медиаторов нервного импульса. 21 октября, 16:35. Нервные импульсы поступают непосредственно к железам по. медиаторов нервного импульса. Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся.
Ответы на вопрос
- нейроглия (глия)
- Нервные импульсы поступают непосредственно к железам по - ВПР 2024
- нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
- Задание 17 ОГЭ по биологии с ответами, ФИПИ: организм человека, 3 из 6
- Нервные импульсы поступают непосредственно к железам по... -
- Регуляция желудочной секреции.
Человек и его здоровье (стр.51-75)
Рефлекторная дуга – это путь, по которому проходит нервный импульс во время осуществления рефлекса. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах). Отдел нервной системы. 1) вегетативный 2) соматический. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь.
Роль гипоталамуса
- Задание №9 ОГЭ по Биологии • СПАДИЛО
- Нервные импульсы поступают непосредственно
- Задание №9 ОГЭ по Биологии
- ГДЗ Стр. 47 Биология 8 класс Драгомилов | Учебник
Тест «Нервная система»
Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4. Исследователь проанализировал состав плазмы крови у человека до еды и через полчаса после еды. Как изменилось А содержание инсулина, Б содержание глюкозы, В содержание гликогена? Определите эти два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
Здесь проходит большое количество кровеносных сосудов. Твердая мозговая оболочка обладает болевой чувствительностью. Паутинная оболочка головного мозга расположена после твердой мозговой оболочки и имеет вид паутины. Образована соединительной тканью, клетки которой синтезируют внеклеточное вещество. Функция паутинной оболочки состоит в поддержании биохимического состава и регуляции давления ликвора - спинномозговой жидкости, которая циркулирует в паутинном пространстве. Мягкая сосудистая оболочка сращена с тканью мозга, состоит из рыхлой соединительной ткани, в толще которой находятся кровеносные сосуды, обеспечивающие питание мозга. Она принимает участие в образовании сосудистых сплетений желудочков головного мозга, продуцирующих спинномозговую жидкость ликвор. Эта информация доступна зарегистрированным пользователям Кровеносные сосуды, проникающие в ткань головного мозга, находятся в толще мягкой сосудистой оболочки. Между стенками сосудов и белым веществом головного мозга имеется периваскулярное пространство, которое заполнено ликвором и способствует регуляции оттока спинномозговой жидкости. Вокруг кровеносных капилляров такого пространства нет. Содержимое кровеносных капилляров отделено от ткани головного мозга гематоэнцефалическим барьером ГЭБ.
Назовите три органа. Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?
Они находятся главным образом в передних рогах спинного мозга и в специализированных центрах головного мозга. У эфферентного нейрона дендриты соединены с другими нейронами, а аксон - с рабочим органом мышцей или железой. Вставочные замыкательные, кондукторные, промежуточные , служащие для переработки и переключения импульсов. Один или несколько вставочных нейронов могут находиться между афферентным и эфферентным нейронами. Вставочные нейроны наиболее многочисленны и расположены во всех отделах спинного и головного мозга. Существует также классификация по признаку положения в сети нейронов относительно места действия: первичные, вторичные, третичные и т. Нейроны различаются между собой и размерами отростков. Нейроны с длинными аксонами — это клетки Гольджи 1-го типа, а нейроны с короткими аксонами — клетки Гольджи 2-го типа. В рамках данной классификации короткими считаются такие аксоны, ветви которых находятся в непосредственной близости от тела клетки. Клетки Гольджи 1-го типа эфферентные — нейроны с длинным аксоном, продолжающимся в белом веществе мозга. Кроме того, в зависимости от локализации различают следующие виды нервных окончаний — рецепторов: экстерорецепторы, интерорецепторы и проприорецепторы. Первые воспринимают раздражения, идущие из внешней среды при контакте или на расстоянии. Интерорецепторы воспринимают раздражения из внутренних органов. Среди них различают терморецепторы, механорецепторы, хеморецепторы, барорецепторы, ноцирецепторы болевые. Нейроны способны синтезировать особые химические вещества, называемые медиаторами. Медиаторы - посредники, которые обеспечивают передачу нервного импульса с одного клетки на другую от нейрона к нейрону или с нейрона на эффектор. Химия нейромедиатора. Синтез, накопление в синаптических пузырьках и экскреция в синаптическую щель конкретного нейромедиатора - критерий классификации. При этом к названию нейромедиатора добавляют эргический. По этой классификации различают нейроны: а холинэргические. Нейромедиатор — ацетилхолин. К ним относятся двигательные нейроны передних рогов спинного мозга, иннервирующие скелетные мышечные волокна; парасимпатические нейроны блуждающего нерва, иннервирующие сердце, ГМК, железы желудка; б адренэргические. Нейромедиатор — норадреналин. К ним относятся постганглионарные нейроны симпатического отдела вегетативной нервной системы, иннервирующие сердце, ГМК сосудов и внутренних органов. Форма нервной клетки зависит от числа, места отхождения отростков и их толщины. По этим признакам различают три основных типа нейронов в головном мозге: веретеновидные, звездчатые и пирамидные рис. Веретеновидные нейроны в основном характерны для VI — VII слоев коры головного мозга, редко эти нейроны встречаются и в V ом слое. Характерная особенность этих нейронов — наличие двух дендритов, направленных в противоположные стороны. Наряду с ними отходит еще и боковой дендрит, идущий в горизонтальном направлении. А — веретеновидный нейрон; Б — пирамидальный нейрон; В — клетка Пуркинье; Г — звездчатый нейрон. Классификация нейронов по форме тела и ветвлению отростков Звездчатые нейроны отличаются чрезвычайным разнообразием. Система звездчатых нейронов с сильно разветвленными дендритами в фило - и онтогенезе прогрессивно возрастает и усложняется в корковых концах анализаторов. Нервные клетки данного типа составляют значительную часть от всех видов клеточных элементов коры больших полушарий. Дендритные и нейритные окончания особенно сильно разветвляются в верхних слоях коры. Аксоны звездчатых нейронов обычно не выходят за пределы коры больших полушарий, а иногда и за пределы своего слоя. Пирамидные нервные клетки встречаются во всех слоях коры больших полушарий. Они сильно варьируют по своим размерам. Наиболее крупные нейроны, известные как клетки Беца В. В местах деления III на три подслоя гигантопирамидные нейроны залегают в третьем подслое. По чувствительности к действию раздражителей нейроны делятся на моно -, би -, полисенсорные. Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут реагировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более - полимодальными. Модальность — характер воспринимаемого и передаваемого сигнала например, механорецепторные, зрительные, обонятельные нейроны и т. Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем. Специфические образования нервной клетки. К специфическим образованиям относятся тигроидное вещество и нейрофибриллы. Тигроидное вещество тигроид, вещество Ниссля находится в перикарионе и дендритах, он отсутствует в аксоне. Под световым микроскопом тигроид выявляется как скопление базофильного вещества в виде глыбок или зерен. Крупные глыбки придают цитоплазме пятнистый вид шкуры тигра. С помощью электронного микроскопа установлено, что тигроид представляет мощно развитый гранулярный ЭПР. Ретикулум состоит из системы мембран с большим количеством рибосом. Высокое содержание РНК обуславливает базофилию тигроида. В нем содержится и белок. Тигроид — обязательный компонент нервной клетки, легко меняющийся в зависимости от функционального состояния. Тигролиз — распыление тигроидного вещества, отражает глубокие дистрофические изменения при нарушении целостности нейронов. При сильном возбуждении нейрона тигроид может исчезнуть вообще. Уменьшение тигроида и изменение его положения в нейронах наблюдается также в результате патологических процессов: воспаления, дегенерации, интоксикации. Все это дает основание рассматривать количество тигроида, форму его глыбок, характер их расположения как показатели физиологического состояния нейрона. В цитоплазме нейронов обнаруживаются нейрофибриллы — нитчатые структуры. В теле нейрона и дендритах они образуют густую сеть. В аксоне они вытягиваются по длине. Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения. Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы, с чем связана ее главная функция. В дальнейшем было установлено, что нейрофибриллы не принимают участие в процессе проведения нервного и возбуждения и прерываются в области контакта нервных клеток. По современным представлениям, в соответствии с нейронной теорией в проведении нервного возбуждения основная роль принадлежит плазмалемме нейрона. Вопрос о значении фибрилл остается неясным. По слипанию нейрофибрилл определяют патологическое состояние нервной клетки. Показано, что при старческом слабоумии наблюдается слипание и огрубление нейрофибриллярной сети. Обмен веществ в нейроне. Нейроны при участии клеток глии обеспечивают себя всем «необходимым» для нормального функционирования, так как синтезируют белки, углеводы и липиды, которые используются самой нервной клеткой в процессе е жизнедеятельности. Необходимые питательные вещества, кислород и соли доставляются в нервную клетку кровью. Продукты метаболизма также удаляются из нейрона в кровь. Белки нейронов служат для пластических и информационных целей. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше - в мозжечке, наименьшая - в спинном мозге. Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается. Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того, что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит и глюкоза крови. Расщепление глюкозы идет преимущественно аэробным путем, чем объясняется высокая чувствительность нервных клеток к недостатку кислорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. Кроме того, в нейроне имеются различные микроэлементы. Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди и марганца в нейроне резко снижается. Обмен энергии в нейроне в состоянии покоя и возбуждения различен. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3. Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки. В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета. Такие секретирующие нейроны называются нейросекреторными. Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи. Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений. В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость. Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются? Этот факт часто приводится в популярной и даже научной литературе. Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности. Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж. Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга. В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа. Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.
Нервные импульсы поступают непосредственно к железам по...?
По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам. Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько. Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. Нервные импульсы поступают непосредственно к железам по 1) аксонам. Нервные импульсы поступают непосредственно к железам по 1) аксонам. 2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов.
Физиология мышечного сокращения
е импульсы поступают непосредственно к железам по. Какая железа относится к железам внутренней секреции? Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки. Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. Функция нервной системы. направляет импульсы к скелетным мышцам.
Человек и его здоровье (стр.51-75)
Библиографическая ссылка M. Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс — это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др.
Простейшая рефлекторная дуга состоит из трех нейронов — чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона.
Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов.
В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы. Дата последнего обновления публикации: 20. Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе. При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов.
Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору.
Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? А двигательный нейрон.
Нервные импульсы к телу нейрона идут по. Импульс нейрона. Ветвящийся отросток нейрона. Нервные импульсы передаются в мозг по нейронам. Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы. Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны. Функции вставочного нейрона рефлекторной дуги. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит. Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге. Путь передачи нервного импульса рефлекторная дуга. Рефлекторная дуга по порядку нервного импульса. Передача нервного импульса. Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги.. Схема трехнейронной рефлекторной дуги соматического рефлекса. Схема трехнейронной рефлекторной дуги двигательного рефлекса. Аксонный холмик строение. Проведение нервного импульса по нейрону. Нервно мышечное сокращение. Передают нервные импульсы в ЦНС. Проведение нервного импульса в ЦНС. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон. Схема спинного мозга чувствительный Нейрон. Рефлекс ЕГЭ рефлекторная дуга. Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов. Вегетативная нервная система, дуга вегетативного рефлекса 8 класс. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Регулирует все процессы в организме. Направление движения нервного импульса. Процессы нервной ткани. Нервных процессов в организме. Строение спинного мозга Нейроны. Нейроны спинного мозга схема. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга. Эффектор коленного рефлекса. Коленный рефлекс ответная реакция.
Гипофизарные гормоны стимулируют железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи. Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы. Адренокортикотропный гормон стимулирует кору надпочечников. Гонадотропные гормоны: 1. Фолликулостимулирующий гормон способствует созреванию фолликулов в яичниках, лютеинизирующий гормон вызывает овуляцию и образование желтого тела. Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. Лютеотропный гормон пролактин регулирует лактацию, дифференцировку различных тканей, ростовые и обменные процессы, инстинкты заботы о потомстве. Задняя доля нейрогипофиз состоит из: 1. Образована клетками эпендимы питуицитами и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин антидиуретический гормон и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь. Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза. Функционирование всех отделов гипофиза тесно связано с гипоталамусом. Это положение распространяется не только на заднюю долю — «приемник» и депо гипоталамических гормонов, но и на передний и средний отделы гипофиза, работа которых контролируется гипоталамическими гипофизотропными гормонами — рилизинг-гормонами. Гормоны задней доли гипофиза: аспаротоцин, вазопрессин антидиуретический гормон, АДГ депонируется и секретируется , вазотоцин, валитоцин, глумитоцин, изотоцин, мезотоцин, окситоцин депонируется и секретируется Вазопрессин выполняет в организме две функции: 1. Промежуточная средняя доля Представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие гормон — стимулирует синтез кожного пигмента меланина и увеличивает размер и количество пигментных клеток. Регуляция клеток промежуточной доли гипофиза осуществляется гипоталамическими и рилизинг-факторами, а также ингибирующими Заболевания и патологии: Акромегалия; Болезнь Иценко — Кушинга; Несахарный диабет; Синдром Шихана; Гипофизарный нанизм; Гипофизарный гипотиреоз; Гипофизарный гипогонадизм; Гиперпролактинемия; Гипофизарный гипертиреоз; Гигантизм Эпифиз шишковидная железа. Строение и расположение эпифиза Небольшое овальное железистое образование; относится к промежуточному мозгу располагается в борозде между верхними холмиками среднего мозга, масса — 0. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название. Эпифизу придают шишковидную форму импульсный рост и васкуляризация капиллярной сети, которая врастает в эпифизарные сегменты по мере роста этого эндокринного образования. По строению и функции эпифиз относится к железам внутренней секреции. Эндокринная роль шишковидного тела - его клетки выделяют вещества, тормозящие деятельность гипофиза до момента полового созревания, а также участвующие в регуляции всех видов обмена веществ. Эпифизарная недостаточность в детском возрасте влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и преждевременным и преувеличенным развитием вторичных половых признаков. Эпифиз является регулятором циркадных ритмов, поскольку связан со зрительной системой. Под влиянием солнечного света в дневное время в эпифизе вырабатывается серотонин, а в ночное время - мелатонин. Оба гормона сцеплены между собой, поскольку серотонин является предшественником мелатонина. Эпифиз покрыт снаружи соединительнотканной капсулой, от которой внутрь железы отходят соединительнотканные трабекулы, разделяющие ее на дольки, состоящие из клеток двух типов: железистых и глиальных. Функция железистых клеток имеет четкий суточный ритм: ночью синтезируется мелатонин, днем - серотонин. Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздействие осуществляется при участии гипоталамуса. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии». Строение щитовидной железы. Щитовидная железа - самая большая железа внутренней секреции. Впервые она описана Везалием в 1543 г. Щитовидная железа ЩЖ располагается на передней поверхности шеи и состоит из двух долей и перешейка. Правая и левая доли ЩЖ находятся на уровне щитовидного хряща гортани, нижние их полюса достигают V — VI колец трахеи. Доли частично прилегают к глотке и пищеводу, прикрывают медиальную полуокружность общих сонных артерий в средних третях. В ряде случаев перешеек отсутствует. Снаружи орган окружен четвертой фасцией шеи внутренностная фасция , состоящей из двух листков — наружного и внутреннего. Внутренний листок висцеральный более тонкий, охватывает органы шеи — глотку, пищевод, гортань и ЩЖ. Наружный париетальный листок расположен спереди и с боков от органов шеи, прилегает к задней стенке влагалища мышц, он образует влагалище сосудисто-нервного пучка в области внутреннего треугольника шеи. Масса ЩЖ взрослого человека 15 — 30 г. У мужчин ЩЖ крупнее. Соединительнотканные прослойки, отходящие от собственной капсулы железы, делят ее на дольки, состоящие из сферических фолликулов. Основным компонентом коллоида фолликулов является тиреоглобулин, в коллоиде содержатся протеиды, йод, ферменты. Диаметр фолликула 20 — 40 мк. При повышенной функциональной активности ЩЖ фолликулярные клетки приобретают цилиндрическую форму, при гипофункции — уплощаются. Между фолликулами располагаются кровеносные капилляры и нервные окончания, непосредственно контактирующие с наружной поверхностью фолликулов. Поверхность фолликулярных клеток, обращенная к полости с коллоидом, называется апикальной. Она содержит микроворсинки, проникающие в коллоид. В ЩЖ обнаруживаются три вида клеток. Основную массу железы составляют А-клетки фолликулярного эпителия тиреоциты , синтезирующие тиреоидные гормоны. В-клетки Ашкинази-Гюртля накапливают серотонин и биогенные амины. В межфолликулярной соединительной ткани расположены С-клетки парафолликулярные , вырабатывающие кальцитонин. В С-клетках содержится много митохондрий и электронно-плотных гранул. С-клетки имеют нейроэктодермальное происхождение. ЩЖ секретирует йодсодержащие гормоны — трийодтиронин Т3 , тироксин Т4 и нейодированный кальцитонин. Основными компонентами тиреоидных гормонов являются йод и аминокислота тирозин. Йод поступает в организм с пищей и водой в виде неорганических и органических соединений. Избыток йода выводится организмом с мочой и желчью. Физиологическое потребление йода 110 — 140 мкг. Соединения йода образуют в организме йодиды калия и натрия. При участии окислительных ферментов йодиды превращаются в элементарный йод. Фолликулярные клетки захватывают йод из крови. В клетках ЩЖ происходит синтез тиреоглобулина. Последний секретируется в просвет фолликула. В коллоидном пространстве происходит органификация йода — присоединение его к белку. Тиреоидные гормоны выделяются фолликулярными клетками в кровь. Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы. Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов. На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др. Синтез и секреция тиреоидных гормонов регулируется гипоталамусом. Установлено, что ТРГ является рилизинг-фактором для пролактина. Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями. Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме. Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща. Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея. Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула. Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом. Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы. Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ. Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами. Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция. В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц. Гиперпаратиреоз вызывается злокачественными опухолями паращитовидных желез. При избытке паратгормона развивается болезнь Реклинхгаузена, проявляющаяся в поражении скелета и почек, первичные изменения в костях, за счет активации остеокластов, разрушающих костную ткань с высвобождением кальция. Падение уровня кальция в крови, недостаток кальция в пищевом рационе, незлокачественная опухоль паращитовидной железы, рахит вызывает повышенную секрецию паратгормона, что повышает активность остеокластов. В результате чего, уровень кальция в крови повышается, но кости становятся хрупкими. Отмечается нарушение углеводного обмена в костях. Развивается почечная недостаточность. Больные жалуются на боли в костях, слабость, преждевременное выпадение зубов, резкое похудание. Парная железа, расположенная в жировом околопочечном теле в непосредственной близости к верхнему полюсу почки. Наружное строение. Правый и левый надпочечники отличаются по форме: правый сравнивают с трехгранной пирамидой, левый — с полумесяцем. У каждого из надпочечников различают три поверхности: переднюю, заднюю и почечную. Последняя у правого надпочечника соприкасается с верхним полюсом правой почки, а у левого — с медиальным краем левой почки от ее верхнего полюса до ворот. Надпочечники имеют желтый цвет, их поверхности слегка бугристы. Размеры надпочечника: длина — 5 см, ширина — 3—4 см, толщина около 1 см. Снаружи каждый надпочечник покрыт толстой фиброзной капсулой, соединенной многочисленными тяжами с капсулой почки. Паренхима желез состоит из коркового вещества коры и мозгового вещества. Корковое вещество прочно спаяно с фиброзной капсулой, от которой вглубь железы отходят перегородки — трабекулы. Топография надпочечников.
Тест «Нервная система»
Гормоны гипофиза и их функции обеспечивают важнейшее одно явление во всяком живом развитом организме — гомеостаз. Гипофиз регулирует работу щитовидной, паращитовидной, надпочечниковой железы, контролирует состояние водно — солевого баланса. Функция щитовидной железы — это выработка гормонов, которые поддерживают нормальный обмен веществ во всем организме. Функции гормонов щитовидной железы следующие: — повышают интенсивность окислительных реакций в клетках; — оказывают влияние на процессы, происходящие в митохондриях, клеточной мембране; — поддерживают гормональную возбудимость основных нервных центров; — участвуют в нормальном функционировании сердечной мышцы; — обеспечивают функционирование иммунной системы: стимулируют образование т — лимфоцитов, ответственных за борьбу с инфекцией. Вопрос Раскройте роль гормонов в обмене веществ, росте и развитии организма. Ответ: Гормоны регулируют обмен веществ, рост и развитие организма, поддерживают постоянство внутренней среды, обеспечивают приспособление организма к работе различной интенсивности. Например: при избыточном действии гормона роста в детском возрасте развивается гигантизм, при недостатке этого гормона прекращается рост тела. При недостатке гормонов щитовидной железы у детей развивается кретинизм, у взрослых — слизистый отек, при избытке — базедова болезнь. Поджелудочная железа выделяет инсулин, регулирующий поступление глюкозы в мышцы и печень.
Она поддерживает постоянство содержания глюкозы в крови. Недостаток инсулина приводит к сахарному диабету. Гормоны надпочечников содействуют приспособлению организма к напряженной работе. Вопрос Что происходит при сахарном диабете? Как помочь больному диабетом при передозировке инсулина, чтобы не допустить обморока? Ответ: Гормон поджелудочной железы — инсулин — поддерживает в крови постоянное количество глюкозы, при окислении которой организм получает нужную ему энергию. При отсутствии инсулина вместо глюкозы окисляются другие вещества, что ведет к нарушению углеводного обмена. При заболевании сахарным диабетом инсулина выделяется недостаточно, в крови накапливается глюкоза, которая не может использоваться клетками и выводится почками из организма.
В случае передозировки инсулина происходит резкое падение содержания глюкозы в крови и может случиться обморок. Для того чтобы его предупредить, больному надо дать сладкий чай, кусок сахара, булочку. Вопрос Просмотрите рис. Определите, какая железа сильнее влияет на пластический обмен, а какая — на энергетический. Ответ: На энергетический обмен большее влияние оказывает щитовидная железа, а на пластический обмен — гипофиз. Вопрос Что регулирует автономный отдел нервной системы и что соматический? Как они взаимодействуют при включении человека в физическую работу? Ответ: Различают соматический и вегетативный автономный отделы нервной системы.
Соматическая нервная система обеспечивает связь организма с окружающей средой передвижение в пространстве и реакции взаимодействия через ощущения. Соматическая система осуществляет произвольный контроль деятельности скелетной мускулатуры.
Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов. Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.
Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков.
Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.
Этот вид сокращения мыщц желудка связан с ощущением голода. У человека продолжительность периодов работы желудка составляет 20 - 50 мин, периоды покоя длятся 45—90 мин и более. Периодические сокращения желудка прекращаются с началом еды и пищеварения. Кроме указанных видов сокращения в желудке различают антиперистальтику, которая наблюдается при акте рвоты. Регуляция моторной функции желудка. Осуществляется за счет нейрогуморальных механизмов. Блуждающие нервы возбуждают моторную активность желудка, симпатические в большинстве случаев угнетают.
На моторику желудка оказывают влияние гуморальные факторы. Возбуждают сокращение гладкой мускулатуры желудка инсулин, гастрин, гистамин, ионы Физиология пищеварения 2 Лекция 13 Эвакуация пищевой кашицы в двенадцатиперстную кишку Содержимое желудка переходит в двенадцатиперстную кишку только тогда, когда его консистенция становится жидкой или полужидкой. Пища находится в желудке от 6 до 10 ч. Сокращения пилорического отдела желудка способствуют передвижению пищевой кашицы к сфинктеру привратника. Возбуждение его рецепторов через блуждающие нервы приводит к расслаблению и открытию сфинктера. Раздражение же содержимым желудка рецепторов слизистой оболочки двенадцатиперстной кишки обеспечивает возбуждение симпатических нервов. Рефлекторный механизм вызывает закрытие сфинктера привратника за счет сокращения его кольцевых мышц. Сфинктер будет закрыт до тех пор, пока химус волной перистальтики не продвинется дальше по двенадцатиперстной кишке. Регуляция деятельности сфинктера привратника осуществляется также хлористоводородной кислотой.
Открытие сфинктера привратника происходит вследствие раздражения слизистой оболочки пилорической части желудка хлористоводородной кислотой желудочного сока. Часть пищи в это время переходит в двенадцатиперстную кишку и реакция ее содержимого становится кислой вместо щелочной. Здесь начинается второй этап пищеварения, который имеет ряд особенностей. В процессе пищеварения в двенадцатиперстной кишке участвуют панкреатический поджелудочный сок, желчь и кишечный сок, которые имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного соков входят ферменты, расщепляющие белки, жиры, углеводы. Состав, свойства и значение панкреатического сока. У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока. В состав поджелудочного сока входят органические протеолитические, амилолитические, липолитические ферменты и неорганические вещества. К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид эластаза и карбоксипептидазы.
Под их влиянием нативные белки и продукты их распада высокомолекулярные полипептиды расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания аутолиз. К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар мальто зу в глюкозу, лактаза, расщепляющая молочный сахар лактозу до моносахаридов. В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров. Регуляция секреции поджелудочной железы Секреция поджелудочного сока протекает в три фазы: сложнорефлекторную мозговую , желудочную и кишечную. Сложнорефлекторная фаза осуществляется на основе условных и безусловных рефлексов.
Вид пищи, ее запах, звуковые раздражения, связанные с приготовлением пищи, разговор о вкусной пище или воспоминания о ней при наличии аппетита приводят к отделению поджелудочного сока. В этом случае выделение сока происходит под влиянием нервных импульсов, идущих от коры большого мозга к поджелудочной железе, то есть условнорефлекторно. Безусловнорефлекторная секреция поджелудочного сока происходит при раздражении пищей рецепторов ротовой полости и глотки. Первая фаза секреции поджелудочного сока непродолжительная, сока выделяется мало, но он содержит значительное количество органических веществ, в том числе ферментов. Желудочная фаза секреции панкреатического сока связана с раздражением рецепторов желудка поступившей пищей. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов нейроны ядер блуждающих нервов возбуждаются. Это возбуждение по эфферентным секреторным волокнам блуждающего нерва передается к поджелудочной железе и вызывает отделение панкреатического сока. Желудочная фаза секреции панкреатического сока обеспечивается также гормоном гастрином, который действует непосредственно на секреторные клетки поджелудочной железы.
Сок, выделяющийся во вторую фазу, как и в первую, богат органическими веществами, но содержит меньше воды и солей. Кишечная фаза секреции поджелудочного сока осуществляется при участии нервного и гуморального механизмов. Под влиянием кислого содержимого желудка, поступившего в двенадцатиперстную кишку, и продуктов частичного гидролиза питательных веществ происходит возбуждение рецепторов, которое передается в центральную нервную систему. По блуждающим нервам нервные импульсы от центральной нервной системы поступают к поджелудочной железе и обеспечивают образование и выделение панкреатического сока. Гуморальная регуляция секреторной активности поджелудочной железы. В слизистой оболочке двенадцатиперстной кишки и верхнем отделе тонкого кишечника находится особое вещество секретин , которое активируется хлористоводородной кислотой и гуморально стимулирует секрецию поджелудочной железы. В настоящее время установлено участие и других биологически активных веществ, образующихся в слизистой оболочке желудочно-кишечного тракта, в регуляции секреторной активности поджелудочной железы. К ним относятся холецистокинин панкреозимин и уропанкреозимин. Влияние состава пищи на отделение поджелудочного сока.
В периоды покоя поджелудочной железы секреция полностью отсутствует. Во время и после еды секреция поджелудочного сока становится непрерывной. При этом количество выделяющегося сока, его переваривающая способность и продолжительность секреции зависят от состава и количества принятой пищи. Наибольшее количество сока выделяется на хлеб, несколько меньше — на мясо и минимальное количество сока секретируется на молоко. Сок, полученный на мясо, имеет более щелочную реакцию, чем сок, выделяющийся на хлеб и молоко. При употреблении пищи, богатой жирами, в поджелудочном соке содержание липазы в 2—5 раз больше, чем в соке, который выделился на мясо. Преобладание в пищевом рационе углеводов приводит к увеличению количества амилазы в поджелудочном соке. При мясной диете в поджелудочном соке обнаруживается значительное количество протеолитических ферментов.
При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора. Библиографическая ссылка M. Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс — это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др.