Предельная глубина погружения подлодки — 600 метров, в автономном плаванье может находиться до 100 суток. 4 августа 1985 года атомная подводная лодка К-278 «Комсомолец» под командованием капитана 1 ранга Юрия Зеленского установила абсолютный мировой рекорд погружения, достигнув глубины 1027 метров и выполнив все запланированные глубоководные испытания. головная подводная лодка проекта 941, но в то же время самая современная из серии, которая была построена в количестве шести единиц. Многоцелевая атомная подводная лодка «Казань» отработала погружение на максимальную глубину в Баренцевом море, сообщает пресс-служба Северного флота.
Подлодка "Магадан" погрузилась на 240 метров в заливе Петра Великого
4 августа 1985 года советская атомная подводная лодка К-278 (с 31 января 1989 года переименованная в «Комсомолец») установила абсолютный мировой рекорд по – Самые лучшие и интересные новости по теме: Погружение, глубина, рекорд на развлекательном портале. Главная» Новости» Новости о подводной лодке сегодня. Атомный подводный крейсер «Архангельск»: как собирают самые современные лодки — и какую работу доверяют только женщинам. ТАСС: подлодку «Лошарик» испытают на предельной глубине.
«Казань», «Белгород» и «Генералиссимус Суворов». Что известно о главных российских подлодках
Ранее сообщалось, что ремонт "Лошарика" практически завершен. После некоторых остающихся работ планируется, что он выйдет на испытания в июне-июле. Другой собеседник ТАСС в военном ведомстве сообщал, что титановый прочный корпус АПЛ при пожаре 1 июля 2019 года не пострадал, что, по имеющимся данным, обеспечит аппарату прежнюю предельную глубину погружения. Реактор при пожаре не пострадал.
После успешного выполнения задач подводной части упражнения экипаж лодки вышел на поверхность. Изображение gunsfriend. Возможность нести на вооружении высокоточные крылатые ракеты «Калибр» делает её важным звеном в обороне российских водных пространств. Подлодка предназначена для уничтожения надводных кораблей и судов, подводных лодок противника, патрулирования, дозора, разведки, охраны коммуникаций в «ближней» морской зоне.
В 1985 году Роберт Баллард впервые сумел опуститься и исследовать затонувший корабль, а в 1991 году наш знаменитый Евгений Черняев на аппаратах «МИР» спустился и исследовал корабль. Чуть позже он участвовал в подводных съемках фильма «Титаник» и погружался на дно вместе с Джеймсом Кэмероном. Но как выяснилось, именно такой притягательный туристический объект, как «Титаник», представляет опасность из-за глубины залегания. Глубоководный аппарат «Титан» в 2023 году затонул во время погружения к «Титанику». Почему нужен специальный глубоководный аппарат На самом деле погружение на огромную глубину — достаточно сложный и опасный процесс, как и полет в космос. Об этом говорит хотя бы тот факт, что в «Бездне Челленджера» побывало меньше человек, чем на Луне.
Только борются при погружении не с гравитацией или трением о слои атмосферы, как при космических запусках, а с гигантским давлением водяного столба. На каждые 10 метров погружения давление увеличивается примерно на 1 атмосферу. Это означает, что на глубине 4000 метров, где лежит «Титаник», давление на корпус «Титана» составляло 400 атмосфер. Или если перевести в несистемную, но более понятную величину: 413 кг на сантиметр квадратный! Любые ошибки в проектировании будут фатальными, что и произошло с «Титаном». Кстати, рекорд погружения фридайверов без аквалангов составляет 156 метров Очевидно, почему человек в акваланге или в «трехболтовке» не сможет исследовать затонувший лайнер.
Хотя надо отметить: есть уникумы, которые погружаются на 332 метра , что очень много — 33 атмосферы, давящие на на тебя, не шутка. Правда, автор рекорда — египетский дайвер — вынужден был всплывать аж 14 часов! В противном случае в его крови образовались бы пузырьки азота из-за слишком быстрого понижения давления — так называемая декомпрессионная болезнь, которая приводит к повреждению сосудов и внутренних органов по всему телу. Частично проблему решают специальные водолазные костюмы, называемые нормобарическими, с жестким корпусом. В них поддерживается нормальное атмосферное давление можно забыть про декомпрессионную болезнь , а корпус в современных моделях позволяет погружаться даже до 600-700 метров. Но по сути, это — маленькая подводная лодка, только человекообразной формы, с электроприводами в «суставах», которые питаются через внешний кабель-трос.
Нормобарический водолазный костюм Newtsuit Больше напоминает героя Marvel, не находите? Но хотя это и удобно в плане манипуляция на глубине, все-таки 600 или 700 метров — маловато в рамках концепции глубоководного погружения. Нас интересуют глубины до 2000 метров и больше. Возникает вопрос: а почему с задачей не могут справиться обычные подводные лодки? Ведь у них прочный стальной корпус, системы жизнеобеспечения и все такое. Но дело не в корпусе, потому что сделать его прочным не такая огромная проблема.
Скорее дело в принципе работы. Основная задача подводной лодки — полная автономность и мобильность. Она должна быстро перемещаться под водой, в том числе оперативно изменяя глубину погружения. Для этого у подлодки есть балластные цистерны — в них набирается вода через кингстоны, и глубина погружения увеличивается. А чтобы всплыть, воду из этих цистерн надо выдавить: для этого из баллонов на борту подается сжатый воздух. Примитивное объяснение принципа погружения и всплытия подводной лодки Чем больше давление снаружи, тем сложнее выдавить воду из балластных цистерн: в баллонах должен быть газ с давлением не меньше наружного.
Соответственно, на глубине залегания «Титаника» давление должно быть больше примерно 400 атмосфер. Для погружения же на дно «Бездны Челленджера» давление газа должно было быть вообще свыше 1100 атмосфер! Так что вопрос безопасной эксплуатации и хранения газа в том числе надежности всей трубопроводной арматуры при таких колоссальных давлениях долгое время вызывал вопросы. Да еще и при резком расширении газ охлаждается, что приводит к замерзанию клапанов и кингстонов. Только уже в 2000-х годах появились технологии, которые позволили решить эту проблему. Например, многие слышали про атомную подводную лодку АС-31 «Лошарик» ну или АС-12 из-за трагического инцидента на ее борту в 2019 году.
Хотя официальные характеристики держатся в тайне, она якобы способна погружаться на глубины до 3000 метров и даже больше. Техническое устройство «Лошарика» неизвестно, но для большинства подводных лодок на первое место выходит вопрос целесообразности. Для чего нужно развивать большую глубину и сильно увеличивать стоимость конструкции, не особо понятно. Обычно глубины погружения в 250-500 метров вполне достаточно для выполнения поставленных задач. Тем более для глубоководных исследований есть специализированные устройства — DSV в англ. DSV — deep-submergence vehicle.
Официальный рекорд погружения среди подлодок принадлежит К-278 «Комсомолец» — 1027 метров. И это даже не близко к глубоководным аппаратам Глубоководные аппараты DSV всегда используются для исследовательских миссий, поэтому не являются такими автономными, как подлодки. При этом задачи быстро перемещаться под водой, маневрировать или резко менять глубину у них нет. Их доставляют к нужной точке в море или океане на научно-исследовательских судах, а дальше полностью контролируют их погружение и работу. Давайте теперь посмотрим на краткую историю глубоководных аппаратов и то, как менялась их конструкция. Вехи в истории глубоководных погружений Сами по себе пучины океана интересовали человечество очень давно.
Первое систематическое глубоководное исследование было проведено экспедицией корвета «Челленджер» под управлением капитана Чарльза Томсона в 1858 году. Конечно, он не погружался под воду, а только исследовал глубины океана — на борту находились лучшие океанографы того времени. Собственно, именно этот корабль и обнаружил самую глубокую точку Земли — «Бездну Челленджера» в Марианской впадине, названную в честь него. Корабль Челленджер, без которого самую глубокую точку на планете нашли бы только в 20 веке, с появлением сонаров Кстати, вот где эта точка располагается на карте — манит не меньше, чем Эверест В 1925 году американский натуралист Уильям Биб предложил идею подводного аппарата , который мог бы доставить людей в глубины океана и понаблюдать за тем, что там происходит. По состоянию на конец 1920-х годов самая большая глубина, на которую люди могли безопасно погрузиться в водолазных шлемах, составляла всего несколько десятков метров. Подводные лодки того времени опускались максимум на 117 м, но не имели окон, что делало их бесполезными для цели Биба по наблюдению за окружающей обстановкой: например, обнаружения новых видов рыб.
Вместе с инженером Отисом Бартоном он спроектировал батисферу. Она имела отверстия для трех окон толщиной 76 мм из кварца — самого прочного материала, доступного на тот момент. Корпус был сделан из литой стали толщиной 25 мм и имел диаметр 1,45 м.
Именно на эту глубину опустился в 2005 году пловец-фридайвер из Франции Паскуаль Бернабе. С тех пор его рекорд не смог повторить ни один ныряльщик. Что касается погружений в водолазном костюме, то здесь мировой рекорд тоже поставили французы.
Это произошло в 70-х годах ХХ века, но подробности рекордного погружения до сих пор остаются государственной тайной Франции. Известно только, что водолазам из компании СОМЕХ, организованной известным исследователем морских глубин Жак-Ивом Кусто, удалось погрузиться на глубину около 700 метров. Рекорд был достигнут благодаря сложным дыхательным смесям и продуманному режиму погружения. Максимальная глубина погружения подводной лодки Возможность погружаться на большую глубину очень важна для подводных лодок, ведь она даёт возможность скрытно подобраться как можно ближе к противнику. Под толщей воды намного сложней засечь моторы лодки и поразить её торпедой. Поэтому между морскими державами постоянно идёт незаметное соревнование в создании глубоководных аппаратов, способных погружаться на большую глубину.
Первенство в этой области принадлежит нашей стране.
Сверхскоростная подлодка создала для России целую отрасль
Тем более для глубоководных исследований есть специализированные устройства — DSV в англ. DSV — deep-submergence vehicle. Официальный рекорд погружения среди подлодок принадлежит К-278 «Комсомолец» — 1027 метров. И это даже не близко к глубоководным аппаратам Глубоководные аппараты DSV всегда используются для исследовательских миссий, поэтому не являются такими автономными, как подлодки. При этом задачи быстро перемещаться под водой, маневрировать или резко менять глубину у них нет. Их доставляют к нужной точке в море или океане на научно-исследовательских судах, а дальше полностью контролируют их погружение и работу. Давайте теперь посмотрим на краткую историю глубоководных аппаратов и то, как менялась их конструкция. Вехи в истории глубоководных погружений Сами по себе пучины океана интересовали человечество очень давно. Первое систематическое глубоководное исследование было проведено экспедицией корвета «Челленджер» под управлением капитана Чарльза Томсона в 1858 году. Конечно, он не погружался под воду, а только исследовал глубины океана — на борту находились лучшие океанографы того времени. Собственно, именно этот корабль и обнаружил самую глубокую точку Земли — «Бездну Челленджера» в Марианской впадине, названную в честь него.
Корабль Челленджер, без которого самую глубокую точку на планете нашли бы только в 20 веке, с появлением сонаров Кстати, вот где эта точка располагается на карте — манит не меньше, чем Эверест В 1925 году американский натуралист Уильям Биб предложил идею подводного аппарата , который мог бы доставить людей в глубины океана и понаблюдать за тем, что там происходит. По состоянию на конец 1920-х годов самая большая глубина, на которую люди могли безопасно погрузиться в водолазных шлемах, составляла всего несколько десятков метров. Подводные лодки того времени опускались максимум на 117 м, но не имели окон, что делало их бесполезными для цели Биба по наблюдению за окружающей обстановкой: например, обнаружения новых видов рыб. Вместе с инженером Отисом Бартоном он спроектировал батисферу. Она имела отверстия для трех окон толщиной 76 мм из кварца — самого прочного материала, доступного на тот момент. Корпус был сделан из литой стали толщиной 25 мм и имел диаметр 1,45 м. Вся конструкция весила 2,25 тонны и опускалась на дно посредством троса. Так же и поднималась обратно. Кислород подавался из баллонов высокого давления, находящихся внутри сферы, а внутри стенок сферы устанавливались емкости с натронной известью и хлоридом кальция для поглощения выдыхаемых CO2 и водяного пара. Пассажиры батисферы должны были прогонять воздух мимо этих лотков с помощью вентиляторов из пальмовых листьев.
Внутри также был телефон и лампа — иначе как можно было бы что-то увидеть на глубине, где нет солнечного света? Трос крепился сверху, а телефонный и электрический кабели были запаяны внутри резинового шланга, который входил в корпус батисферы через сальник. Сам создатель батисферы Уильям Биб сидит в своем детище 11 июня 1930 года батисфера достигла глубины 400 метров, а в 1934 году Биб и Бартон поставили рекорд того времени — 900 метров. После этого погружения не проводились ввиду их высокой опасности: если бы трос оборвался, то человек очутился бы в стальном гробу на глубине тысяч метров без шансов на спасение. Батисфера и ее первое погружение. Кстати, опускалась она на стальном тросе длиной 900 м весом 1,3 тонны!!! Следующей вехой стало появление батискафа. Швейцарский физик Огюст Пиккар вдохновился идеей батисферы — проникнуть в глубины океана. Но решил пойти дальше и сделать плавучий аппарат, похожий по принципу действия на дирижабль. Только вместо купола, заполненного легким газом вроде гелия или водорода, нужен поплавок.
Сам аппарат будет иметь положительную плавучесть, но вместе с неким тяжелым балластом пойдет ко дну. Если нужно будет всплыть или уменьшить скорость погружения, балласт полностью или частично сбрасывается. Но что выбрать в качестве аналога легкого газа? Чтобы уравнять давление внутри поплавка с гидростатическим давлением снаружи, использовалась эластичная перегородка. Если окружающее давление увеличивалось, перегородка сжималась и повышала давление бензина. Простейшая схема устройства первого батискафа ФНРС-2 Непосредственно человек находится в гондоле с иллюминатором. Имеет также форму сферы, просто по той простой причине, что сфера — тело, которое занимает максимальный объем при минимальной площади поверхности. Значит, при той же толщине стенок масса будет меньше. В качестве балласта используется чугунная или стеклянная дробь. Дополнительно есть гребные винты, приводимые во вращение электродвигателем — для перемещений на небольшие расстояния.
Питание двигателей, а также системы освещения, осуществляется от аккумулятора. По сути, с небольшими модификациями эта конструкция используется и в современных DSV, за исключением бензина — но об этом позже. К слову, до этого он сконструировал в 1932 году ФНРС-2 — первый в мире стратосферный аэростат. Неудивительно, что над обоими аппаратами работал один и тот же человек — они очень похожи по своей сути. Все прошло хорошо, и конструкция выдержала давление в 140 атмосфер: даже легендарный Жак-Ив Кусто присутствовал на испытаниях и похвалил аппарат. Но при буксировке в порт аппарат разбился во время шторма: приняли решение его не восстанавливать из-за серьезных конструктивных недостатков. В начале 50-х годов аппарат купило ВМС Франции, отремонтировало и модернизировало. Так появился аппарат ФНРС-3, который в 1954 году побил все мыслимые рекорды погружения того времени: 4000 метров недалеко от берега Сенегала в Атлантическом океане. Теперь аппарат, ставивший когда-то рекорды, покоится в музее военно-морской базы Тулон В 1953 году Огюст Пиккар спроектировал новый аппарат, который получил название «Триест»: еще более интересный и совершенный. Конструктивно он изменился мало, однако был рассчитан на погружение на значительно большую глубину.
Новая гондола имела чуть меньший размер: диаметр 2,16 метра, со стенками толщиной 127 миллиметров. По расчетам это позволило бы выдержать давление до 1250 атмосфер — то есть около 12 км. Дополнительно были добавлены цистерны с водой по бокам корпуса, чтобы аппарат мог погружаться быстрее, при этом сохраняя плавучесть и устойчивость. Экипаж состоял из двух человек: Жака Пикара сына создателя аппарата и Дона Уолша. Не обошлось и без страшных моментов: на отметке 9000 метров треснуло внешнее стекло из плексигласа. Но запас прочности был хорошим, поэтому все обошлось.
Особый взгляд на факты и события в разделе «В цифрах». Мы проводим еженедельные «Опросы» среди наших читателей.
Удобная навигация, ежедневное обновление информации, ссылки на фото и видеорепортажи. Новости в Кемерово и в Кузбассе - наш главный приоритет. На информационном ресурсе применяются рекомендательные технологии информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети «Интернет», находящихся на территории Российской Федерации. Подробная информация Адрес: 650000, Кемеровская Область, г.
Стоит отметить, что «Лады» разрабатывались для замены субмарин проекта 877 «Палтус», созданного в СССР в конце 1970-х годов. При этом «Палтус» получил ещё одно развитие в виде субмарин проектов 636 рассчитаны на экспорт и 636. Они относятся к подлодкам третьего поколения. В данный момент российский подводный флот пополняется в основном субмаринами именно 636.
Подводная лодка проекта 636. Помимо головной подлодки «Санкт-Петербург», переданной флоту для опытной эксплуатации в 2010 году, сейчас на завершающем этапе находится создание корабля «Кронштадт». В Минобороны РФ сообщили, что в конце декабря нынешнего года начнутся его государственные испытания. На головной лодке «Санкт-Петербург» сейчас как раз ведётся доводка систем», — пояснил Рахманов. Проект 636. Он является носителем крылатых ракет «Калибр», и его эксплуатация налажена», — заявил в беседе с RT главный редактор журнала «Национальная оборона» Игорь Коротченко. Лодки 877-й серии уже были освоены отечественной промышленностью в прошлые годы.
В августе 1966 г. Климова в 1977 году его сменил Ю.
Глубоководная атомная лодка создавалась как полноценный боевой корабль, способный решать широкий круг задач, в число которых входил поиск, обнаружение, длительное слежение и уничтожение атомных подводных лодок, борьба с авианосными соединениями, крупными надводными кораблями и транспортами противника. Процесс проектирования глубоководной лодки занял более восьми лет. Технический проект глубоководного атомохода был утвержден в декабре 1974 г. В качестве основного конструкционного материала на проекте 685 было решено использовать титановые сплавы. Для определения работоспособности титанового сплава в условиях высоких напряжений корпусных конструкций на больших глубинах погружения было решено провести широкий комплекс исследований и экспериментов. На масштабных, полунатурных и натурных отсеках подводной лодки отрабатывались методы конструирования, технология изготовления различных конструктивных узлов корпуса, осуществлялась экспериментальная проверка статической, циклической и динамической прочности конструкции. В рамках программы создания АПЛ проекта 685 в Северодвинске были построены три специальные док-камеры, одна из которых имела диаметр 5 м и длину 20 м, другая, соответственно, 12 и 27 и третья — 15 м и 55 м. Опыт, полученный в ходе реализации 685 проекта, предполагалось широко использовать при проектировании и постройке атомных подводных лодок нового поколения. АПЛ 685-го проекта, получившая номер К-278, была официально заложена в Северодвинске 22 апреля 1978 г.
Постройка корабля осуществлялась блоками, каждый из которых был испытан давлением в самой большой из экспериментальных док-камер. Спуск К-278 на воду состоялся 9 мая 1983 г. Корабль имел двухкорпусную архитектуру. Его тщательно отработанные внешние обводы в сочетании с применением одновальной энергетической установки обеспечивали относительно низкое гидродинамическое сопротивление и высокие скоростные качества, превосходящие возможности американских аналогов. Прочному корпусу была придана относительно простая конфигурация. Цистерны главного балласта размещались внутри прочного корпуса. Для сведения к минимуму числа отверстий в прочном корпусе было решено отказаться от прочной рубки и торпедопогрузочного люка. Для экстренного в течение 20-30 с создания положительной плавучести на больших глубинах при поступлении внутрь лодки забортной воды была установлена система продувания балласта одной из цистерн средней группы при помощи пороховых газогенераторов. В результате рационального использования новых материалов и реализации ряда оригинальных конструкционных решений вес корпуса АПЛ пр.
Наружный корпус, сваренный из титанового сплава, состоял из 10 безкингстонных систем главного балласта, носовой и кормовой оконечностей, проницаемых частей и ограждения выдвижных устройств. Применение титана позволило значительно уменьшить массу корпуса. Ниши торпедных аппаратов, вырезы под носовые горизонтальные рули, шпигаты были оснащены щитовыми закрытиями. На верхней палубе размещались казенные части ТА, торпедные стеллажи и часть аппаратуры связи, а на нижней — аккумуляторная батарея на 112 элементов; 2-й — жилой, разделенный двумя палубами. Вверху были расположены кают-компания, камбуз и санитарно-бытовые помещения, внизу — каюты личного состава. В трюме размещались провизионная кладовая, емкости с пресной водой и электролизная установка; 3-й — центральный пост, разделенный двумя палубами, на верхней из которых были расположены пульты управления главного поста и вычислительный комплекс, а на нижней находился аварийный дизель-генератор; 4-й — реакторный.
АО «АДМИРАЛТЕЙСКИЕ ВЕРФИ» ЗАЛОЖИЛО ПОДВОДНЫЕ ЛОДКИ «МАГАДАН» И «УФА»
4 августа 1985 года советская атомная подводная лодка К-278 (с 31 января 1989 года переименованная в «Комсомолец») установила абсолютный мировой рекорд по – Самые лучшие и интересные новости по теме: Погружение, глубина, рекорд на развлекательном портале. Подводная лодка проекта 955А «Борей-А» получила название в честь предпоследнего русского императора Александра III. один из её важнейших технических параметров.
Подводную лодку «Уфа» испытали погружением на глубину 190 метров
Погружение, стоимостью 250 тысяч долларов за человека закончилось потерей подводной лодки "Титан", которая везла пятерых туристов к историческому месту крушения "Титаника". Экипаж дизель-электрической подводной лодки (ДЭПЛ) «Можайск», проходящей заводские ходовые испытания на морских полигонах Балтийского флота, отработал первые погружения на глубину. вооружения, россия, флот, тихий океан, подводные лодки, борей Подводные лодки проекта 955А считаются самыми совершенными в мире носителями баллистических ракет морского старта. Россия провела учения с погружением подводных лодок на рекордную глубину. Другой такой же: У подводной лодки глубина погружения считается в метрах относительно нормального надводного положения лодки. Sputnik Беларусь, 1920, 28.11.2023.
Войти на сайт
Северный флот начал испытания подводных лодок на предельной глубине в 500 метров 2021. Об этом сообщает агентство ТАСС. Испытания проходят на глубине в 500 метров.
Все зависит от бдительности этих людей. Какой бы ни была подводная лодка, ее безопасность, прежде всего, зависит от квалификации экипажа.
Что позволяет не попадать ей в сложные ситуации. И она уходит на грунт. И такие примеры, как говорит наш собеседник, были. В мае 1968 года не вернулась в порт Норфолк штат Вирджиния после тренировочного похода американская подводная лодка «Скорпион».
Субмарина была водоизмещением 3075 тонн и 77 метров в длину. Спустя пять месяцев ее обнаружило исследовательское судно «Мизар» в 400 милях юго-западнее Азорских островов. Обломки «Скорпиона» лежали на глубине более 3000 метров. В районе центрального поста подлодку разорвало пополам.
Погиб весь экипаж — 91 человек.
Кроме того, подводниками был отработан алгоритм действий при управлении кораблем на больших глубинах и при аварийном всплытии. Погружение подводной лодки обеспечивали спасательное судно «Эпрон» и малый противолодочный корабль «Поворино». После завершения подводных элементов экипаж «Краснодара»: - успешно всплыл на поверхность; - продолжил выполнение мероприятий в соответствии с планом боевой подготовки флота. Ранее, 12 октября 2018 г.
Технический проект глубоководного атомохода был утвержден в декабре 1974 г. В качестве основного конструкционного материала на проекте 685 было решено использовать титановые сплавы. Для определения работоспособности титанового сплава в условиях высоких напряжений корпусных конструкций на больших глубинах погружения было решено провести широкий комплекс исследований и экспериментов.
На масштабных, полунатурных и натурных отсеках подводной лодки отрабатывались методы конструирования, технология изготовления различных конструктивных узлов корпуса, осуществлялась экспериментальная проверка статической, циклической и динамической прочности конструкции. В рамках программы создания АПЛ проекта 685 в Северодвинске были построены три специальные док-камеры, одна из которых имела диаметр 5 м и длину 20 м, другая, соответственно, 12 и 27 и третья — 15 м и 55 м. Опыт, полученный в ходе реализации 685 проекта, предполагалось широко использовать при проектировании и постройке атомных подводных лодок нового поколения. АПЛ 685-го проекта, получившая номер К-278, была официально заложена в Северодвинске 22 апреля 1978 г. Постройка корабля осуществлялась блоками, каждый из которых был испытан давлением в самой большой из экспериментальных док-камер. Спуск К-278 на воду состоялся 9 мая 1983 г. Корабль имел двухкорпусную архитектуру. Его тщательно отработанные внешние обводы в сочетании с применением одновальной энергетической установки обеспечивали относительно низкое гидродинамическое сопротивление и высокие скоростные качества, превосходящие возможности американских аналогов.
Прочному корпусу была придана относительно простая конфигурация. Цистерны главного балласта размещались внутри прочного корпуса. Для сведения к минимуму числа отверстий в прочном корпусе было решено отказаться от прочной рубки и торпедопогрузочного люка. Для экстренного в течение 20-30 с создания положительной плавучести на больших глубинах при поступлении внутрь лодки забортной воды была установлена система продувания балласта одной из цистерн средней группы при помощи пороховых газогенераторов. В результате рационального использования новых материалов и реализации ряда оригинальных конструкционных решений вес корпуса АПЛ пр. Наружный корпус, сваренный из титанового сплава, состоял из 10 безкингстонных систем главного балласта, носовой и кормовой оконечностей, проницаемых частей и ограждения выдвижных устройств. Применение титана позволило значительно уменьшить массу корпуса. Ниши торпедных аппаратов, вырезы под носовые горизонтальные рули, шпигаты были оснащены щитовыми закрытиями.
На верхней палубе размещались казенные части ТА, торпедные стеллажи и часть аппаратуры связи, а на нижней — аккумуляторная батарея на 112 элементов; 2-й — жилой, разделенный двумя палубами. Вверху были расположены кают-компания, камбуз и санитарно-бытовые помещения, внизу — каюты личного состава. В трюме размещались провизионная кладовая, емкости с пресной водой и электролизная установка; 3-й — центральный пост, разделенный двумя палубами, на верхней из которых были расположены пульты управления главного поста и вычислительный комплекс, а на нижней находился аварийный дизель-генератор; 4-й — реакторный. В нем располагалась паропроизводящая установка со всем оборудованием и трубопроводами первого контура; 5-й — отсек вспомогательных механизмов, обеспечивающих функционирование системы охлаждения; 6-й — турбинный отсек. В его диаметральной плоскости располагался главный турбозубчатый агрегат, а по бокам — два автономных турбогенератора и два главных конденсатора; 7-й — кормовой. По нему проходила линия главного вала и размещались привода рулей. Лодка имела всплывающую камеру, способную вместить весь экипаж и обеспечивающую его спасение с глубин до 1500 м и оснащенную автономной системой энергоснабжения.