и 30 кадров в секунду для игр — это магические числа, и превышать эти значения нет никакого смысла. В этой статье авторства Саймона Кука из Microsoft Xbox Advanced Technology Group мы постараемся объяснить, почему человеческому глазу приятнее более высокая скорость передачи кадров.
Обсуждение этого вопроса может быть немного проблематичным, так как человеческий глаз представляет собой невероятно сложный инструмент, который производит независимую обработку изображения еще до того, как сигнал достигнет мозга. Нам нравится думать, что то, что мы видим, является непреложной истиной, и вся наша визуальная система построена на этом утверждении. Тем не менее, это заблуждение. Ситуация еще больше осложняется тем фактом, что мы часто сравниваем наши глаза с камерами и говорим о зрении так же, как если бы мы говорили о компьютерной графике, однако ни одна из этих аналогий не описывает истинных процессов, которые позволяют глазам получать и обрабатывать информацию. На сайте представлен короткий ролик , который показывает разницу между 60 и 30 кадрами в секунду при разной скорости движения объекта. При всем при этом, если человеку предоставляется возможность поиграть в игру с более высокой скоростью передачи кадров, он ей непременно воспользуется. Порой предпочтение отдается скорости передачи кадров даже выше 60 кадров в секунду 60 Гц ; все зависит от множества потенциальных причин, включая жанр игры, ее графику, технические особенности и скорость геймплея.
Теория Саймона Кука заключается в том, что подобное предпочтение высокой скорости передачи кадров объясняется одним интересным механическим аспектом нашего зрения: даже если зафиксировать взгляд на одной неподвижной точке, сетчатка все равно не будет полностью неподвижной. Колебания сетчатки, которые в научных кругах называют микротремором глаза, происходят со средней частотой 83,68 Гц, а область сдвига составляет примерно 150-250 нм, что примерно соответствует размеру 1-3 фоторецепторов в сетчатке. В чем смысл этих колебаний? Кук считает, что ему это известно. Легкое колебание сетчатки помогает вам увидеть одну и ту же сцену с двух немного разных ракурсов. Между тем, в самом глазе существует два разных типа ганглионарных клеток сетчатки: клетки с on-центром, которые откликаются, когда центр рецепторного поля освещен, и клетки с off-центром, которые откликаются, когда центр рецепторного поля не освещен. Благодаря колебаниям сетчатки свет попадает как на клетки с on-центром, так и на клетки с off-центром, стимулируя оба типа клеток.
Кук считает, что это улучшает нашу способность видеть очертания объектов. По словам ученого, все это также как-то связано с эффектом «зловещей долины». Если теория Кука верна, это значит, что человеческая сетчатка увеличивает разрешение окружающего мира, как и видеокарты и игровые консоли, которые используют внутренние ресурсы для создания более четкой картинки, которую они затем выдают на дисплей. Представленное ниже изображение является примером того, как несколько вариантов изображения из одного источника при объединении дают более качественные результаты. Но эта возможность извлекать дополнительную информацию из увиденного зависит от того, с какой скоростью нам подается информация. Если частота выборки 30 Гц, 30 кадров в секунду ниже половины частоты микротремора сетчатки, то изображения не сменяются достаточно быстро, чтобы глаз мог извлечь дополнительную информацию. Если вы следите за полемикой в области так называемого микро-«заикания» и задержки кадров в играх, то знаете, что одна из причин, по которой микро-«заикание» является менее интуитивным объективным показателем производительности по сравнению со скоростью передачи кадров, — это снижение преимущества более низкого времени смены кадров по мере того, как постоянная скорость передачи кадров приближается к 60 кадрам в секунду.
Уменьшение задержки кадров с 33,3 мс 30 кадров в секунду до 25 мс 40 кадров в секунду более заметно, чем увеличение количества кадров в секунду с 40 до 60, и это несмотря на то, что во втором случае происходит более значительный сдвиг. Если Кук прав, этот феномен объясняется тем, что собственная супер-разрешающая способность глаза наиболее эффективно работает на отметке примерно 43 кадра в секунду. Еще одним интересным аспектом наблюдений ученого является то, что более высокая скорость передачи кадров при более низком разрешении может обеспечить лучшие результаты , чем популярный в наши дни показатель 1080p 30 fps. Поверят ли в это разработчики или нет — пока что вопрос открытый. Большинство тайтлов для Xbox не смогли добиться показателя 1080p 30 fps и предпочли , нежели опускаться до свойственного прошлому поколению показателя 720p. Если вы хотите увидеть наглядное сравнение картинки при 60 и 30 кадрах в секунду, посетите специальный веб-сайт , где выложено по паре игровых сцен в формате MP4. Это не YouTube-ролики, и мы подтверждаем, что видео слева действительно имеет частоту 30 кадров в секунду, а видео справа — 60 кадров в секунду.
К сожалению, пока нет никаких признаков того, что исследования Кука будут использованы в игровой индустрии, даже если их подвергнут тщательному анализу. Игровая индустрия зациклена на разрешении, а не на скорости передачи кадров, и если показатель 720p 60 fps в наше время политически недееспособен, то практически нет надежды на то, что показатель 1080p 60 fps 30 fps имеет больше шансов на жизнь в будущих игровых продуктах. Конечно, у игр на ПК есть преимущество, так как перечисленные выше режимы там доступны, однако для их использования могут потребоваться довольно мощные видеокарты. ПК-мониторы с активированной вертикальной синхронизацией поддерживают только частоту обновления экрана 60 Гц, но если скорость передачи кадров в игре упадет, то монитор автоматически снизит частоту обновления до 30 Гц или 20 Гц.
Это дает преимущество в ситуациях, где нужно следить за быстро движущимися объектами. Например, в соревновательных шутерах или даже некоторых видах спорта, где используется мяч.
Например, при 30 FPS на экране за секунду сменяется 30 кадров.
А при 60 FPS - уже 60 кадров. FPS напрямую влияет на плавность отображаемого видеоряда. Чем он выше, тем меньше "рывков" и "дерганий" будет в динамичных сценах. Высокий FPS особенно важен в компьютерных играх и фильмах, где много быстрых движений камеры или объектов. Например, шутеры или гоночные симуляторы требуют FPS не ниже 60, чтобы геймплей был комфортным. А для кинематографических фильмов достаточно стандарта в 24 кадра в секунду. Как устроен человеческий глаз Чтобы понять, какое количество FPS способен различать человек, стоит разобраться, как устроен наш глаз. В сетчатке глаза есть два типа фоторецепторов: Палочки - чувствительны к яркости, отвечают за черно-белое изображение.
Колбочки - чувствительны к цвету, отвечают за цветное изображение. Эти рецепторы преобразуют свет в нервные импульсы, которые затем поступают в мозг. У палочек и колбочек есть важное свойство - инертность. Это время, которое требуется рецептору, чтобы воспринять изображение и отправить сигнал в мозг. Чем ниже инертность, тем быстрее глаз успевает "переключаться" между кадрами и тем выше эффективный FPS. Инертность палочек составляет около 20 мс, а колбочек - около 50 мс. То есть палочки реагируют примерно в 2 раза быстрее. Также палочки и колбочки распределены по сетчатке неравномерно: В центре - примерно одинаково палочек и колбочек По краям - только палочки При работе за компьютером или просмотре фильмов используется в основном центральная область сетчатки.
Поэтому при подсчете FPS, воспринимаемого глазом, нужно ориентироваться на показатели смеси палочек и колбочек.
Согласно исследованиям, минимальная инертность зрительной системы человека составляет около 20 мс. Это эквивалентно 50 кадрам в секунду. Дело в том, что зрительная система включает в себя не только глаз, но и мозг, который тоже активно обрабатывает информацию. Например, благодаря эффекту последовательных изображений мозг способен "дорисовывать" недостающие кадры при резких переходах и движениях. Поэтому даже при FPS ниже порога физического восприятия, мозг компенсирует это ощущением плавности. А вот разницу выше 120 кадров в секунду человек уже физически не способен распознать. Часто возникает вопрос - а есть ли разница между мониторами с частотой обновления 60 Гц и 120 Гц, если человек не способен заметить больше 60 FPS? Дело в том, что Гц - это не то же самое, что FPS.
Гц - это количество сигналов в секунду, поступающих на матрицу монитора. А FPS - сколько раз в секунду происходит смена кадров изображения. При одинаковом FPS более высокая частота обновления позволяет уменьшить видимые артефакты - искажения и "шлейфы" в динамичных сценах. Дело в том, что пиксели матрицы не успевают мгновенно переключаться между цветами и яркостью. На смену цвета у них уходит порядка 50 мс. При 60 Гц за это время может смениться целый кадр! Из-за этого изображение на 60 Гц выглядит чуть более "размыто", чем на 120 Гц. Влияние FPS на зрение человека Сколько кадров в секунду видит человеческий глаз - это вопрос не только про комфорт, но и про здоровье. Например, при просмотре видео с низким FPS менее 24 может возникать дискомфорт в виде: головных болей быстрой утомляемости тошноты Эти симптомы вызваны тем, что глаз постоянно пытается "догнать" резкие изменения картинки, но не успевает из-за низкого FPS.
Это сильно утомляет зрение.
Сколько ФПС у нашего зрения, у глаз человека?
Хотя некоторые люди действительно могут не заметить существенной разницы после 30 кадров в секунду, большинство людей способны воспринимать разницу примерно до 60 кадров в секунду и даже выше. В некоторых видах деятельности, например, в играх с быстрым темпом или при просмотре спортивных состязаний на высоких скоростях, более высокая частота кадров может оказаться полезной, поскольку она обеспечивает более плавное движение и уменьшает размытость изображения. Хотя в некоторых сценариях более высокая частота кадров может улучшить визуальное восприятие, это не всегда так. Существует точка убывающей отдачи, когда разница в плавности становится менее заметной, а требования к производительности возрастают. Кроме того, для получения отличных визуальных впечатлений важны и другие факторы, такие как разрешение, точность цветопередачи и общее качество дисплея.
Хотя некоторые люди действительно могут заметить разницу между более высокой частотой кадров, существует предел восприятия человеческого глаза. Исследования показали, что большинство людей начинают с трудом воспринимать разницу после 200-300 кадров в секунду. Поэтому практической необходимости в дисплеях с частотой кадров, значительно превышающей этот диапазон, нет. В целом важно помнить, что человеческий глаз - сложный орган, и в способности воспринимать частоту кадров могут существовать индивидуальные различия.
Лучше всего выбирать частоту кадров и дисплей, соответствующий вашим потребностям и предпочтениям. Следует помнить, что такие факторы, как тип контента, качество дисплея и индивидуальная чувствительность, могут влиять на восприятие разницы между различными частотами кадров. Возможности человеческого глаза по восприятию частоты кадров Человеческий глаз - это невероятный орган, способный обрабатывать визуальную информацию с поразительной скоростью. Несмотря на то, что ведутся споры о точном количестве кадров в секунду fps , которые может воспринимать человеческий глаз, общепризнанно, что глаз способен распознавать изменения в зрительных стимулах с гораздо большей скоростью, чем традиционные кино- и видеокамеры.
Вместо этого наше восприятие движения представляет собой непрерывный процесс, включающий интеграцию визуальной информации во времени. Это означает, что глаз может обнаружить изменения в визуальных стимулах, происходящие в течение доли секунды. Читайте также: Как получить Call Of Duty Black Ops 3 бесплатно - пошаговое руководство Исследования показали, что средний человек способен воспринимать изменения в зрительных стимулах со скоростью около 60 кадров в секунду. Это означает, что если серия изображений предъявляется глазу со скоростью 60 кадров в секунду, то изменения между каждыми кадрами будут восприниматься как плавное движение.
Однако важно отметить, что индивидуальные особенности зрительного восприятия могут существенно влиять на эту частоту. У некоторых людей порог восприятия изменений в зрительных стимулах может быть выше, и для восприятия плавного движения может потребоваться более высокая частота кадров. Кроме того, на восприятие движения могут влиять такие факторы, как сложность зрительных стимулов, яркость окружения и уровень внимания человека. Эти факторы могут влиять на восприятие движения и затрудняют определение точной частоты кадров для человеческого глаза.
В заключение следует отметить, что, хотя точное количество кадров в секунду, воспринимаемых человеческим глазом, до сих пор является предметом дискуссий, общепризнанно, что глаз способен распознавать изменения в зрительных стимулах с гораздо большей скоростью, чем традиционные кино- и видеокамеры. Восприятие движения - это непрерывный процесс, включающий интеграцию визуальной информации во времени, и такие факторы, как индивидуальные особенности и условия окружающей среды, могут влиять на восприятие движения. Понимание научных основ зрения Зрение является одним из наиболее важных органов чувств для человека. Оно позволяет нам воспринимать окружающий мир и ориентироваться в нем.
Но как на самом деле происходит процесс зрения? В этом разделе мы рассмотрим научные основы зрения и то, как наши глаза способны воспринимать изображения. На самом базовом уровне зрение - это результат попадания света в глаза и его интерпретации нашим мозгом. Этот процесс начинается, когда свет отражается от объекта и проходит через роговицу - прозрачную переднюю поверхность глаза.
Роговица помогает сфокусировать свет, направляя его через зрачок, который представляет собой отверстие в центре радужной оболочки. Читайте также: Узнайте, как строить в Fortnite: Основные советы и приемы Попадая в глаз через зрачок, свет проходит через хрусталик, который фокусирует свет на сетчатке. Сетчатка - это слой специализированных клеток в задней части глаза, содержащий фоторецепторы, называемые палочками и колбочками. Эти фоторецепторы отвечают за распознавание света и передачу зрительной информации в мозг.
Палочки в сетчатке отвечают за черно-белое зрение в условиях низкой освещенности, а колбочки - за цветное зрение и остроту зрения при ярком свете.
В опыте участвовало 88 человек: им предложили наблюдать за LED-источником освещения в специальных очках, способных мигать с разной скоростью. Тест под названием «критический порог слияния мерцаний» позволил определить специалистам частоту, при которой участники исследования переставали различать мерцание. Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду.
При телевещании картинка будет более естественной и даже чем-то похожей на театральную постановку. Обратный эксперимент: попробуйте купить DVD-диск с футбольным или хоккейным матчем. Спортсмены будут двигаться как-то более резко, а трансляция удивит непривычной «рваностью», что особенно заметно при горизонтальном перемещении камеры вдоль стадиона. В цифровых форматах вроде DVD или Blu-Ray используются традиционные 24 кадра в секунду без обтюраторов или чересстрочных кадров, поэтому на телевизорах с большой диагональю в панорамных сценах легко заметить раздражающие подёргивания изображения, в частности по краям экрана — из-за особенностей периферийного зрения. К сожалению, цифровые носители с 48, 60 или 100 кадрами в секунду в наши дома пока не спешат.
Зато насладиться красотами высокой частоты кадров можно с помощью современных телевизоров, поддерживающих технологию плавности изображения. Пионером в этой области стала компания Philips со своей патентованной системой Digital Natural Motion, которая позволяет выводить на экран 100 кадров в секунду. Принцип работы в общих чертах довольно прост: между исходными информативными кадрами видеопроцессор телевизора вставляет промежуточные кадры, которые обеспечивают высокие чёткость и плавность перехода. По заявлениям производителей сейчас некоторые устройства обладают частотой до 400 и даже 800 Гц, то есть рассчитываются несколько сотен искусственных кадров в секунду. Однако при длительном пользовании в домашних условиях вы заметите ряд неудобств, связанных с работой «уплавняловок» на вашем телевизоре. Во-первых, достаточно распространенной является проблема с подключением компьютера. Например, LED-панели Samsung предпочитают, чтобы частота входящего сигнала точно соответствовала количеству кадров в секунду в проигрываемом видеофайле. При выводе картинки на телевизор каждые несколько секунд будут появляться подёргивания и артефакты — система Motion Plus будет пытаться рассчитывать дополнительные кадры исходя из 60 имеющихся, тогда как в самом фильме их только 24. Можно перевести видеокарту принудительно в режим 24 Гц, но тогда вы будете вынуждены бороться с медленной работой интерфейса операционной системы, да и подёргивания по непонятным причинам в случае LED-панелей от Samsung так и не исчезнут до конца.
Во-вторых, даже новые технологии расчёта дополнительных кадров в самых навороченных LED-панелях иногда «ошибаются». В некоторых сценах вы будете замечать артефакты и шлейфы. Особенно часто это случается в эпизодах, где объект на крупном плане быстро перемещается вдоль экрана. И в-третьих, отнюдь не любой контент выигрывает за счёт добавления плавности. Безусловно, это полезно для фильмов и мультфильмов в 3D — тогда объёмность кажется более насыщенной. Хороши системы расчёта новых кадров и для картин, где преобладают панорамные съёмки и высок уровень детализации, вроде того же «Аватара», «Трона: наследие» или «Лабиринта Фавна».
Для просмотра стандартного видео самым оптимальным считается скорость 24 кадра в секунду, именно так мы смотрим кинофильмы в кинотеатрах. А вот новый широкоэкранный формат IMAX использует кадровую частоту равную 48 кадрам в секунду. Это создает эффект погружения в виртуальную реальность с максимальным приближением к реальности. Это ощущение может быть еще больше усилено применением 3D-технологий.
При создании компьютерных игр разработчики используют цикл из 50 кадров в секунду. Это делается для достижения максимальной реалистичности игровой реальности. Но здесь имеет свое значение и скорость интернета, поэтому частота кадров может меняться в меньшую или большую сторону. Мы рассмотрели, сколько кадров в секунду видит человек. Редактор PC Gamer Алекс Уилтшир Alex Wiltshire поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым. Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью. Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом.
Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Глаза и мозг работают в тандеме Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное - и наоборот. Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки. По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально. Игры - едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей. Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание.
Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля. Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение. Как отмечает профессор Томас Бьюзи Thomas Busey , на высоких скоростях задержка меньше 100 миллисекунд начинает действовать так называемый закон Блоха. Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды. По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света. Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая. Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков.
Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение , напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения. По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали. Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора. Сколько вешать в кадрах Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду. Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь , однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной.
Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию от картинке при частоте выше 20 Гц. По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше. Когда вы хотите произвести визуальный поиск, проследить за несколькими объектами или выяснить направление движения, ваш мозг захватит примерно 13 кадров в секунду из общего потока. Для этого он вычисляет некое среднее значение из ряда соседних кадров, составляя из них один. Эдриен Чопин, исследователь Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино. Тем не менее он понимает, что люди видят разницу между 20 и 60 герцами. Если вы видите разницу, это не значит, что вы станете лучше играть. После 24 Гц ничего уже не будет существенно меняться, хотя у вас и может возникнуть обратное чувство. Эдриен Чопин, исследователь В чём учёные сошлись, так это в том, что высокая частота кадров несёт по большей эстетический смысл, чем практический, и они не считают, что игры стоит развивать в этом направлении.
Чопин убеждён, что разработчикам стоит больше думать об увеличении разрешения, а Делонг хотел бы, чтобы создатели мониторов и телевизоров думали о том, как достигнуть максимальной контрастности в картинке. Опубликовано: 6 Январь 2014 в рубрике Tags: , FPS и человеческий глаз: сколько fps воспринимает глаз?
Какое количество кадров в секунду воспринимает человеческий глаз
Точность человеческого глаза: Быстрая автоматическая фокусировка на расстояниях от 10 см (молодые люди) — 50 см (большинство людей от 50 лет и старше) до бесконечности. У людей количество фпс на периферии зрительной системы увеличено. Человеческий глаз может видеть до 1000 FPS и, возможно, выше. Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. Сколько FPS человек может различить глазом? Человеческий глаз способен воспринимать около 30 кадров в секунду (30 FPS) как отдельные изображения.
Сколько fps воспринимает человеческий глаз?
В США применение такого метода может привести к потере лицензии для телевещания. Какие способности имеет зрение? Стоит рассмотреть строение человеческого глаза. Колбочки и палочки — составляющие фоторецепторов, так называемой системы восприятия.
Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов. У людей количество фпс на периферии зрительной системы увеличено.
Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение.
Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс.
Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду. Однако это вовсе не предел, так как известны случаи, где фпс было 220. Предел ли это?
В компьютерных играх этот показатель стал значительно больше, что позволило сделать их изображение более правдоподобным. Ученых интересуют ответы на вопросы, какая частота кадров максимальна и что произойдет, если увеличить fps, каков в этом смысл. И правда, логичнее было бы ничего не менять, однако производителей компьютерных игр такое решение не устроило.
И в этом может убедиться каждый геймер. Создатели начали проводить эксперименты. Целью этого было узнать, какое количество кадров необходимо, чтобы видимая картинка на мониторе казалась реалистичной.
Хотя в стандартных мультфильмах, кино и видео норма этого показателя равна 24, но результаты опытов помогли киноиндустрии и игровым компаниям продвинуться вперед. А основным количеством кадров в гонках, аркадах, шутерах и других стало 50, однако может изменяться из-за скорости интернета. Рождение стандарта С возникновением звукового кино возникла настоятельная потребность в повышении частоты.
В то время звуковую дорожку записывали на пленку непосредственно рядом со зрительной картинкой. Она имела вид полос, соответствующих выбранной частоте. Ввиду незначительной продолжительности пленки 30 см , прокручиваемой за 1 сек.
Поэтому создатели кино пришли к выводу, что длину следует увеличить. Увеличение показателей FPS кадровой частоты именно до двадцати четырех было также продиктовано соображениями удобства планирования бюджета съемок. Частота увеличивалась до 30-60 кадров за 1 сек.
Такая скорость требовала использования, как во время съемок, так и в процессе воспроизведения фильмов в кинотеатрах, более выносливой и точной техники. При этом происходило существенное увеличение расхода пленки, стоимости монтажных работ, времени на работу. Разница 24 и 60 кадров в секунду В результате тотальной электрификации европейских стран и рождения TV этот показатель был утвержден окончательно, поскольку он легко сочетался с показателями электротока.
Такой подход обеспечивал одну смену кадра в одном синусоидальном периоде. Стандартная частота здесь составляет от 30 до 97 кадров в 1 сек. Каков предел Люди, обладающие высокой чувствительностью зрения, не замечают частоту и мерцание в 1000 герц.
Нейробиологи из Массачусетского технологического института установили минимальное время, в течение которого человеку нужно показывать изображение, чтобы мозг сумел его обработать. Показатель равен 13 миллисекундам.
Человеческая сетчатка глаза обладает примерно 5 миллионами цветных рецепторов, что в переводе на пиксельный язык равняется всего лишь 5 мегапикселям. Не самый продвинутый показатель, по сравнению с современными устройствами, не так ли? Несмотря на это, человеческий глаз имеет еще около ста миллионов монохромных рецепторов, которые определяют создание анализирующим поступающую информацию устройством — мозгом — полной картины окружающего пространства. Кроме того, органы зрения человека, в отличие от фотокамеры, принимают информацию не статично, а в движении, таким образом формируя общее панорамное изображение, эквивалентное 576 мегапикселям. Что же, а вот этот результат уже воодушевляет! У каких животных самое лучшее зрение?
Несмотря на сложную систему устройства человеческого зрения, позволяющую добиться впечатляющего результата в 576 мегапикселей, в природе этот показатель не считается пределом. Самой сложной зрительной системой среди всех обитающих на планете Земля существ, обладают так называемые павлиновые креветки-богомолы lysiosquillina glabriuscula , которые обитают у берегов Австралии. Согласно исследованиям, эти удивительные существа обладают сверхмощных зрением, который во многом превосходит все известные человеку оптические системы.
При таком подходе смена кадра происходит один раз на период синусоиды. Частоту кадров на ТВ привязали к синусоиде тока в сети Сколько кадров в секунду в действительности видит глаз Человеческое зрение — это не дискретная система, возможности которой можно описать простыми цифрами. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду.
А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота.
Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные. Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты. Сравнение 24 и 60 кадров в секунду на динамичном видео Чтобы проверить это, не нужно далеко ходить. Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом — на высоких или максимальных, чтобы получить меньше 30 FPS.
Навигация по записям
- Сколько герц комфортно для глаз?
- Сколько видит ФПС человеческий глаз?
- Комментарии
- Как видит человек со 100% зрением?
- ⇡ В кинозалах
- Ответы : Сколько fps видит человеческий глаз?
Как человеческий глаз воспринимает свет?
- Фпс глаза человека
- Сколько должно быть кадров в секунду. Сколько кадров в секунду видит человеческий глаз
- Сколько кадров в секунду видит человеческий глаз
- ЧЕЛОВЕЧЕСКИЙ ГЛАЗ FPS: СКОЛЬКО МЫ МОЖЕМ ВИДЕТЬ И ОБРАБАТЫВАТЬ ВИЗУАЛЬНО? - ЗДОРОВЬЕ
Сколько FPS может видеть человеческий глаз?
Частота кадров: сколько визуальной информации воспринимает человек? | Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. |
Сколько кадров в секунду видит человеческой глаз – скорость восприятия | Для человеческого зрения вообще вряд ли можно ввести такой параметр, поскольку зрительное восприятие человека есть непрерывный процесс но ответ дать можно. |
Сколько кадров в секунду видит человеческий глаз в кино и играх.
Какое количество кадров в секунду воспринимает человеческий глаз | 24 кадра в секунду – не предел возможностей человеческого глаза. |
Иллюзия движения / Хабр | Сколько FPS человек может различить глазом? |
До 60 fps: исследование наглядно показало возможности человеческого глаза - | Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS». |
Учёные: некоторые люди видят больше FPS, чем другие | Эта статья о том, какую частоту кадров может воспринимать человеческий глаз. |
До 60 fps: исследование наглядно показало возможности человеческого глаза
Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Большее количество кадров человеческий глаз распознаёт периферийным зрением, а то, на что непосредственно направлен Ваш взгляд, лучше воспринимается в замедленной съёмке. FPS и человеческий глаз: сколько fps воспринимает глаз? Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. А сколько кадров в секунду видите вы? Академический журнал Plos One опубликовал любопытное исследование под названием «Скорость зрения: индивидуальные вариации критических порогов слияния мерцаний». Сколько FPS у человеческого глаза? Видео-ответы Отвечает Александр Черданцев Именно от 1 кГц 1000 кадров в секунду — предел восприятия, преодолеть который большинство человеческих глаз не может.
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
“Так сколько же FPS способен увидеть человеческий глаз?”. Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Кадры и человеческий глаз. Но если 24 FPS еле приемлем для кино, то какой оптимальный фреймрейт? Человеческий глаз спокойно может заметить разницу между 24, 60, 120 и т.д. количеством кадров.
Сколько кадров в секунду видит человек. Строение глаза и интересные факты
FPS для человеческого глаза: как много мы можем увидеть и обработать визуально? | Эта статья о том, какую частоту кадров может воспринимать человеческий глаз. |
FPS человеческого глаза [1] - Конференция | Сколько ФПС видит глаз человека. |
В чем разница между камерой и человеческим глазом? | 24 кадра в секунду – не предел возможностей человеческого глаза. |
Сколько герц воспринимает человеческий глаз. Сколько видит ФПС человеческий глаз | Сколько фпс видит человек максимум? |