Новости обучение нейросетям и искусственному интеллекту

Изначально NovelAI базировалась как ИИ-генератор рассказов, однако позднее появилась новая версия нейросети, которая была способна генерировать качественные аниме арты. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом. Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra. Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко.

5 бесплатных курсов, чтобы научиться применять нейросети в работе и жизни

Использование искусственного интеллекта (ИИ) в школах набирает обороты во всем мире, Россия не исключение. Аппаратная реализация искусственных нейронных сетей. Искусственные нейронные сети (ИНС), навеянные вычислительными и коммуникативными способностями мозга человека, являются значительной парадигмой в машинном обучении. Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra.

Первая ступень ракеты SpaceX Falcon 9 утонула после 20-го успешного запуска

С тех пор как технологии искусственного интеллекта стали достоянием широкой общественности, в мире многое изменилось. Искусственный интеллект и нейронные сети станут неотъемлемой частью жизни подрастающего поколения. Курс «Философия искусственного интеллекта» от Skillbox охватывает темы, связанные с взаимодействием ИИ и человечества. Communications Medicine: создана система на базе нейросети для обучения молодых хирургов. Фото: Илья Питалев / РИА Новости.

ЦПСО всегда под рукой

  • для учебы и будущей работы
  • Погружаемся в машинное обучение
  • Бесплатные нейросети и курсы по ИИ
  • Виртуальный учитель: как ИИ меняет образование
  • Ключевые слова

Яндекс, ВШЭ и Сириус запустили бесплатный курс по ИИ для школьников

Например, наши студенты разработали программу, позволяющую идентифицировать каждого человека на видео, где танцует много людей. Повышение эффективности и качества обучения больших нейросетевых моделей Иван Оселедец, генеральный директор компании AIRI, профессор Сколтеха: О текущем состоянии работы нейросистемных моделей Работа с текстами и изображениями - это уже практически решенные задачи. Но следующий шаг - мультимодальные модели, работа с ними только началась. Нами разработана первая мультимодальная модель в России OmniFusion. Принцип ее работы заключается в объединении двух модальностей: текста и картинок.

Она вполне способна на основе полученных данных обрабатывать их и поддерживать диалог. Можно также объединять тексты и графы, тексты и видео или текст и движение робота. Всему этому требуется обучить языковую модель. Этот процесс достаточно трудоемкий и дорогостоящий.

О том, как строить мультимодальные архитектуры Основная проблема в том, как установить связь между модальностями. Наиболее эффективным методом ее решения нам кажется использование инкодеров, которые позволяют переводить картинку в вектор, а дальше строятся небольшие адаптеры, представляющие собой маленькую нейросеть и переводящие информацию с языка картинок на язык текстов. При этом, конечно, предполагается, что мы работаем с хорошей предобученной языковой моделью и такой же моделью работы с картинками, поэтому нам нужно обучить только адаптеры. Итоговое качество получается довольно высоким.

При этом модель продолжает обучаться, и качество ее работы совершенствуется. Наша модель уже превзошла по ряду характеристик общеизвестную мультимодальную модель Lava13B. Мультимодальность - это ключевой момент. В идеале мультимодальная модель должна работать с произвольным количеством модальностей.

Такие попытки внедрить в нейросети способность работать с большим количеством модальностей были, но они пока не увенчались успехом. Думаю, что все-таки подход с адаптерами вполне сможет достичь этой цели. Сегодня модель с 40 миллиардами параметров будет обучаться примерно два месяца. Одна из наших разработок строится на том, что при создании алгоритма вычисления градиентов для поточечной нелинейности, на которую обычно никто не обращает внимания, можно использовать вместо 16 бит всего 3 бита с сохранением точности.

Второй подход, который мы применяем, это использование техник рандомизированной линейной алгебры для ускорения вычисления градиентов большого линейного слоя. Если упростить, то можно, не меняя алгоритм, но поменяв порядок операций, получить более быстрый и точный результат. Пример: в нашем большом проекте NNTile мы хотим заново реализовать базовые операции с нуля без использования каких-то больших пакетов, чтобы получить максимальную производительность, причем на многопроцессорных системах. От стохастических дифференциальных уравнений до задачи Монжа-Канторовича и обратно: путь к искусственному интеллекту?

Евгений Бурнаев, профессор, руководитель Центра прикладного ИИ Сколтеха, руководитель научной группы "Обучаемый интеллект" AIRI: Важное свойство, которым должен обладать искусственный интеллект и которым обладает человек, - это креативность, возможность создавать новые образы. Так, модель ИИ может создавать картинки согласно текстовому описанию, заданному человеком. Математически задачу построения новых образов можно описать как задачу построения модели распределения над разными типами сложных данных: изображением, текстом, звуком и т. Моделировать связи между этими данными тоже надо уметь.

Общие настройки. Создание Fashion Photo. Кадрирование, стиль, уточняющие параметры. Команды Zoom out и Shorten. Команды Pan и Repeat. Создание текстур и фонов. Команда Tile. Создание генераций с лицом реального человека.

Данная статья посвящена искусственному интеллекту и нейронным сетям. Использование ИИ в современном обществе вносят новые формы в совершенствование интеллектуальных систем в сфере информационных Нейронная сеть — это одно из ее достижений, вдохновленное структурой человеческого мозга, которая помогает компьютерам и машинам больше походить на человека. Нейронная сеть — это либо системное Искусственные нейронные сети ИНС — это ключевой инструмент машинного обучения. Это системы, разработанные по вдохновению функциональности нейронов в мозге, которые будут воспроизводить то, как мы, люди, учимся. Нейросетевой подход в задаче обработки данных Использование нейронной сети в данной задаче позволило провести кластеризацию и разделить одну большую задачу составления оптимального варианта расписания на ряд подзадач. В результате обучения нейронной сети были получены модель обучения нейронной сети для построения оптимального варианта расписания на основе многослойного перцептрона приведенная на рисунке 2, а график сходимости обучения на рис.

Составляющие искусственной нейронной сети. Все искусственные нейронные сети состоят из так называемых нейронов — модели, представляющей из. Рекуррентная нейронная сеть. Аппаратная реализация искусственных нейронных сетей. Искусственные нейронные сети ИНС , навеянные вычислительными и коммуникативными способностями мозга человека, являются значительной парадигмой в машинном обучении. Как таковые они послужили основой для множества мощных алгоритмов с применением в распознавании образов, запоминании, отображении и др.

В последнее время наблюдается значительное продвижение в аппаратной реализации этих сетей с целью преодоления вычислительных сложностей при программной реализации: мощностной потенциал человеческого мозга составляет приблизительно 15Вт, и его вычислительные способности... Искусственные нейронные сети Статья в журнале... Таким образом, искусственные нейронные сети представляют очень гибкий аппарат для решение широкого спектра задач, от обучения игрового искусственного интеллекта до прогнозирования поведения экономики отдельного региона или целого государства. Качество решения задачи каждый раз зависит от объема и качества исходных данных. Ключевые слова: искусственная нейронная сеть, синаптические веса, ассоциативная память, сигнальные графы, матрицы смежности сигнальных графов, шаговый алгоритм. В прикладных задачах все большее распространение находят искусственные нейронные сети ИНС [1,2,3].

Исследование возможностей использования нейронных сетей Из определения искусственного нейрона следует понятие ИНС искусственной нейронной сети — совокупность взаимодействующих между собой искусственных нейронов. Это качество есть и у искусственных нейронных сетей. После тренировки они способны не обращать внимание на входы, на которые подаются шумовые данные. Нейронные сети способны корректно функционировать, даже если на входе данные зашумлены. Для этого существует процесс обучения сети. ИНС учатся подобно человеку.

Обучение нейронной сети Training — поиск такого набора весовых коэффициентов, при котором входной сигнал после... Модель математической нейронной сети Статья в журнале...

В отличие от программистов, они не создают программы, которые работают на алгоритмах. Data Scientist пишет модель нейросеть , обучает и проверяет, насколько корректно она работает. Сколько стоит курс по нейросетям? В Skillfactory несколько курсов по нейросетям и машинному обучению. Цена стартует от 1658 рублей в месяц. Вы можете оформить беспроцентную рассрочку на 12, 24 или 36 месяцев и оплачивать любую программу частями.

Какие нейросети можно попробовать бесплатно? В России доступно несколько бесплатных нейросетей, например: Kandinsky — создает картинки в разных стилях, совмещает и дорисовывает их. Понимает запросы на более чем 100 языках. Поддерживает русский, английский и казахский языки. Может сделать озвучку по заданному тексту, сгенерировать рекламные слоганы, визитки, логотипы. ChatGPT — пишет тексты разных форматов и на любые темы, от шуток до диссертаций. Можно задать стиль, например художественный, официальный или разговорный. GigaChat — генерирует картинки, отвечает на вопросы, пишет тексты.

Способен вести диалог и даже писать код. На курсах Skillfactory вы протестируете разные нейронные сети, узнаете их особенности, преимущества и недостатки. Когда начнете работать по специальности, сразу будете знать, каким ПО пользоваться. Что такое обучение нейросетей? Это процесс, в ходе которого нейросеть учится выполнять задачи на основе данных. В результате она начинает анализировать примеры, находить закономерности, делать прогнозы, составлять классификации.

Путешествие в мир искусственного интеллекта

Подать заявку на выбранную программу возможно при условии успешного пройденного тестирования и наличия на этой программе свободных мест. Как записаться на выбранную программу? Как изменить выбранную программу? Если вы подали заявку на программу, но еще не заключили договор с образовательной организацией, вы можете изменить программу.

Для этого необходимо написать на ai-help 2035.

Это непростой момент для гендиректора Пэта Гелсингера Pat Gelsinger который находится у руля уже четвёртый год. Проблемы Intel накапливались десятилетиями.

Уязвимость затрагивает неисчислимое множество процессоров, а её устранение грозит катастрофическим снижением производительности. Компания переложила вину на производителей материнских плат, которые при разработке BIOS не последователи спецификациям процессоров и направленным им рекомендациям. Компания отрабатывает технологию захвата и свода в атмосферу ненужного хлама в окружении Земли, чтобы запускам ракет и спутникам ничего не угрожало.

Но потом на Марс полетели автоматические станции и спускаемые аппараты, и каналы оказались причудливыми складками рельефа. Зато по мере улучшения регистрирующей аппаратуры Марс стал показывать другие свои чудеса. Последними из них можно считать обнаружение «жутких пауков в городе инков».

Это не означает, что тайваньская компания решила полностью прекратить производство видеокарт на базе графических чипов Radeon от AMD. Также это не означает каких-либо перманентных изменений в её бизнесе. Однако это проясняет ситуацию, почему видеокарты MSI Radeon начали исчезать с полок магазинов.

К настоящему моменту только компания Tesla адаптировала эту технологию.

Выпускник 3-го потока курса Аспирант Физического факультета МГУ Очень интересный и модный практически-ориентированный курс. Задач для машинного обучения в моей лаборатории оказалось уйма, и не будет преувеличением сказать, что этот курс изменил нашу научную группу. Особую благодарность хотел бы выразить Ивченко Александру, который был моим преподавателем, а также всему тёплому коллективу курса!

Образовательный интенсив рассчитан на учеников старших классов, для обучения необходимы знание школьной математики и базовые навыки разработки на Python. Каждый модуль включает короткие видеолекции и практические упражнения. Для старта понадобится зарегистрироваться в онлайн-школе Сириус. Курсы и выбрать курс «Глубокое обучение». Курсы — это онлайн-школа дополнительного образования Образовательного центра «Сириус».

На площадке доступны бесплатные курсы по математике, информатике, физике, химии, биологии, лингвистике, искусственному интеллекту. Ученики самостоятельно выстраивают индивидуальную траекторию, определяют темп и удобное время учебы. В онлайн-школе могут учиться школьники, родители, учителя, студенты вузов и все, кто хочет изучить предмет за пределами школьной программы.

Каталог нейросетей

Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование. Машинное обучение искусственного интеллекта сейчас бывает трех типов: обучение с учителем (Supervised learning) — алгоритм учится распознавать закономерности в данных и затем может делать прогнозы или принимать решения на основе новой. Почему стоит начать изучение машинного обучения и нейронных сетей с нашего курса?

Перспективы развития и применения нейронных сетей

Нейросети в 2024 году Итак, с момента релиза ChatGPT разработка моделей генеративного искусственного интеллекта продолжается головокружительными темпами — новый класс ИИ-систем учится быть мультимодальным. Это означает, что данные, используемые для обучения нейросетей, поступают не только из текстовых источников, таких как Википедия, но и из видео на YouTube и других аудио и визуальных источников информации. Все это в очередной раз поднимает один из главных вопросов, связанных с ИИ-системами — достоверностью информации. Достоверность информации Чат-боты щедро делятся с нами фейковыми фото и видео причем, понять что перед нами фейк довольно трудно и в будущем эта проблема усугубится, нанося все больший вред как отдельным лицам, так и крупным компаниям и даже государствам. Все это происходит несмотря на зарождающееся регулирование, в связи с чем многие эксперты предрекают появление новых, ранее невиданных классов проблем. Одна из главных проблем ИИ — достоврность информации Это интересно: «Темная сторона» чат-ботов: от признаний в любви до разговоров с мертвыми Сегодня ИИ позволяет буквально автоматизировать создание фейков — как текстовых, так и видео, а значит имитирующего правду контента на просторах сети становится все больше. Создание более крупных моделей Развитие имеющихся ИИ-систем продолжается ускоренными темпами, несмотря на многочисленные предостережения. Напомним, что в прошлом году более 1800 технических специалистов, включая Илона Маска, Стива Возника, а также инженеров из Amazon, DeepMind, Google, Meta и Microsoft подписали открытое письмо с требованием приостановить обучение ИИ, более мощных чем GPT-4, хотя бы на полгода. По мнению подписантов, на данном этапе нейросети не поддаются контролю даже своих создателей, а потому регулированием ИИ должны заниматься и в правительстве, — подробнее можно прочитать здесь.

Проблемой также является тотальная конкуренция за прибыль, славу и господство в отрасли, которая началась с релиза ChatGPT. А подобная конкуренция, как уже не раз показывала история, любит обходить всевозможные ограничения и попытки регулирвоания. Так или иначе, многие эксперты склоняются к тому, что нам следует быть готовыми к появлению более мощного ИИ и целому потоку разнообразных приложений. В 2024 году ИИ-системы станут более мощными Так, в декабре 2023 года Google DeepMind анонсировала последнюю модель искусственного интеллекта Gemini Ultra, не раскрывая при этом объем вычислительной мощности, использованной для обучения модели. Однако по оценкам организации Epoch, занимающейся прогнозированием искусственного интеллекта, система была обучена с наибольшими мощностями. И да, Gemini Ultra примерно так же хороша, как и предсказывали эксперты.

Однако, будьте готовы, что если вы ничего до этого не слышали о нейронных сетях, то будет достаточно тяжело, так как курс требует большой отдачи. Выпускница 2-го потока курса Аспирант Физического факультета МГУ Курс по применению нейронных сетей в научных исследованиях однозначно лучший курс, связанный с программированием из тех, что я проходил. А самой важной частью этого курса оказалась работа над собственным проектом.

И в целом думаю это будет отличным дополнением к моим знаниям. Так-же у меня есть pet проект, который было бы круто улучшить нейронкой. ЕКАТЕРИНА AI заинтересовал возможностью использования в различных сферах деятельности, в том числе непосредственно связанных с моей основной специальностью и работой - финансовым анализом и переводами с иностранных языков я по специальности экономист-переводчик. По профессии я занимаюсь производством дизайнерской мебели. Работа творческая и как в любой профессии, нужно постоянно развиваться и изучать что-то новое, но недавно я понял что есть в ней и минус, а конкретно потолок выше которого уже не прыгнуть, в том числе и в плане доходов. А когда я стал искать более перспективные направления и познакомился с нейронными сетями и искусственным интеллектом я понял что в долгосрочной перспективе всё что я сейчас умею может стать бесполезным навыком как и многие другие виды деятельности, которые сейчас востребованы. И так как сегодня всё меняется стремительно, то нужно уже сегодня осваивать то что будет востребовано завтра. И тут AI является безусловным лидером, это именно то на что нужно тратить своё время, если в будущем хотите не искать работу, а работодатели искали вас. И цену за свои услуги, которые зависят только от уровня ваших навыков, назначали уже вы. Это принципиально другой уровень жизни, не говоря уже о том что с помощью сферы IT можно участвовать в создании будущих современных технологий. Вещи о которых я раньше мог только мечтать, сегодня становятся реальностью.

Каждый из алгоритмов обладает уникальными преимуществами и недостатками. Но в каждом случае, независимо от алгоритма, достигается конечная цель — НС обучается. Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека. Основа для функционирования neural была взята из нейробиологии. Суть в том, что нужно было получить модель и программное решение, способное имитировать работу головного мозга. Только относительно недавно развитие нейросетей стало демонстрировать результаты. Нейронная сеть и возможность ее обучения Ученые понимают, что для успешной работы интеллект должен быть самостоятельным. Если система функционирует как человек, то ее нужно обучать. Но как учить компьютер? Сегодня с этой целью задействуют алгоритмы обучения нейронных сетей. Но все они основаны на одном из двух известных принципов:с наставником или без такового. Мы можем провести аналогию с процессом обучения человека: он может получать знания как самостоятельно, так и вместе с наставником. С учителем В данном случае нейросеть получает выборку из обучающих примеров. Данные поступают на «вход», после чего происходит ожидание правильного ответа на «выходе». Это ответ, который должна дать нейронная сеть. Конечный результат сопоставляют с эталонным значением. В том случае, когда НС выдает неверный ответ, производят коррекцию, дальше процесс повторно запускают, тем самым пытаются добиться снижения процента неправильных ответов. По программе обучения нейронной системы сравнивается большое количество разнообразных понятий. С помощью этого сравнения определяется базовый уровень знаний. В терминах обучения ИИ в качестве базовых понятий используются языки программирования и инструменты для изучения языков. Если нейросеть обучена, то она будет знать языки программирования, если нет — то нет. Без учителя Данный вид процесса обучения предполагает только ввод данных. В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы.

Расширяем географию AIJ

  • Искусственный интеллект
  • Нейронные сети и компьютерное зрение — Stepik
  • Курсы по нейросетям
  • ЕГЭ будет проверять нейросеть: как искусственный интеллект стал частью госэкзаменов в России
  • В России стартовал прием заявок на курсы по искусственному интеллекту
  • Что умеет самая умная нейросеть на Земле и почему недовольны разработчики искусственного интеллекта

Искусственный интеллект — бот [2024]

  • Искусственный интеллект | Университет 2035
  • Минцифры с МВД и Роскомнадзором определят наказание за дипфейки
  • Специалист по ИИ и нейросетям: как им стать и где учиться?
  • Нейросеть онлайн на русском 2024

Семинар Проблемы ИИ 25.10.2023

30 лучших курсов обучения по нейросетям в 2024 году Ключевые спикеры в сфере технологий искусственного интеллекта и машинного обучения.
Акулы нейронных сетей Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени.
"Мы для него материал": Учёный призвал срочно отключить все серверы с искусственным интеллектом Международный конкурс по искусственному интеллекту для молодежи.
Обучение нейросетям, заработок с ИИ. Начните бесплатно! Искусственный интеллект: создайте свою первую нейросеть от Нетологии.
Обучение нейросетям, заработок с ИИ. Начните бесплатно! Apple приобрела парижский стартап в области искусственного интеллекта Datakalab в рамках реализации своего проекта по развёртыванию средств ИИ с локальной обработкой данных на устройствах.

Семинар Проблемы ИИ 25.10.2023

Telegram: Contact @aicentr Учить ИИ разуму: как нейросети влияют на сферу образования.
Топ-10 актуальных курсов по нейросетям и искусственному интеллекту в 2024 году Учим работе с нейросетями, применению искусственного интеллекта и новым профессиям в Вышке Онлайн.
ЕГЭ будет проверять нейросеть: как искусственный интеллект стал частью госэкзаменов в России Нейросеть — это искусственный интеллект, который может обучаться и принимать решения, используя данные информационных баз, созданных на основе опыта и инструкций.

ТОП-10 актуальных курсов по нейросетям и искусственному интеллекту (AI) в 2024 году

практика обучения основам искусственного интеллекта в российских образовательных организациях общего образования и организациях дополнительного профессионального образования. практика обучения основам искусственного интеллекта в российских образовательных организациях общего образования и организациях дополнительного профессионального образования. Курс "Нейросети для Digital Art" обучает созданию высококачественного контента с помощью искусственного интеллекта. Нейросети, AI, искусственный интеллект, ML, ИИ —. так называют сложные математические модели, созданные людьми.

Конференция Сбера по искусственному интеллекту AIJ 2023. Текстовая трансляция первого дня

Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель. На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению. Посмотрите большой вебинар о нейросетях и их использовании в жизни и бизнесе от GeekBrains: Введение в нейронные сети Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами. Нейросети в какой-то степени пытаются приблизиться к человеческому мозгу: мы распознаем окружающие предметы мгновенно, знаем, когда перед нами такса, а когда — персидская кошка, а компьютеру для выполнения таких задач нужно обучиться и обработать миллионы изображений кошек и собак разных пород.

Специалист по нейросетям знает, как именно нужно ее обучать, какие данные загружать и какие алгоритмы использовать. Для этого нужно изучить структуру глубоких, свёрточных и рекуррентных нейронных сетей, понимать алгоритмы обратного распространения ошибки, принципы обучения и подбор гиперпараметров для нейронных сетей. Нейросети разрабатывают во фреймворках: Tensorflow, Keras, PyTorch, работать с ними тоже нужно учиться, причем не в теории, а на практике. Изображения и видео обрабатывают с помощью методов компьютерного зрения, а текст — с помощью методов NLP, обработки естественного языка.

По итогам прохождения курса слушатели смогут: Самостоятельно обучать простые модели машинного обучения на готовых данных с использованием инструментов визуального программирования. Анализировать и интерпретировать статистические данные, проводить первичный анализ и подготовку данных для моделей ИИ. Избегать типичных ошибок при принятии решений на основе данных, критически оценивать результаты анализа. Формулировать и проверять статистические гипотезы, различать случайные и неслучайные зависимости. Эффективно визуализировать и представлять результаты исследований и работы моделей с помощью инфографики. Наша цель — держать подписчиков в курсе самых интересных открытий, исследований и приложений ИИ.

Материалы о применении ИИ в разных сферах — медицине, бизнесе, науке, производстве и образовании. Статьи об этических аспектах развития технологий. Подборки лучших онлайн-курсов и видеолекций по машинному обучению.

Идея с Шедеврумом возникла в конце 2022 года. На тот момент у нас уже была обученная сеть, а потом мы к ней добавили первую версию бэкенда, который генерирует изображения. И команда сделала всё за новогодние праздники.

Первая версия названия проекта была «Шедеврус», ещё был «Им-Ям» Yimg-Yamg , но это плохо воспринималось на слух. В итоге победил вариант «Шедеврум» — это классное многослойное название. Приложение генерирует шедевры внутри room — «своей комнаты». У этой нейросети есть и другие применения. Миссия моей команды — в разработке достаточно общих технологий, которые используются в разных продуктах компании и касаются большей их части. Шедеврум — это интересная, фановая B2C-история, но наша цель — расти дальше.

Есть планы внедрения в B2B, рекламу и много ещё куда. Например, Яндекс использует в рекламе иллюстрации, созданные той же нейросетью, что работает в Шедевруме. Если у рекламодателя нет собственной картинки для объявления, он может выбрать из предложенных нейросетью. Нейросети можно использовать как для решения бизнес-задач, так и для развлечения. Мы постоянно в поисках новых применений. Уже сейчас нейросеть может придумать костюмы и декорации, разработать креативные концепции — помогать людям в их профессиональной деятельности.

Отправить запрос на коммерческое использование контента из Шедеврума можно через форму обратной связ и — ответ придет в течение 5 рабочих дней. Как вообще работает Шедеврум? В первую очередь сеть понимает, что хочет изобразить пользователь. Для этого мы используем отдельную нейросеть. Она обучалась на датасете текстов, понимает, как устроен язык и какие в нём взаимосвязи. Её задача — представить данные для другой нейросети в виде вектора чисел.

Туда она кодирует информацию, о чём фраза, как взаимосвязаны слова. Вторая нейросеть в процессе обучения видела 330 млн изображений и текстов, связанных с ними. Предполагается, что она сформировала своё представление о мире: каким визуальным образам соответствуют те или иные слова, как устроен мир изображений, как надо рисовать. Её задача — понять из сжатого представления текста, чего от неё хотят, и создать изображение. Если данных мало или вовсе нет, решение о генерации она принимает случайным образом. То есть додумывает сама: если не указать локацию, где лежит кот, она выдаст нам его изображение, например, на диване, а может — в вакууме или на пляже.

Над чем команда работает прямо сейчас?

В рамках поездки, ученые Института ИИ МГУ рассказали о перспективных направлениях развития российской науки в области искусственного интеллекта, поделились новыми возможностями и результатами, позволяющими утверждать о необходимости синтеза точных и гуманитарных наук. Мероприятия в Пекине прошли с большим интересом со стороны студентов и молодых ученых, присутствовавших на лекциях российских профессоров. Поездка стала важным этапом в развитии российско-китайского научного сотрудничества, продемонстрировала потенциал для более глубокого сотрудничества в будущем. Участники сессии обсудили одну из самых «горячих» тем в области искусственного интеллекта, в рамках которой эксперты предположили какие технологии и в какие сроки российские ученые могут привнести в «российский ChatGPT», чтобы наше развитие в этой области стало опережающим. Запись дискуссии можно посмотреть здесь. Тип такого контента достаточно трудный в связи с растущей ошибкой при перепроецировании, вызванной кодеками. Поэтому в статье проводится сравнение различных проекций и различных пар кодеков, чтобы выявить наиболее устойчивую проекцию к кодированию. Результаты, представленные в статье, используют как объективные метрики, так и субъективное сравнение на статичных областях просмотра.

Субъективное измерение качества изображения играет решающую роль в разработке приложений для обработки изображений. Метрики визуального качества служат для аппроксимация результатов субъективной оценки. В связи с этим разрабатывается все больше и больше метрик, но их ограничения мало исследованы. Субъективное сравнение предварительно обработанных изображений показало, что для большинства исследованных ими метрик качество изображения падает или остается неизменным, что ограничивает применимость этих метрик. Таким образом они ищут потенциальные лекарства. После года или нескольких лет работы одного коллектива получается результат — новые знания и соответствующий набор данных. Часть исследований публикуется в открытых источниках — научных статьях.

Андрей Комиссаров: Нужно держать глаза открытыми

Как изменится искусственный интеллект в 2024 году? Десятки студентов Университета искусственного интеллекта обратились в суд, чтобы вернуть свои деньги за обучение.
Перспективы развития и применения нейронных сетей Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом.
Что умеет самая умная нейросеть на Земле и почему недовольны разработчики искусственного интеллекта » предлагает обучение по теме искусственного интеллекта в искусстве.
Let AI be | Онлайн-журнал про искусственный интеллект Нейросети, AI, искусственный интеллект, ML, ИИ —. так называют сложные математические модели, созданные людьми.

Похожие новости:

Оцените статью
Добавить комментарий