Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения. Искусственный интеллект в здравоохранении, который когда-то был областью научной фантастики, теперь стал реальностью.
Применение искусственного интеллекта в медицине
Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют.
Искусственный интеллект в медицине: главные тренды в мире
Диагностика В России записаться на приём к врачу можно через интернет. Однако пациентов много, поэтому ждать приёма приходится целыми днями и даже неделями. Технологии ИИ позволяют решить этот вопрос. Например, с помощью телемедицины и программы mHealth. Кроме того, искусственный интеллект учат распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушения зрения, туберкулез, нарушение работы головного мозга. Примером работы программы выступает сервис Ada. Это мобильное приложение, которое задаёт человеку вопросы, а тот — описывает симптомы, после чего Ada ищет информацию о проблеме и даёт рекомендации.
Существуют похожие сервисы, способные указать на заболевания, и даже на сахарный диабет. Для людей, которые выписались из больницы разработано специальное приложение Sense. Набирает популярность генетический анализ с помощью сервиса Sophia Genetics. Так, анализ ДНК даёт возможность выявить предрасположенность человека к некоторым заболеваниям: диабету, язве желудка и другим. Проект MedClueRx позволяет определить, какие лекарственные препараты могут помочь при депрессии, эпилепсии, заболеваниях нервной системы. Сервис ИИ MedWhat способен заменить личного врача — это приложение для мобильного телефона со встроенной функцией распознавания речи.
AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения. Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии. При этом дозировки препаратов были практически в два раза меньше, чем при стандартной терапии таких случаев. Персонализация терапии открывает невообразимые возможности для медицины. При наличии достаточного количества данных нейросети и другие методы машинного обучения могут помочь не только оперативно решать задачу оптимизации дозы, но и подбирать комбинации препаратов для повышения эффективности лечения, определять наиболее результативную тактику лечения и предотвращать критические состояния пациента уже на самых ранних стадиях. Подобные системы уже используются для контроля состояний пациентов и сбора долговременных медицинских данных, но со временем они будут все сильнее интегрированы в отрасль здравоохранения.
Важно отметить, что в последние годы всё больше внимания привлекают именно методы профилактики и ранней диагностики заболеваний. Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Нейросети и другие методы машинного обучения уже сегодня помогают создавать новые лекарства, исследовать болезни, мониторить состояние пациентов. Пока что их внедряют только крупные исследовательские центры и самые передовые клиники, но их влияние на медицину уже огромно. Сейчас идет активное развитие нейросетей в медицине — гораздо быстрее, чем можно представить. Большинство проектов и исследований не становятся известными широкой публике и появляются только в специализированных журналах. Тем не менее, они постепенно, шаг за шагом превращают медицину сегодняшнего в медицину будущего. И скоро мы это увидим своими глазами.
Читать далее:.
Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции. Робот входит в грудную клетку через небольшой разрез ниже грудины. Используя это устройство, хирурги теперь могут выполнять стабильное и локализованное картирование, зондирование и лечение всей поверхности сердца. Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций.
После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам.
В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей. Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт. Салли и Уолт — это анимированные аватары, виртуальные личные тренеры по здоровью из платформы iCare Navigator на базе искусственного интеллекта, предназначенной для взаимодействия с пациентами и их обучения. Компания TeleHealth Services, разработавшая iCare Navigator, утверждает, что использует электронные медицинские записи пациентов и применяет машинное обучение для выстраивания индивидуальных отношений. Приложение определяет, когда пациент будет наиболее восприимчив к информации о состоянии своего здоровья и можно будет лучше всего управлять его лечением.
Толчком для создания платформы iCare Navigator стали исследования Медицинской школы Бостонского университета, в ходе которых были разработаны виртуальные медсестры Луиза и Элизабет, объясняющие пациентам, например, когда принимать лекарства. Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании.
Большой вопрос также представляет собой интеграция новых технологий в существующие медицинские системы и обеспечение подготовки персонала к работе с новыми инструментами.
Конфиденциальность данных: с учетом того, что ИИ обрабатывает большое количество личной медицинской информации, вопросы конфиденциальности данных становятся крайне актуальными. Необходимо выработать регламент для защиты приватности пациентов. Недостаточная точность и ошибки в диагностике: в настоящее время алгоритмы ИИ могут допускать ошибки, иногда весьма серьезные, в диагностике и предсказании болезней.
Это создает потенциальные риски для пациентов и требует дальнейшего усовершенствования технологий. Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных. Плохие или неадекватные данные могут привести к неточным или даже опасным выводам.
Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии.
Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности. Более того, ИИ может активно использоваться для атаки на многочисленные компании.
Перспективы применения ИИ в медицине будущего Уже сейчас понятно, что интенсивное внедрение ИИ в медицинскую практику будет только нарастать.
Применение искусственного интеллекта в медицине
- Виртуальная реальность в медицине
- Комплексный анализ работы сервисов ИИ в медицине провели в Москве – Москва 24, 22.12.2023
- Как работают нейронные сети в медицинской сфере?
- Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией - Новости
- Обзор Российских систем искусственного интеллекта для здравоохранения
Искусственный интеллект создал новое лекарство всего за 21 день
Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями.
Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов.
Искусственный интеллект в медицине. Настоящее и будущее
Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Как именно программа решает столь сложную задачу и сможет ли компьютер полностью заменить специалистов? Корреспондент «Известий» Екатерина Моран все выяснила. Елизавета Бакши вместе с маленькой дочкой готовится к выписке. У Ксюши — врожденный гиперинсулинизм. Это редкое и тяжелое заболевание, при котором стремительно падает уровень глюкозы. Если его вовремя не обнаружить и не начать лечить, исход может быть летальным.
Помочь маленькой пациентке смогли лишь в Санкт-Петербурге, проведя специально исследование.
Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов.
Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями. Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам. Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах.
Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний. Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения. Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник. Врачам Сегодня искусственный интеллект отлично справляется с простыми задачами. Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале. Интересно еще и то, что сейчас разрабатывается все большее количество проектов, ориентированных именно на врачей: 1 IBM: Watson Это суперкомпьютер, способный отвечать на вопросы, которые задаются не на языке программирования, а на простом человеческом языке. Позднее было запущено подразделение Watson Health, главное направление которого — использование суперкомпьютера в медицине.
Компьютеру обеспечили доступ к огромному количеству данных: энциклопедиям, базам научных статей, а также медицинским картам и снимкам. Машина проанализировала свыше 50 миллионов анонимных медкарт и более 30 миллиардов снимков. Вся эта информация использовалась для дальнейшего применения в онкологии, для поиска на УЗИ признаков порока сердца.
Также в медицине начинают активно использоваться чат-боты, голосовые ассистенты, интеллектуальные помощники, работающие на основе таких технологий ИИ, как обработка естественного языка, распознавание и синтез речи, интеллектуальная поддержка принятия решений. Цифровые помощники освобождают квалифицированных медиков от выполнения рутинных задач и позволяют им полностью сосредоточиться на более сложных диагностических вопросах и лечении. Так, при поддержке Фонда содействия инновациям российская компания «Диджитал вижн солюшнс» разработала облачную офтальмологическую платформу на базе искусственного интеллекта. Медицинский директор компании-разработчика Евгения Каталевская рассказала РИА Новости, что в проекте используются сверточные нейронные сети, которые обучаются на размеченных специалистами данных и решают задачу сегментации признаков патологий на медицинских изображениях сетчатки глаза. ИИ выявляет заболевания на ранней стадии, когда пациент еще не имеет жалоб, а также пациентов, имеющих высокий риск потери зрения, которым срочно требуется сложное специализированное лечение», - говорит Каталевская. Создатели платформы видят свои перспективы во внедрении технологии в широкую клиническую практику, чтобы пациенты, пришедшие на осмотр в городскую поликлинику, имели доступ к передовым технологиям. РФ , который выделяет специальные гранты на модернизацию программного обеспечения с применением алгоритмов ИИ. Так, резидент «Сколково» и грантополучатель Фонда содействия инновациям — «Платформа третье мнение» «ПТМ» — уже в 19 регионах страны внедряет сервисы искусственного интеллекта, поддерживающие рабочий процесс врача при интерпретации диагностических исследований. Также в ряде регионов запускаются системы для анализа видеопотока в стационарах, отделениях реанимации и интенсивной терапии. При диспансеризации врачи обрабатывают большой поток исследований, не имеющих отклонений от нормы, что создает высокую рутинную нагрузку и повышает риск пропуска редкой патологии. А решение «ИИ-Мониторинг» от «ПТМ» позволяет в режиме реального времени анализировать видеопоток в стационарах и эффективно наблюдать даже за пациентами в тяжелом состоянии.
Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций. После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам. В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей. Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт. Салли и Уолт — это анимированные аватары, виртуальные личные тренеры по здоровью из платформы iCare Navigator на базе искусственного интеллекта, предназначенной для взаимодействия с пациентами и их обучения. Компания TeleHealth Services, разработавшая iCare Navigator, утверждает, что использует электронные медицинские записи пациентов и применяет машинное обучение для выстраивания индивидуальных отношений. Приложение определяет, когда пациент будет наиболее восприимчив к информации о состоянии своего здоровья и можно будет лучше всего управлять его лечением. Толчком для создания платформы iCare Navigator стали исследования Медицинской школы Бостонского университета, в ходе которых были разработаны виртуальные медсестры Луиза и Элизабет, объясняющие пациентам, например, когда принимать лекарства. Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании. Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению. Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры. Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу.