Плюс на минус даёт правило.
Минус на минус не может дать плюс
В итоге, зная правильный ответ, мы сами понимаем, что минус на минус ДОЛЖЕН давать плюс. Лучший ответ: Таня Масян. минус на минус даёт плюс, плюс на плюс даёт плюс, плюс на минус даёт минус. более месяца назад. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Правило минус на минус дает
Так, мы с ученической скамьи усваиваем, что на ноль делить нельзя, или что минус на минус даёт плюс. «Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Поэтому умножение минус на минус дает плюс. Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. 2) Почему минус один умножить на плюс один равно минус один? _ Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». 7.1M visualizaciones. Descubre videos de TikTok relacionados con «Минус На Минус Даёт Плюс». Mira más videos sobre «Araña Gritona Ojos Verdes, El Ritual Del Café Con Azúcar Sirve Para Encontrar Trabajo, Año Nuevo Valparaíso 2024 Camping, Plato Con Ritual Para El Año Nuevo, How.
«Минус на минус» дает плюс
Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны.
А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами.
Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное.
Там есть и несколько тысяч со знаком минус, много другой справочной информации и, самое главное, в строке «Итого к оплате» «Отопление за май 2013г. И это при том, что в конце апреля было тепло и батареи практически не грели, а отопительный сезон закончился в самом начале мая.
Она сказала: «В мае котельничанам нужно обратить внимание только на верхнюю часть квитанции и оплатить в банке сумму, обведенную красным см. Сумма обведенная синим — это те деньги, которые бы потребитель тепла заплатил, если бы рассчитывался за отопление 12 месяцев в году, по среднемесячным, а не по фактическим показаниям прибора учета тепла». Однако, в нашем городе все жильцы домов, оснащенных теплосчетчиками, платят по фактическому расходу.
Американскому фондовому рынку поддержка явно не нужна — он на историческом максимуме, и, как писал Грибоедов, «нельзя ли пожалеть о ком-нибудь другом? Например, сегодня от индекса экономических настроений институциональных инвесторов Германии ZEW никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7 — но он в итоге рухнул до минус 21,1. В Евросоюзе в целом — та же картина: минус 20,2 при прогнозе минус 3,6 и практически нейтральных минус 1,6 в апреле.
Правда, зато у Евросоюза за апрель нарисовалось неплохое сальдо торгового баланса — при прогнозе 8,8 млрд евро вышло целых 15,7 млрд, почти вдвое — правда, в марте было вообще 23,2 млрд евро, но и то хлеб. В то же время рано или поздно рецессия случится. И, казалось бы, самое время регулятору «поднакопить жирок», чтобы не выглядеть в сложной ситуации подобно ЕЦБ. Собственно, глава ЕЦБ Марио Драги и был сегодня одним из двух главных героев новостей: инфляция в еврозоне никак не хочет расти, и застой экономики потихоньку стучится в двери. В итоге на фоне сохраняющейся уже более двух лет нулевой ставки Драги пришлось пообещать дальнейшее ее снижение или скупку активов — то есть, собственно, просто раздачу денег в том или ином виде. Причем практика такой раздачи у ЕЦБ уже есть, и результат ее мы как раз сейчас и наблюдаем.
Но кто будет в нынешней ситуации слушать зануд из Fitch? Правда, позже экономический советник Белого дома Ларри Кудлоу заявил, что речь идет о старой истории и в данный момент к ней, якобы, никто не возвращался.
Нужно не тратить меньше, а зарабатывать больше — подумают они. К сожалению, сегодня это высказывание к категории мотивирующих не отнесешь.
Условия диктует ситуация на рынке... И все же именно сейчас наблюдается самый подходящий период для поиска новых решений и идей. Применительно к расходам — поиск способов сократить издержки. Эти способы пригодятся и на будущее.
Однако не стоит ограничиваться сокращением расходов на персонал и «чисткой» кадров. Иначе оптимизация расходов может перерасти в кадровый «голод». При этом оставшиеся сотрудники как никогда раньше дорожат своей работой. Это отличная возможность направить их рабочий потенциал в нужное русло.
А те, кто отсеется из числа трудолюбивых сотрудников, так или иначе попадет в списки сокращенных. Вот и еще один плюс — у работодателя появилась отличная возможность провести оптимизацию численности кадров. Кто из них достоен остаться, а кто не по праву занимает вакантные должности? Для работодателя это плюс, а вот для работников...
Есть вероятность, что обязанности уволенных сотрудников распределят между оставшимися. Но и это не повод негодовать. И это еще придется доказать. Оптимизируйте работу бухгалтерской службы.
Когда плюс на минус дает плюс
Причем с 2015 года в Налоговый кодекс РФ внесены изменения, согласно которым каждый может получить вычет с суммы максимум 2 млн руб. В вашем случае каждый вправе претендовать на вычет с суммы в 1 млн руб. И если в будущем вновь купите недвижимость, то сможете добрать вычет еще по одному миллиону на каждого. Обращаю внимание, что распространяется эта норма на недвижимость, которая приобретена акт приема-передачи оформлен в 2015 году и позже. Если у объекта, к примеру, четыре собственника, то каждый из них имеет право на вычет с 500 тыс.
И в случае следующей покупки претендовать на вычет уже не может. Но опять же в пределах суммы в 2 млн руб. Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют. Без срока, но с условием — Установлен ли срок, в который налогоплательщик может заявить право на получение вычета?
Немаловажен и тот момент, что это право не прерывается, даже если какой-то период у гражданина нет доходов, а, следовательно, и налоговых отчислений. Если сумма перечисленных за год налогов меньше, то имущественный вычет можно получать в течение нескольких лет до полного его погашения, ежегодно подавая декларацию.
Математическая программа была тщательно разработана не только для того, чтобы преподавать предмет на действительно сложном уровне, но и для того, чтобы вдохновлять детей и развивать их подлинный интерес к математике. Учителя в школе очень опытны, хорошо осведомлены и стремятся обеспечить наилучшее математическое образование. Я очень впечатлен успехами моего сына в изучении предмета и могу рекомендовать эту программу детям, которые ищут сложную и дружелюбную среду для изучения математики. Рубин Э. Магистр технических наук. Израильский технологический институт Моя дочь посещает школу MathPlus в течение одного семестра.
Она посещает уроки математики и русского языка. Лора уже значительно улучшила математические навыки с начала семестра. Теперь она может решать сложные задачи олимпиадного уровня. Благодаря уроку русского языка моя дочь может читать русскую литературу и писать по-русски. Спасибо школе MathPlus за прекрасную программу с широким выбором предметов. Нина Ольчаный Инженер М. Меня очень впечатлил уровень математической программы, который выходит далеко за рамки обычного школьного уровня. У моих детей наконец-то появился шанс полюбить математику.
Это намного больше, чем мы могли бы ожидать от программы дополнительного образования после школы. Дориана Фроим, доктор философии. Целое число — это число, которое можно записать без дробной части. Другими словами, целое число — это целое число, которое может быть положительным, отрицательным или равным нулю. Следовательно, мы можем сказать, что целые числа представляют собой совокупность целых чисел и отрицательных чисел. В соответствии с натуральными числами, 1, 2, 3, 4, 5 …… и т. Эти числа называются минус один, минус два, минус три и т. Если мы объединим эти отрицательные числа с положительными, вместе мы получим набор чисел, которые мы называем целыми числами.
Числа 1, 2, 3, 4 ….. Символ для отрицательных целых чисел Мы используем символ «—» для обозначения отрицательных целых чисел, и тот же символ используется для обозначения вычитания. Однако контекст, в котором используется этот символ, проясняет, хотим ли мы использовать его для отрицательного целого числа или для вычитания. Давайте разберемся на примере. Предположим, мы запишем число — 5. Это будет означать «минус пять». Точно так же — 17 будет читаться как «минус семнадцать». Теперь напишем 5 — 3.
Здесь мы видим, что «-» стоит между двумя числами. Это будет читаться как «пять минус три». Следовательно, здесь символ использовался для вычитания двух чисел. Однако контекст, в котором используется этот символ, проясняет, хотим ли мы использовать его для положительного целого числа или для сложения. Это будет читаться как «плюс пять». Это будет читаться как «пять плюс три». Следовательно, здесь символ использовался для сложения двух чисел. Здесь важно отметить, что если с числом не связан ни один знак, оно читается как положительное число.
Отрицательные и положительные целые числа в числовой строке Мы узнали, как представлять целые числа в числовой строке. Напомним, что числовая линия — это прямая горизонтальная линия с числами, расположенными через равные промежутки, которая обеспечивает визуальное представление чисел. Основные операции, такие как сложение, вычитание, умножение и деление, могут выполняться на числовой прямой. Числа увеличиваются, когда мы движемся к правой стороне числовой линии, и уменьшаются, когда мы движемся влево. Целые числа представлены в числовой строке, как показано ниже — 9. Как хорошо видно, при движении слева направо значение целых чисел увеличивается, а при движении справа налево — уменьшается. Давайте разберемся на примере Построим 6 и — 6 на числовой прямой. Правила сложения целых положительных и отрицательных чисел Мы знаем, как складывать два целых числа.
Мы можем складывать целые числа таким же образом, с той лишь разницей, что мы должны выполнять сложение и отрицательных чисел. Чтобы сложить положительное или отрицательное целое число, мы определяем разность их абсолютных значений и присваиваем сумму слагаемого, имеющего большее абсолютное значение. Пример Предположим, у нас есть два целых числа, 1258 и 3214, и мы хотим найти их сумму. Решение Сначала мы проверим знак обоих чисел. Мы видим, что оба числа одного знака и являются целыми положительными числами. Поэтому по правилам, изложенным выше, мы сложим абсолютное значение обоих чисел и присвоим им положительный знак. Рассмотрим другой пример.
Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие.
Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец.
Когда два минуса дают плюс. Как понять, почему ";плюс"; на ";минус"; дает ";минус";
В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т.
Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Значит, это произведение равно нулю.
Если привести в соприкосновение электронов и электронов и позитронов аннигилируют и в конце останется только позитрона. Этот пример показывает, что реакция группы электронов и группы позитронов выглядит как сложение двух целых чисел противоположного знака. Попробуем придать этой идее точный математический смысл. Представьте, что идет выставка современного искусства в далеком от нас 3141 году. Главной изюминкой этой выставки стали медиа-картины, изображающие собой наглядную модель электронно-позитронного газа. На их полупрозрачных поверхностях медленно дрейфуют красные и зеленые кружкии двумерные шары одного и того же размера.
Кружки одинакового цвета друг от друга отскакивают, а разного, соприкоснувшись исчезают с негромким хлопком и яркой вспышкой света. Иногда под вспышкой фотокамеры на холсте появляется пара из разбегающихся в разные стороны красного и зеленого кружков рождение электрон-позитронной пары из гамма-кванта. Заряд в любой момент времени будет целым числом.
Те же математики придумали правила умножения и деления положительных и отрицательных чисел. В основном для того, чтобы жизнь не была на вкус как мед. Что мы должны делать? Нам нужно выучить правила, чтобы мы могли сказать математикам то, что они хотят от нас услышать. Правила умножения и деления положительных и отрицательных чисел легко запомнить. Если два числа имеют разные знаки, результатом всегда будет минус.
Если два числа имеют одинаковый знак, результатом всегда будет плюс. Давайте рассмотрим все возможности. Что превращает минус в плюс? При умножении и делении минус на плюс дает минус. Что делает из минуса плюс? Когда мы умножаем и делим, результатом также является минус. Это интересно: К чему снится забеременеть. Приснилось что беременна от бывшего парня. Минус на плюс, плюс на минус.
Как видите, все возможности умножения и деления положительных и отрицательных чисел исчерпаны, но у нас все еще нет знака плюс. Мы создали это правило для себя, чтобы помнить о нем. Что говорят математики? При умножении или делении положительных и отрицательных чисел в результате получается отрицательное число. Что приводит к минусу за минус? Когда мы умножаем или делим, всегда есть плюс. Что дает плюс за плюс? Все очень просто. Умножение или деление плюса на плюс всегда дает плюс.
Минус на минус, плюс на плюс.
То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-».
Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами.
Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак?
Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D.
Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим.
Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю.
Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс».
Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов , которые только начинают учить абстрактные отрицательные числа.
Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья.
Минус на минус даёт нам плюс...
Материал подготовлен совместно с учителем высшей категории Харитоненко Натальей Владимировной. Опыт работы учителем математики - более 33 лет. Отрицательные числа Отрицательные числа — это всего лишь числа, которые находятся слева от точки ноль на числовой прямой. Вот и все определение. Его нетрудно запомнить, но трудно понять. Ведь в реальной жизни отрицательных чисел практически нет: нельзя себе представить — 2 яблока или — 3 ручки. Можно понять, что такое реальное число, что такое отсутствие чисел, но что такое отрицательные числа понять куда труднее. На самом деле можно представить себе любое отрицательное число, как недостаток до нуля. Например, — 3 значит, что при вычитании уменьшаемому не хватило трех единиц, чтобы выйти в ноль. Чаще всего это встречается в бухгалтерских отчетах и финансовых сводках.
Зaкoнoпpoeкт был пoдaн в Гocдуму ужe дaвнo, oднaкo нa oбcуждeниe вoпpoc дo cиx пop нe вынecли. Автopы пpoeктa нaмepeны дoбитьcя пepecмoтpa дeйcтвующeгo ГОСТa либo пoлнoй oтмeны штpaфoв зa тoниpoвку ужe этoй oceнью. Этo зaщитa oт coлнцa и уcлoвиe бeзoпacнoгo вoждeния. Нa cтopoнe тoниpoвки, кaк чacтичнoй, тaк и пoлнoй - миpoвoй oпыт», - нaпиcaл Нилoв Имeннo пoэтoму фpaкция будeт нacтaивaть нa paccмoтpeнии инициaтивы, зaвиcшeй в пpoфильнoм кoмитeтe.
При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами.
А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики.
За что же критикуют политику отрицательных ставок? Во-первых, это своеобразный налог на банковскую систему. Банки держат излишнюю ликвидность, невостребованную реальным сектором.
Центральные банки зачастую штрафуют коммерческие за то, что они вынуждены хранить у себя эту ликвидность. Именно поэтому начали вводить многоуровневую систему отрицательных ставок, когда определенное количество резервов не облагается отрицательной процентной ставкой, а все, что выше, — облагается. Во-вторых, отрицательные ставки снижают банковскую маржу и, таким образом, бьют по прибыльности банковской системы. В-третьих, рыночные ставки могут просто потерять чувствительность. Когда центральные банки понижают ставки ниже нуля, рыночные ставки на это не реагируют. В таком случае маржа может и не снизиться, но перестанет работать сама денежно-кредитная политика. Однако это теория, и нужно разобраться в том, происходит так в действительности или нет.
Для этого нужно анализировать опыт разных стран. Сложно оценить влияние самих отрицательных ставок, так как они всегда вводились одновременно с другими нестандартными мерами. Если рассматривать ряд исследований, то можно заметить, что ставки по депозитам редко уходят в минус. Зачастую это корпоративные клиенты, потому что они обязаны держать деньги в банке. Собственно, здесь приходится терпеть отрицательные ставки. В конце выступления Олег Замулин заявил: «Выводы делать рано! Надо еще поизучать эту тему и посмотреть на опыт».
Когда у банков проблемы с прибылью… «Количество возможных инструментов, которыми центральные банки могут пользоваться, в течением времени не меняется», — сообщил Олег Шибанов, директор финансового центра «Сколково-РЭШ». Когда у банков проблемы с прибылью, у них большие проблемы и со всем остальным, в том числе с тем, насколько они эффективно готовы кредитовать.
Сложение и вычитание отрицательных чисел. Что дает плюс на минус.
Минус умноженный на плюс будет минус. Я – один минус, они – второй минус, когда наша деятельность соединяется – получается плюс во всем: в итогах репетиций, в настроении детей и их родителей. Новости компании. Почему говорят, что два плюса дают минус?