Исследователи разработали и внедрили «мозго-спинномозговой интерфейс» (BSI), который образует неврологическую связь с использованием беспроводного цифрового моста между спинным мозгом и головным мозгом человека. написали исследователи. Новости. Тематики. По сути дела, спинной мозг — это нервная трубка, которая выросла, достигла размера 40–45 сантиметров и выполняет в нашем организме очень важные функции, связанные с управлением телом. После этого у животного с контузионной травмой спинного мозга была зафиксирована положительная динамика его состояния, в частности, частично восстановилась двигательная активность.
Травматическое повреждение спинного мозга (Continuum, февраль 2024)
написали исследователи. Клетки микроглии при травме спинного мозга активируются, то есть возникает иммунный ответ, и его степень напрямую зависит от тяжести травмы. Новости окружающая среда Спинной мозг беспроводным способом подкл. Повреждения спинного мозга представляют собой серьезную медицинскую проблему, часто означающую паралич и необратимую функциональную потерю для пострадавших. Новости. Тематики. Когда участник исследования думает о движении руки или кисти, мы «перезаряжаем» его спинной мозг и стимулируем его мозг и мышцы, чтобы помочь восстановить связи, обеспечить сенсорную обратную связь и способствовать выздоровлению.
Ученые вернули возможность ходить мышам с травмами спинного мозга
Медновости. Гипотезы и открытия. Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19. спинной мозг? Данное видео даст вам полное представление об этом органе. Здесь отлично видно, что из себя представляют дорзальные и вентральные корешки спинномозговых нервов, как выглядит сегмент спинного мозга и, главное, где находится конский хвост. Главная» Новости» Спинной мозг новости.
Важная победа над природой: как скоро можно будет чинить спинной мозг
Препарат спинного мозга Без него мы бы утратили возможность двигаться и шевелить конечностями. Травмы 2023 Выпущено вживляемое в тело устройство для реабилитации людей с травмами спинного мозга 15 мая 2023 года компания Onward Medical со штаб-квартирой в Эйндховене Нидерланды сообщила о первом успешном использовании имплантируемого устройства ARC-IM для реабилитации людей с травмами спинного мозга. Подробнее здесь.
В ходе многочисленных лабораторных экспериментов, проводимых с 1999 года, эти вещества, введенные точно в место повреждения позвоночника, смогли частично восстановить функциональность спинного мозга. В частности в 2000 году был проведен эксперимент на свиньях, в ходе которого в спинной мозг животного спустя 8 часов после травмы ввели PEG. Проблема этих, казалось бы очень успешных, экспериментов в том, что в них позвоночник травмируется сверхострыми лезвиями, что радикально ускоряет процесс сращивания аксонов, особенно в присутствии PEG или стволовых клеток. В реальности травмы мозга обычно связанны с обширным повреждением нервной ткани позвоночника, с гибелью участков протяженностью в 0,5-1 см. Полностью соединить такой разрыв нервных путей ученые до сих пор не могут. Поиск решения Казалось бы, при нынешнем уровне развития техники «перебросить» набор электрических импульсов от одного нервного пучка к другому не очень сложно. К сожалению, имплантация и присоединение электродов ко множеству нейронов спинного мозга еще долгое время будет фантастикой и гораздо перспективнее найти способ «заставить» организм самостоятельно излечить травму. Определенные успехи в этой области уже есть.
В ноябре 2012 года команда ученых из Кембриджа и Центра регенеративной медицины Университета Эдинбурга опубликовала результаты эксперимента по исцелению подопытных собак с тяжелым повреждением спинного мозга. Ученые проводили опыты на 34 собаках, в основном на таксах. Уникальность этих экспериментов в том, что они были максимально приближены к тем условиям, что могут возникнуть в реальных случаях травм у людей. Другими словами, были взяты обычные домашние собаки, которые в различное время получили травмы позвоночника, связанные с разрывом нервных путей и потерей части нервных клеток. После травм собаки в течение 12 месяцев и более не могли использовать свои задние ноги и потеряли чувствительность задней части туловища. Надо отметить, что у такс часто возникают такие же повреждения спинного мозга, как и у людей: связанные со смещением позвонков относительно друг друга. Для лечения собак применили перспективную технологию имплантации обкладочных нейроэпителиальных клеток OEC. Эти клетки находятся в носу и обладают свойствами нейральных стволовых клеток, то есть могут превращаться в нейроны. Впервые нейральные стволовые клетки из слизистой оболочки носа взрослого человека выделили в 2001 году, что стало важнейшим достижением, поскольку из носа добывать нейральные стволовые клетки относительно просто. Собак разделили на две группы: одной ввели стволовые клетки непосредственно в место травмы позвоночника, а вторая группа была контрольной и получила плацебо.
Через месяц собак в специальном поддерживающем корсете отправили на беговую дорожку для проверки функций конечностей.
Ученым уже давно известно, что двигательная активность спинного мозга может регулироваться с помощью обучения даже без участия головного мозга. Наиболее наглядно это было продемонстрировано на примере обезглавленных насекомых, чьи ноги все еще можно обучить избегать внешних сигналов. До сих пор не удавалось выяснить, как именно это происходит, а без такого понимания феномен оставался не более чем любопытным фактом. Как объясняет Такеока, «понимание основного механизма очень важно, если мы хотим понять основы автоматизма движений у здоровых людей и использовать эти знания для реабилитации пациентов с травмами позвоночника». Прежде чем перейти к изучению нейронных связей, исследователи разработали экспериментальную установку, которая позволила им изучить процесс адаптации спинного мозга мыши.
Под процессом понимается как обучение, так и запоминание без участия головного мозга. В каждом тесте участвовали экспериментальная и контрольная мыши, чьи задние лапы свободно свисали. Если задняя лапа экспериментальной мыши опускалась слишком низко, она получала электрическую стимуляцию, импульс, которого мышь хотела бы избежать.
Ru и Inscience. Юрий Герасименко. Фото: ИЭФБ РАН Долгое время считалось, что основная функция спинного мозга — лишь передача сигналов от головного мозга к мотонейронам в исполнительных органах и обратная передача сенсорной информации. Поэтому, если у человека, например из-за травм нарушалась связь между головным и спинным мозгом, полагали, что он больше никогда не сможет самостоятельно передвигаться. Однако ученые обнаружили, что в спинном мозге существует собственная спинальная нейронная сеть, отвечающая за локомоцию, то есть движение.
Автор доклада с коллегами решили выяснить, что может сам по себе спинной мозг при нарушении его связи с головным мозгом , если искусственно стимулировать активность спинальных нейронов. Российские исследователи, а также их американские коллеги независимо друг от друга провели эксперименты на животных кошках и мышах , которые показали, что при стимуляции спинного мозга обездвиженным животным действительно можно вернуть способность ходить. В качестве стимуляторов ученые протестировали множество нейромедиаторов и подобрали такой состав соединений, эффект которого столь хорош, что локомоция больных животных перестает отличаться от движений здоровых.
Ученые вернули возможность ходить мышам с травмами спинного мозга
Новости Казахстана. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года. Они создали из стволовых клеток каркасы, которые можно успешно имплантировать в спинной мозг с целью восстановления повреждений нервов. Россиянин Спиридонов оценил новость о пересадке мозга хирургом Канаверо. После этого у животного с контузионной травмой спинного мозга была зафиксирована положительная динамика его состояния, в частности, частично восстановилась двигательная активность. По сути дела, спинной мозг — это нервная трубка, которая выросла, достигла размера 40–45 сантиметров и выполняет в нашем организме очень важные функции, связанные с управлением телом. РИА Новости: Бойцы ВС РФ спаслись от дронов ВСУ на машине с "Волнорезом".
Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг
При частичном повреждении спинной мозг может передавать некоторые сигналы в головной мозг и наоборот, поэтому такие пациенты обладают некоторой чувствительностью и даже некоторыми моторными функциями ниже пораженной области. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года. Ученые нашли способ восстановления ходьбы после повреждения спинного мозга —. Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине. Все новости Лента новостей Hardware Software События в мире В мире игр IT рынок Новости сайта.
Починить спинной мозг: новые терапии на грани фантастики
Затем эти имплантаты были использованы для реабилитации парализованных ранее мышей. Ведущий ученый исследования, профессор Тал Двир. Sagol Center for Regenerative Biotechnology реклама Исследования проводятся под руководством профессора Тала Двира из Сагольского центра регенеративных биотехнологий Тель-Авивского университета. Его команда приступила к работе, взяв небольшие образцы жировой ткани из брюшной полости трех человек, после чего отделила соматические клетки внутри этой ткани от окружающего их материала внеклеточного матрикса. С помощью генной инженерии клетки были перепрограммированы, превратившись в так называемые индуцированные плюрипотентные стволовые клетки. Интерстициальный матрикс, тем временем, был преобразован в гидрогель.
Поскольку гель был изготовлен из собственных тканей каждого человека, это исключало возможность его отторжения иммунной системой при имплантации в организм. Некоторые образцы жировой ткани живота, использованные в исследовании.
Она пока очень дорогостоящая и используется в научных, а не клинических целях. Кроме того, отечественными учеными разработан метод неинвазивной стимуляции нейронов спинного мозга с помощью накожных электродов.
Накожная стимуляция позволяет не так избирательно, но все-таки активировать разные части нейронной сети в спинном мозге. Этот подход имеет все шансы войти в клиническую практику для восстановления пациентов с локомоторными нарушениями», — подвел итог Юрий Петрович Герасименко. Текст: Виталина Власова Съезд организован Физиологическим обществом им. Павлова и Институтом эволюционной физиологии и биохимии им.
Сеченова РАН и посвящен 300-летию Российской академии наук и включен в инициативу «Работа с опытом» Десятилетия науки и технологий. Материал подготовлен при финансовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий».
Однако биологические принципы, по которым работает такая терапия до сих пор не исследованы. Ученые из Федеральной политехнической школы Лозанны под руководством Клаудии Кате Claudia Kathe предположили, что электростимуляция воздействует на еще неисследованные нейроны, которые начинают участвовать в ходьбе лишь при восстановлении от паралича. Эту гипотезу поддержали и данные, полученные учеными — в клиническом испытании терапии нейронная активность в поясничных сегментах спинного мозга падала, а не возрастала.
Это позволило предположить, что восстановлением активности после паралича занимается другая группа нейронов, которая не выполняет рутинную двигательную функцию. Чтобы проверить эту гипотезу, исследователи создали мышиную модель травмы спинного мозга, а также и терапевтическую систему стимуляции и механической поддержки веса тела при ходьбе. Чтобы исследовать, как нейроны мышей реагируют на терапию, ученые создали целый атлас клеток, основанный на экспрессии их генов и расположении в спинном мозге. Для этого биологи использовали секвенирование РНК в каждом из ядер клеток отдельно snRNA-seq и нанесли результаты секвенирования на проекцию спинного мозга. Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов.
Через сутки ученые повторили тест, и оказалось, что спинной мозг сохранил память о прошлом опыте — лапы мышей быстрее поднимались, принимая позу избегания. Для изучения нейронных цепей, которые делают возможным обучение и запоминание, исследователи повторили эксперимент на трансгенных мышах с «отключенными» нейронами спинного мозга. Им удалось определить две критические группы нейронов: одна была задействована при обучении, другая необходима для «вспоминания» усвоенного. При этом обучение не происходило у мышей с «отключенными» дорсальными задними нейронами спинного мозга, у которых активен ген Ptf1a. А «память» переставала работать при «отключении» расположенных спереди клеток Реншоу — эти нейроны, у которых активен ген En1, входят в состав контуров возвратного торможения. Кстати сказать, у обычных, нетрансгенных мышей искусственное возбуждение этих нейронов увеличивало скорость реакции животных на удар током при повторном тестировании — лапы животных принимали позу избегания еще быстрее!